JPH03227259A - Heating photographic printing device - Google Patents

Heating photographic printing device

Info

Publication number
JPH03227259A
JPH03227259A JP2304090A JP2304090A JPH03227259A JP H03227259 A JPH03227259 A JP H03227259A JP 2304090 A JP2304090 A JP 2304090A JP 2304090 A JP2304090 A JP 2304090A JP H03227259 A JPH03227259 A JP H03227259A
Authority
JP
Japan
Prior art keywords
printing
photographic printing
heat generating
resistance value
resistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2304090A
Other languages
Japanese (ja)
Inventor
Kazuya Masuda
和也 増田
Yasumichi Yamaji
山地 康路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2304090A priority Critical patent/JPH03227259A/en
Publication of JPH03227259A publication Critical patent/JPH03227259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To perform control of suitable electrification time for each photographic printing means by a method wherein photographic printing is operated by controlling a power energized quantity of each photographic printing means based on a photographic printing data to be inputted for each heating element and a memory content of a memory means. CONSTITUTION:A control part 14 calculates each resistant value of heating element blocks B1-BM following a program in a ROM 15 based on a data from an analog/digital convertor 20 to be stored in a RAM 13. Electrification time control signal STB1-STMB controlling electrification time of heating element block B1-BM based on each photographic printing data from a photographic printing data input means 12 and each resistant value of the heating element block B1-BM is prepared, and is given to a drive circuit DR1-DRM. Further the photographic printing data is given to the drive circuit DR1-DRM via a serial transfer control circuit 16. Electrification time of each heating element R1-RN1 can be controlled by controlling a low level period of the control signal STB1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、サーマルへ・・lドを使用する印画装置など
に好適に実施される発熱印画装置に間する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat-generating printing device that is suitably implemented in a printing device that uses thermal radiation.

従来の技術 第3図は、従来のサーマルプリンタ1の基本的構成を示
すブロック図である。制御回路3は、印画データ入力手
段2から印画データが与えられると、駆動回路4を駆動
してサーマルヘッド5に設けられる複数の発熱抵抗素子
からなる複数の印画手段P1〜Pnを順次的に駆動させ
て、印画動作を行う。一般にサーマルヘッドの各発熱抵
抗素子の抵抗値にはばらつきがあり、同じ濃度の印画を
行う場合でも印画手段毎に通電時間などの補正を行う必
要がある。そこで、従来では、サーマルヘッド5を構成
する全発熱抵抗素子の平均抵抗値に基づいて、サーマル
ヘッド5のランク分けを行いこのランク情報に基づいて
通電時間の補正を行つていた。
BACKGROUND OF THE INVENTION FIG. 3 is a block diagram showing the basic configuration of a conventional thermal printer 1. When the control circuit 3 receives printing data from the printing data input means 2, it drives the drive circuit 4 to sequentially drive the plurality of printing means P1 to Pn, which are made up of a plurality of heating resistive elements provided in the thermal head 5. Then, perform the printing operation. Generally, there is variation in the resistance value of each heat generating resistor element of a thermal head, and even when printing images of the same density, it is necessary to correct the energization time and the like for each printing means. Therefore, conventionally, the thermal head 5 is ranked based on the average resistance value of all heat generating resistive elements constituting the thermal head 5, and the energization time is corrected based on this rank information.

サーマルプリンタ1においては、設定手段6によって設
定されたランク情報がバッファ7を介して制御回路3に
与えられる。制御回路3は、設定手段bIJ−らのラン
ク情報と、印画データ入力手段2からの印画データとに
基づいて、印画手段毎の通電時間の制御を行う、設定手
段6は、デイツプスイッチなどのハードウェアスイッチ
Sa、Sb。
In the thermal printer 1, rank information set by the setting means 6 is given to the control circuit 3 via the buffer 7. The control circuit 3 controls the energization time of each printing means based on the rank information from the setting means bIJ- et al. and the printing data from the printing data inputting means 2. Hardware switches Sa, Sb.

Scを含んで構成されており、これらのスイッチの○N
10 F F状態によって、8種類のランクを設定する
ことができる。第1表には、サーマルヘッドの抵抗ラン
クと、スイッチSa、Sb、Scの0N10FF状態と
の対応関係が示されている。
It is configured including Sc, and the ○N of these switches
10 FF Eight types of ranks can be set depending on the F status. Table 1 shows the correspondence between the resistance rank of the thermal head and the 0N10FF states of the switches Sa, Sb, and Sc.

