JPH023348A - Control system of gradation of color thermal printer - Google Patents

Control system of gradation of color thermal printer

Info

Publication number
JPH023348A
JPH023348A JP15192988A JP15192988A JPH023348A JP H023348 A JPH023348 A JP H023348A JP 15192988 A JP15192988 A JP 15192988A JP 15192988 A JP15192988 A JP 15192988A JP H023348 A JPH023348 A JP H023348A
Authority
JP
Japan
Prior art keywords
voltage drop
energization
density
gradation level
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15192988A
Other languages
Japanese (ja)
Other versions
JPH07102710B2 (en
Inventor
Tadao Shinya
忠雄 新屋
Ryoyu Takanashi
高梨 稜雄
Hidefumi Tanaka
英史 田中
Toshinori Takahashi
利典 高橋
Hiroki Kitamura
宏記 北村
Yutaka Mizoguchi
豊 溝口
Katsuhiko Terada
克彦 寺田
Tooru Niibe
二部 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP63151929A priority Critical patent/JPH07102710B2/en
Publication of JPH023348A publication Critical patent/JPH023348A/en
Publication of JPH07102710B2 publication Critical patent/JPH07102710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain constant printing density regardless of the magnitude of load even at any gradation level by determining the quantity of the lengthening of the conduction time at the time of the drop of the supply voltage of a head on the basis of a correction data. CONSTITUTION:Fundamental conduction data are set so that specified printing density is acquired under the state in which a voltage drop DELTAV1 can be ignored. Simultaneous conduction heating-element number Pi is increased successively so that an output from a voltage drop detector is brought to di=1, 2, 3 at a gradation level i=1 in ink A, and conduction pulse width coefficients kA11, kA12, kA13 are set so that printing density in each case is made to the same fixed density as the voltage drop DELTAV1 can be ignored. Even when load is changed while the gradation level is brought to i=2, conduction pulse width coefficients kA21, kA22, kA23 are set so that printing density is brought to specified density at all times. Likewise, a coefficient data table is acquired even regarding ink B. Printing is conducted while conduction pulse width data are determined on the basis of correction data obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、カラーサーマルプリンタの階調制御方式、特
にサーマルヘッドの複数の発熱体に同時通電した場合に
生じるヘッド電源電圧降下に伴う印字濃度むらを可能な
限り除去することを企図したカラーサーマルプリンタの
階調制御方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gradation control method for a color thermal printer, and in particular to a method for controlling print density due to a drop in head power supply voltage that occurs when multiple heating elements of a thermal head are simultaneously energized. This invention relates to a gradation control method for color thermal printers designed to eliminate unevenness as much as possible.

[従来の技術] 第5図は、サーマルヘッドの概略説明図である。この図
において、R1−R2は1ライン分の発熱体、81〜S
2は各発熱体への通電を制御するトランジスタスイッチ
、Q1〜Q2は各発熱体に対する印字信号、STBは全
発熱体の通電時間を制御する通電パルス(パルス幅t、
、iは階調レベルを示す)、VT)Iはヘッド電源電圧
を示す。
[Prior Art] FIG. 5 is a schematic explanatory diagram of a thermal head. In this figure, R1-R2 are heating elements for one line, 81-S
2 is a transistor switch that controls energization to each heating element, Q1 and Q2 are print signals for each heating element, and STB is an energization pulse (pulse width t,
, i indicates the gradation level), VT)I indicates the head power supply voltage.

各発熱体Rには、印字信号Qが°゛L°′でかつ通電パ
ルスSTBがL°゛の期間(1+ )のみヘッド電圧V
7Hが印加されて発熱し、この発熱量の積和に応じて印
字濃度が増加していく。従って、印字濃度の階調制御は
、ヘッド電源電圧vHが一定であれば、単に通電時間(
T、=Σ1+)の長短によって行なうことができる。
The head voltage V is applied to each heating element R only during the period (1+) when the print signal Q is °゛L°' and the energization pulse STB is L°゛.
7H is applied to generate heat, and the print density increases in accordance with the sum of the products of this heat generation amount. Therefore, if the head power supply voltage vH is constant, the gradation control of print density can be performed simply by the energization time (
This can be done by changing the length of T, =Σ1+).

しかし、実際には、負荷の大小、つまり同時通電する発
熱体の個数(p+)に応してサーマルヘッドに一時に供
給される電流の値が変動し、配線抵抗、接触抵抗におけ
る電圧降下かパら、発熱体への印加電圧も変動する。従
って、発熱量は通電時間tlの他にヘッド電源電圧V7
Hの関数となる。また発熱量と印字濃度との関係は、イ
ンクの種類によって異なる。そこで、階調制御を行なう
には、インクの種類、ヘッド電源電圧及び階調レベルに
応じて通電時間を変えなければならない。
However, in reality, the value of the current supplied to the thermal head at one time varies depending on the size of the load, that is, the number of heating elements (p+) that are energized simultaneously, and the voltage drop due to wiring resistance and contact resistance changes. Furthermore, the voltage applied to the heating element also fluctuates. Therefore, the amount of heat generated is determined by the head power supply voltage V7 in addition to the energization time tl.
It becomes a function of H. Further, the relationship between the amount of heat generated and the print density differs depending on the type of ink. Therefore, in order to perform gradation control, it is necessary to change the energization time depending on the type of ink, head power supply voltage, and gradation level.