第  1  表 サーマルヘッドのランク分けは、サーマルヘッド内の全
発熱抵抗素子の平均抵抗値に基づいて行なわれる。たと
えば、平均抵抗値が予め定められる許容値内で、小さい
ときはランク「1」とされ、平均抵抗値が大きいときは
ランク「8」とされる。
Table 1 Thermal heads are ranked based on the average resistance value of all heat generating resistive elements in the thermal head. For example, when the average resistance value is small within a predetermined tolerance value, it is ranked as "1", and when the average resistance value is large, it is ranked as "8".

発明が解決しようとする課題 上述のように、サーマルヘッドのランク分けはサーマル
ヘッド全体として行なわれるので、全ての発熱抵抗素子
に対して同じ補正が行なわれることになり、個々の印画
手段P1〜Pnに着目した場合、適正な通電時間の制御
が行なわれていない場合があった。また、上記ランク分
けはサーマルへlドの製造時に行われ、全発熱抵抗素子
の抵抗値を測定する手間があり、その上スイッチSa。
Problems to be Solved by the Invention As mentioned above, since the ranking of the thermal head is performed for the entire thermal head, the same correction is performed for all the heating resistive elements, and the individual printing means P1 to Pn When focusing on this, there were cases where the energization time was not properly controlled. Further, the above ranking is performed during the manufacture of the thermal held, which requires time and effort to measure the resistance values of all heat generating resistive elements, and in addition, the switch Sa.

Sb、Scの設定状態は固定されてしまうので、経時変
化などによって発熱抵抗素子の抵抗値が変化した場合に
適正な通電時間の制御を行なえなくなるという問題もあ
る。
Since the setting states of Sb and Sc are fixed, there is also the problem that if the resistance value of the heat generating resistor element changes due to changes over time, it becomes impossible to control the energization time appropriately.

本発明の目的は、上記技術的課題を解決し、各発熱抵抗
素子の抵抗値に基づいて、印画手段毎に適正な通電時間
の制御を行うことかて゛きる発熱印画装置を提供するこ
とて゛ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned technical problems and to provide a heat-generating printing device that can appropriately control the energization time for each printing means based on the resistance value of each heat-generating resistor element.

課題を解決するための手段 本発明は、予め定められる付勢電力を出力する電源と、 電源に並列に接続される複数の発熱抵抗素子からなる複
数の印画手段と、 電源と発熱抵抗素子との間に設けられ、印画動作時には
前記付勢電力を各発熱抵抗素子に出力し、各発熱抵抗素
子の抵抗値の、計測時にはこれを検出する選択的検出手
段と、 選択的検出手段で検出された各発熱抵抗素子ごとの抵抗
値のデータを記憶する記憶手段と、各発熱抵抗素子ごと
に入力される印画データと前記記憶手段の記憶内容とに
基づいて、印画手段毎の電力付勢量を制御して印画動作
を行う駆動手段とを含むことを特徴とする発熱印画装置
である。
Means for Solving the Problems The present invention provides: a power source that outputs a predetermined energizing power; a plurality of printing means comprising a plurality of heat generating resistive elements connected in parallel to the power source; and a combination of the power source and the heat generating resistive elements. a selective detection means provided between the heating resistor and the selective detection means for outputting the energizing power to each heat generating resistor element during printing operation and detecting the resistance value of each heat generating resistor element during measurement; A storage means for storing resistance value data for each heating resistor element, and control of the power energization amount for each printing means based on printing data input for each heating resistor element and the memory contents of the storage means. This is a heat-generating printing device characterized by including a driving means for performing a printing operation.

作  用 本発明に従えば、発熱抵抗素子の抵抗値の計測時には電
源と発熱抵抗素子との間に設けられる選択的検出手段に
よって、各発熱抵抗素子ごと力抵抗値か検出され、各発
熱抵抗素子ごとの抵抗値のデータは記憶手段に記憶され
る。印画動作時においては、選択的検出手段は電源から
の付勢電力を各発熱抵抗素子に出力し、また駆動手段は
各発熱抵抗素子ごとに入力される印画データと前記記憶
手段の記憶内容とに基づいて、各印画手段毎の電力付勢
量を制御して印画動作を行う。
According to the present invention, when measuring the resistance value of a heat generating resistor element, the force resistance value of each heat generating resistor element is detected by the selective detection means provided between the power supply and the heat generating resistor element, and the resistance value of each heat generating resistor element is detected. The resistance value data for each is stored in the storage means. During the printing operation, the selective detection means outputs energizing power from the power supply to each heat generating resistor element, and the driving means outputs energizing power from the power supply to each heat generating resistor element, and the driving means outputs energizing power from the power supply to each heat generating resistor element, and the driving means outputs the printing data input for each heat generating resistor element and the storage contents of the storage means. Based on this, the amount of power energized for each printing means is controlled to perform a printing operation.

したがって、発熱抵抗素子ごとに抵抗値を計測すること
ができ、またこの抵抗値と印画データとに基づいて各印
画手段毎に電力付勢量、たとえば通電時間を制御するの
で、印画濃度にむらのない奇麗な印画を行うことができ
る。また、経時変化などによって発熱抵抗素子の抵抗値
が変化した場合は、再度抵抗値の計測を行い、データを
記憶し直せば良く、常に高品位の印画を行うことができ
る。これによって、発熱印画装置の印画品位が格段に向
上される。
Therefore, the resistance value can be measured for each heating resistor element, and the amount of power energization, such as the energization time, can be controlled for each printing means based on this resistance value and printing data, so that uneven printing density can be avoided. You can make beautiful prints. Furthermore, if the resistance value of the heating resistor element changes due to changes over time, the resistance value can be measured again and the data stored again, and high-quality printing can always be performed. As a result, the printing quality of the heat-generating printing device is significantly improved.

実施例 第1図は、本発明の一実施例であるサーマルプリンタ1
1の基本的構成を示すブロック図である。
Embodiment FIG. 1 shows a thermal printer 1 which is an embodiment of the present invention.
FIG. 1 is a block diagram showing the basic configuration of FIG.

サーマルへ・lド19は、発熱抵抗素子ブロックB1〜
BMと、発熱抵抗素子ブロックB1〜BMをそれぞれ駆
動する駆動回路DRI〜DRMとを含んで構成される。
Thermal 19 is the heating resistor block B1~
BM, and drive circuits DRI to DRM that drive heat generating resistive element blocks B1 to BM, respectively.

発熱抵抗素子ブロックB1は、発熱抵抗素子R1〜RN
で構成され、発熱抵抗素子ブロックB2〜BMも同様に
N個の発熱抵抗素子で構成される。
The heating resistance element block B1 includes heating resistance elements R1 to RN.
Similarly, the heating resistive element blocks B2 to BM are composed of N heating resistive elements.

駆動回路DRIは、発熱抵抗素子R1〜RNにそれぞれ
直列に接続されるトランジスタTR1〜TRNと、通電
制御用ゲート回路G1〜GNと、シリアル/パラレル変
換回路17と、反転回路18とを含んで構成される。シ
リアル/パラレル変換回路17は、シリアル転送制御部
16から与えられる印画データをパラレルデータに変換
して印画制御信号S1〜SNを作成し、印画制御信号S
1〜SNをゲート回路01〜GNの一方入力として与え
る。反転回路18は、パラレルボート制御部22から与
えられる通電時間制御信号STB 1を反転して、ゲー
ト回路01〜G、Nの各他方入力として与える。したが
って、印画データに基づく印画制御信号81〜SNによ
って、発熱させる発熱抵抗素子を選択し、通電時間制御
信号STB 1のローレベル期間によって発熱抵抗素子
の通電時間を制御することができる。駆動回路DR2〜
DRMも駆動回路DRIと同様の構成である。
The drive circuit DRI includes transistors TR1 to TRN connected in series to the heat generating resistive elements R1 to RN, respectively, gate circuits G1 to GN for energization control, a serial/parallel conversion circuit 17, and an inversion circuit 18. be done. The serial/parallel conversion circuit 17 converts the printing data given from the serial transfer control unit 16 into parallel data to create printing control signals S1 to SN, and outputs printing control signals S1 to SN.
1 to SN are given as one input to gate circuits 01 to GN. The inversion circuit 18 inverts the energization time control signal STB 1 given from the parallel boat control section 22 and supplies it as the other input to each of the gate circuits 01 to G and N. Therefore, it is possible to select the heat generating resistive element to generate heat using the print control signals 81 to SN based on the print data, and to control the energization time of the heat generating resistor element by the low level period of the energization time control signal STB1. Drive circuit DR2~
DRM also has the same configuration as the drive circuit DRI.