第6図はサーマルヘッドへの通電によるVTHの電圧降
下を示す図で、(a)図は階調制御して印字する場合の
発熱体への通電パルスを、(b)図は通電時の電圧降下
を示す図である。第6図(a)に示す通電パルスによっ
て発熱体に断続的に通電が行なわれると、これに伴って
同図(b)に示すように電圧降下△■1を生じる。この
電圧降下△V1の程度は、負荷か大きい程、すなわち同
時通電発熱体個数p1が多い程大きい。従って、この同
時通電発熱体個数p+が多い場合は通電時間t、を長く
しないと、印字濃度が下がってしまい、バランスの良い
色調の印字を行なうことができない。
Figure 6 is a diagram showing the voltage drop in VTH due to energization of the thermal head. (a) shows the energizing pulse to the heating element when printing with gradation control, and (b) shows the voltage when energizing. It is a figure showing a descent. When the heating element is intermittently energized by the energizing pulse shown in FIG. 6(a), a voltage drop Δ■1 occurs as shown in FIG. 6(b). The degree of this voltage drop ΔV1 increases as the load increases, that is, as the number p1 of simultaneously energized heating elements increases. Therefore, when the number of simultaneously energized heating elements p+ is large, unless the energization time t is lengthened, the printing density will decrease and printing with a well-balanced color tone cannot be performed.

これに対して、従来のカラーサーマルプリンタでは、電
圧降下か無視できる状態で各階調レベルiに対して所望
の濃度ODlが得られるように通電パルスの幅t1を決
定し、このデータに対して最大負荷時の最大濃度か所望
の濃度となるように、全階調で一率にかつ負荷変動に対
して直線的に通電パルス幅を延長することで、負荷変動
に対する濃度むら補正を行なっていた。
On the other hand, in conventional color thermal printers, the width t1 of the energizing pulse is determined so as to obtain the desired density ODl for each gradation level i with negligible voltage drop, and the width t1 of the energizing pulse is determined to Density unevenness due to load fluctuations has been corrected by extending the energization pulse width uniformly at all gradations and linearly with respect to load fluctuations so that the maximum density under load or a desired density is achieved.

以下に、この補正方法について第7図〜第10図を用い
て説明する。この補正法は、次の3段階に分けることが
できる。
This correction method will be explained below using FIGS. 7 to 10. This correction method can be divided into the following three steps.

■基本通電データの作成 まず、理想的な印字濃度(ODI )と階調レベルiと
の関係を示す曲線(以下、理想0D−i曲線という)を
設定する[第7図(a)]。この理想0D−i曲線は、
所望の色調に応じて選択されるもので、曲線のみならず
直線であってもよい。
(2) Creation of basic energization data First, a curve (hereinafter referred to as ideal 0D-i curve) showing the relationship between ideal print density (ODI) and gradation level i is set [FIG. 7(a)]. This ideal 0D-i curve is
It is selected depending on the desired color tone, and may be a straight line as well as a curve.

次に、電圧降下△vIかほとんど無視できる程度の数(
例えば全発熱体の工/10以下)の発熱体にのみ通電し
て、第7図(a)に示すように、i=1のときの印字濃
度がoDlとなるように通電時間T + = t Iを
決める。同様、i=iのときの印字濃度がOD、となる
ように通電時間T、=Σtlを決める[第7図(b)]
。この結果、各階調レベルiを1段階進めるのに必要な
通電パルス幅tIが決まる。以下、このようにして決め
られた通電パルス幅t+、t2.・・・tnを基本通電
データという。
Next, the voltage drop △vI is an almost negligible number (
For example, by energizing only the heating elements with a diameter of less than /10 of all heating elements, the energizing time T + = t is applied so that the printing density becomes oDl when i = 1, as shown in Fig. 7(a). Decide on I. Similarly, the energization time T, =Σtl is determined so that the print density when i=i is OD [Figure 7(b)]
. As a result, the energization pulse width tI required to advance each gradation level i by one step is determined. Hereinafter, the energization pulse widths t+, t2. ...tn is called basic energization data.

■延長係数にの決定 次に、負荷が最も大きく、電圧降下△Vlが最大(△V
MAX)となる様に、全発熱体を用い、これに上記で得
た基本通電データに従って通電を行ない0D−i曲線を
得る[第8図(a)]。このときの0D−i曲線(−・
−一一一一・−)は、電圧降下△VMAXの影響で前記
理想0D−i曲線(−m−−−”)より印字濃度が低く
なる。
■Determining the extension factor Next, the load is the largest and the voltage drop △Vl is the largest (△V
MAX), all heating elements are used and energized according to the basic energization data obtained above to obtain the 0D-i curve [FIG. 8(a)]. At this time, the 0D-i curve (-・
-1111.-), the print density is lower than the ideal 0D-i curve (-m---'') due to the influence of the voltage drop ΔVMAX.