印画データ入力手段12からの印画データは、RAM 
(ランダムアクセスメモリ)13に記憶される。またR
AM1Bには、後述する計測動作によって計測されたア
ナログ/デジタル変換器20からのデータが記憶される
。CP U (CentralProcessing 
Unit)などで実現される制御部14は、アナログ/
デジタル変換器20からのデータに基づいて、ROM 
(リードオンリメモリ)15内のプログラムに従って発
熱抵抗素子ブロックB1〜BMの各抵抗値を計算し、R
AM1Bに記憶させる。さらに制御部14は、印画デー
タ入力手段12からの印画データと、発熱抵抗素子ブロ
ックB1〜BMの各抵抗値とに基づいて、発熱抵抗素子
ブロックB1〜BMの通電時間を制御する通電時間制御
信号STB 1〜STBMを作成し、駆動回路DFご1
〜DRMに与え、また印画データをシリアル転送制御回
路16を介して駆動回路DR1〜DRMに与える。
The print data from the print data input means 12 is stored in the RAM.
(random access memory) 13. Also R
AM1B stores data from the analog/digital converter 20 measured by a measurement operation described later. CPU (Central Processing)
The control unit 14, which is realized by an analog/
Based on the data from the digital converter 20, the ROM
(Read-only memory) Calculate each resistance value of the heating resistor blocks B1 to BM according to the program in 15, and
Store it in AM1B. Furthermore, the control unit 14 generates an energization time control signal that controls the energization time of the heat generating resistor blocks B1 to BM based on the print data from the print data input means 12 and the resistance values of the heat generating resistor blocks B1 to BM. Create STB 1 to STBM and drive circuit DF 1
~DRM, and print data is applied via the serial transfer control circuit 16 to drive circuits DR1~DRM.

発熱抵抗素子ブロックB1を構成する発熱抵抗素子R1
〜RNには、電源回路21からの電圧VDDが供給され
る。トランジスタTRI〜TRNのベースにハイレベル
の制御信号が与えられ、通電時間制御信号STB 1を
ローレベルとすることによって、発熱抵抗素子R1〜R
Nには電流が流される。したがって、前記制御信号ST
B 1のローレベル期間を制御することによって、各発
熱抵抗素子R1〜RNの通電時間を制御することができ
る。発熱抵抗素子ブロックB2〜BMを構成する発熱抵
抗素子についても同様である。
Heat generating resistor element R1 forming heat generating resistor element block B1
~RN is supplied with voltage VDD from the power supply circuit 21. A high-level control signal is applied to the bases of the transistors TRI to TRN, and by setting the energization time control signal STB1 to a low level, the heating resistance elements R1 to R
A current is passed through N. Therefore, the control signal ST
By controlling the low level period of B1, the energization time of each heating resistor element R1 to RN can be controlled. The same applies to the heat generating resistive elements constituting the heat generating resistive element blocks B2 to BM.

ここで、発熱抵抗素子ブロックB1における発熱抵抗素
子R1〜RNの抵抗値の計測動作を説明する。制御部1
4は、パラレルボート制御回路22を制御し、ハイレベ
ルの切換信号SXをしベル変換回路24を介してトラン
ジスタTRXのベースに与えることによって、1〜ラン
ジスタTRXをOFF状態ヒする。この状態において、
電源回路21からの電圧VDDは抵抗RXを介して、各
発熱抵抗素子R1〜RNに印加される。つぎに、制御部
14は、シリアル転送制御回路16を介して駆動回路D
R1を駆動する。すなわち、印画制御信号S1をハイレ
ベルとし、通電時間制御信号5TBIをローレベルとす
ることによって、ゲート回路G1の出力をハイレベルと
してトランジスタTRIをON状態とする。この状態で
の等価回路が第2図に示されている。ここで抵抗RXの
抵抗値rxおよび電圧VDDは、予め定められる値であ
るので、接続点23の電位Vをアナログ/デジタル変換
器20によって検出することによって、以下の1式に基
づいて抵抗R1の抵抗値r1を計算することができる。
Here, the operation of measuring the resistance values of the heat generating resistive elements R1 to RN in the heat generating resistive element block B1 will be explained. Control unit 1
4 controls the parallel boat control circuit 22 and supplies a high level switching signal SX to the base of the transistor TRX via the bell conversion circuit 24, thereby turning the transistors 1 to TRX into the OFF state. In this state,
Voltage VDD from power supply circuit 21 is applied to each heating resistance element R1 to RN via resistor RX. Next, the control unit 14 controls the drive circuit D via the serial transfer control circuit 16.
Drive R1. That is, by setting the printing control signal S1 to a high level and setting the energization time control signal 5TBI to a low level, the output of the gate circuit G1 is set to a high level and the transistor TRI is turned on. An equivalent circuit in this state is shown in FIG. Here, the resistance value rx of the resistor RX and the voltage VDD are predetermined values, so by detecting the potential V at the connection point 23 by the analog/digital converter 20, the resistance value rx of the resistor R1 is determined based on the following equation. The resistance value r1 can be calculated.

以上の動作を、発熱抵抗素子R2〜RNまで順次繰り返
し行うことによって、各発熱抵抗素子R1〜RNの各抵
抗値r1〜rnを計算することができ、発熱抵抗素子プ
ロlりB1の抵抗値を求めることができる、また発熱抵
抗素子ブロックB2〜BMの抵抗値も同様の動作によっ
て求めることができる。
By repeating the above operations sequentially for the heating resistive elements R2 to RN, the respective resistance values r1 to rn of the heating resistive elements R1 to RN can be calculated, and the resistance value of the heating resistive element B1 can be calculated. Furthermore, the resistance values of the heating resistive element blocks B2 to BM can also be determined by a similar operation.

抵抗RXの抵抗値rxは、アナログ/デジタル変換器2
0の入力電圧範囲によって自由に設定することができる
。また、抵抗RXの抵抗値rxを大きくすることによっ
て、発熱抵抗素子の抵抗値の計測時における印画を防ぐ
ことができる0通常の印画動作時には、切換信号Sxを
ローレベルとしてトランジスタTRXをON状態とする
ことによって、電源回路21からの電圧VDDが直接サ
ーマルヘッド19に供給され、上述したような印画動作
が行われる。
The resistance value rx of the resistor RX is the analog/digital converter 2
It can be set freely depending on the input voltage range of 0. In addition, by increasing the resistance value rx of the resistor RX, printing can be prevented when measuring the resistance value of the heating resistor element.During normal printing operation, the switching signal Sx is set to low level and the transistor TRX is turned on. As a result, the voltage VDD from the power supply circuit 21 is directly supplied to the thermal head 19, and the printing operation as described above is performed.

以上のように本実施例によれば、各発熱抵抗素子ごとに
抵抗値を測定し、その抵抗値と印画データとに基づいて
各発熱抵抗素子ブロック毎に通電時間を制御することが
できる。したがって、発熱抵抗素子の抵抗値のばらつき
による印画濃度のむらの発生が防止され、高品位の印画
を行うことかて゛きる。また、必要に応じて発熱抵抗素
子の抵抗値の計測を行うことができるので、経時変化な
どによって発熱抵抗素子の抵抗値が変化した場合でも、
印画品位が劣化することはない。
As described above, according to this embodiment, it is possible to measure the resistance value of each heat generating resistor element and control the energization time for each heat generating resistor element block based on the resistance value and print data. Therefore, uneven printing density due to variations in the resistance values of the heating resistive elements is prevented from occurring, making it possible to perform high-quality printing. In addition, the resistance value of the heating resistor element can be measured as needed, so even if the resistance value of the heating resistor element changes due to changes over time, etc.
Print quality will not deteriorate.

発明の効果 以上のように本発明によれば、発熱抵抗素子ごとに抵抗
値を計測することができ、また計測した抵抗値と印画デ
ータとに基づいて各印画手段毎に電力付勢量、たとえば
通電時間を制御するので、印画濃度にむらのない奇麗な
印画を行うことができる。また、経時変化などによって
発熱抵抗素子の抵抗値が変化した場合は、再度抵抗値の
計測を行い、データを記憶し直せば良く、常に高品位の
印画を行うことができる。これによって、発熱印画装置
の印画品位が格段に向上される。
Effects of the Invention As described above, according to the present invention, the resistance value can be measured for each heating resistor element, and the power energization amount can be determined for each printing means, for example, based on the measured resistance value and printing data. Since the energization time is controlled, it is possible to print beautiful images with uniform print density. Furthermore, if the resistance value of the heating resistor element changes due to changes over time, the resistance value can be measured again and the data stored again, and high-quality printing can always be performed. As a result, the printing quality of the heat-generating printing device is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるサーマルプリンタ11
の基本的構成を示すブロック図、第2図は発熱抵抗素子
の抵抗値の計測原理を説明するための回路図、第3図は
従来のサーマルプリンタ1の構成を示すブロック図であ
る。
FIG. 1 shows a thermal printer 11 which is an embodiment of the present invention.
FIG. 2 is a circuit diagram for explaining the principle of measuring the resistance value of a heating resistor element, and FIG. 3 is a block diagram showing the configuration of a conventional thermal printer 1.

Claims (1)

【特許請求の範囲】 予め定められる付勢電力を出力する電源と、電源に並列
に接続される複数の発熱抵抗素子からなる複数の印画手
段と、 電源と発熱抵抗素子との間に設けられ、印画動作時には
前記付勢電力を各発熱抵抗素子に出力し、各発熱抵抗素
子の抵抗値の計測時にはこれを検出する選択的検出手段
と、 選択的検出手段で検出された各発熱抵抗素子ごとの抵抗
値のデータを記憶する記憶手段と、各発熱抵抗素子ごと
に入力される印画データと前記記憶手段の記憶内容とに
基づいて、各印画手段毎の電力付勢量を制御して印画動
作を行う駆動手段とを含むことを特徴とする発熱印画装
置。
[Scope of Claims] A power source that outputs a predetermined energizing power, a plurality of printing means each including a plurality of heat generating resistive elements connected in parallel to the power source, and a plurality of printing means provided between the power source and the heat generating resistive elements, selective detection means for outputting the energizing power to each heat generating resistor element during printing operation and detecting this when measuring the resistance value of each heat generating resistor element; A storage means for storing resistance value data, and a printing operation is performed by controlling the amount of power energized for each printing means based on the printing data inputted for each heating resistor element and the stored contents of the storage means. 1. A heat-generating printing device, comprising: a driving means for driving.
JP2304090A 1990-01-31 1990-01-31 Heating photographic printing device Pending JPH03227259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2304090A JPH03227259A (en) 1990-01-31 1990-01-31 Heating photographic printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2304090A JPH03227259A (en) 1990-01-31 1990-01-31 Heating photographic printing device

Publications (1)

Publication Number Publication Date
JPH03227259A true JPH03227259A (en) 1991-10-08

Family

ID=12099350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2304090A Pending JPH03227259A (en) 1990-01-31 1990-01-31 Heating photographic printing device

Country Status (1)

Country Link
JP (1) JPH03227259A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136270A (en) * 1983-01-26 1984-08-04 Fujitsu Kiden Ltd Correction of resistance value of heat-sensitive printing head
JPS6013571A (en) * 1983-07-04 1985-01-24 Sony Corp Printer
JPS61228970A (en) * 1985-04-03 1986-10-13 Fuji Xerox Co Ltd Thermal head driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136270A (en) * 1983-01-26 1984-08-04 Fujitsu Kiden Ltd Correction of resistance value of heat-sensitive printing head
JPS6013571A (en) * 1983-07-04 1985-01-24 Sony Corp Printer
JPS61228970A (en) * 1985-04-03 1986-10-13 Fuji Xerox Co Ltd Thermal head driver

Similar Documents

Publication Publication Date Title
JPS602385A (en) Thermal recorder
JPH0419948B2 (en)
JPS58164368A (en) Halftone recording device of thermal head
JPH03227259A (en) Heating photographic printing device
JPS609271A (en) Half tone recording system of thermal recording device
JPH039857A (en) Recording density correction device in printer
JP2635767B2 (en) Thermal head device and video printer
KR0138139B1 (en) Printing apparatus
JPS59202768A (en) Heat-sensing transfer printer
JPH023348A (en) Control system of gradation of color thermal printer
JPH0245166A (en) Density gradation control type thermal printer
JPH0747318B2 (en) Thermal transfer gradation control device
JPS6160781B2 (en)
JP2552703B2 (en) Halftone recording method
JPS6225069A (en) Thermal head driving device
JP2605774B2 (en) Thermal recording device
JPH05201058A (en) Thermal printer
JPH0679903A (en) Density gradation control type thermal printer
JPH03224754A (en) Density gradation control-type thermal printer and current value detection device
JPS62297179A (en) Multi-gradation thermal recorder
JPS63309469A (en) Thermal head
JPH0371861A (en) Thermal printing device
JPS62271764A (en) Thermal transfer gradation controller
JPS6023065A (en) Recorder
JPS63159069A (en) Thermal printer