そこで、各階調にける通電時間tl’を一率(T、’=
Σt、’=Σ(1+K)t、 )に延長していき、階調
レベルの最大値IMAX  (”n)における印字濃度
ODAが所定濃度ODnとなる延長係数Kを求める。こ
の時の通電データ(1+K)f;、、 (1+K)t2
・・・(1+K)t、を用いて得られる補正後の0D−
i曲線を第8図(a)に実線で示した。上記したように
、延長係数Kを最大階調レベルi MAXの濃度から求
め、このKをすべての通電データに一率に用いているの
で、得られる0D−1曲線は、理想0D−i曲線に対し
、階調レベルiの中間域において、過補正になったり、
補正不足になったりしている。
Therefore, the energization time tl' at each gradation is set at a rate (T,'=
Σt,'=Σ(1+K)t, ), and find the extension coefficient K at which the print density ODA at the maximum gradation level IMAX ("n) becomes the predetermined density ODn.The energization data at this time ( 1+K)f;,, (1+K)t2
...(1+K)t, after correction obtained using 0D-
The i-curve is shown as a solid line in FIG. 8(a). As mentioned above, the extension coefficient K is determined from the density of the maximum gradation level i MAX, and this K is uniformly used for all energization data, so the obtained 0D-1 curve is similar to the ideal 0D-i curve. On the other hand, in the intermediate range of gradation level i, over-correction occurs,
The correction may be insufficient.

■負荷が中位の場合 今、階調レベルiの時の電圧降下△■、をNビットのA
/D変換器で検出したとすると、A/D変換器の出力d
lは無負荷の時d+=φ、最大負荷の時d、=2’ −
1=mとなる。
■If the load is medium, the voltage drop △■ at gradation level i is expressed as A of N bits.
/D converter detects the output d of the A/D converter.
l is d+=φ at no load, d,=2' − at maximum load
1=m.

そこで、負荷が中位時、つまりφ<di <mの時の通
電時間T1は、■で求めた基本通電データ1+ と■で
求めた延長係数Kを用いて、次式の様に決定する。
Therefore, when the load is medium, that is, when φ<di<m, the energization time T1 is determined as shown in the following equation using the basic energization data 1+ obtained in ① and the extension coefficient K obtained in ③.

T+=Σ(++(at/m)K)++     (I 
)つまり、無負荷時の通電時間をtl、最大負荷時を(
++K)++ とじ、その間の電圧降下に対しては等間
隔(リニア)に通電時間を延長していく。
T+=Σ(++(at/m)K)++(I
) In other words, the energization time at no load is tl, and the time at maximum load is (
++K)++ is closed, and the energization time is extended at equal intervals (linearly) in response to the voltage drop during that time.

第10図に、(I)式を実現するためのブロック図を示
す。11はインクの種類Vごとに■によって予め求めら
れた基本通電データtlを格納したメモリ、12は(I
)式のtlの係数(D (d 17m) K)を■によ
って予め求められた延長係数にと電圧降下検出器出力d
1とから演算し出力する係数発生器(メモリ)、13は
乗算器を示す。つまり、階調レベルiにおける基本通電
データ1+がメモリ11から乗算器13に送られ、また
、この時の電圧降下検出器出力d、から係数(D(d+
/m)に)が決定され、この乗算結果が通電パルス幅デ
ータとして出力される。
FIG. 10 shows a block diagram for realizing equation (I). 11 is a memory that stores basic energization data tl determined in advance by ■ for each ink type V; 12 is (I
) of the equation tl (D (d 17m) K) to the extension coefficient determined in advance by ■ and the voltage drop detector output d
A coefficient generator (memory) calculates and outputs from 1, and 13 indicates a multiplier. In other words, the basic energization data 1+ at gradation level i is sent from the memory 11 to the multiplier 13, and the coefficient (D(d+
/m) is determined, and the result of this multiplication is output as energization pulse width data.

この時の通電パルスと0D−i曲線を第9図に示す。The energization pulse and 0D-i curve at this time are shown in FIG.

この図から分かるように、従来は最大濃度一致条件から
求めた延長係数を全階調レベルで一率に使用し、また、
電圧降下に対して通電時間を直線的に延長しているので
、各階調での負荷変動に対して適正な補正がかかってい
ない。
As can be seen from this figure, conventionally, the extension coefficient obtained from the maximum density matching condition is used uniformly at all gradation levels;
Since the energization time is extended linearly with respect to the voltage drop, appropriate correction is not made for load fluctuations at each gradation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

熱転写インクの供給電力に対する濃度特性は、インクの
種類(V)ごとに異なり、更に階調レベルiによっても
異なるので、上記した従来方式におけるようにインクの
種類Vや階調レベルiに係わりなくヘッド電源の電圧降
下の△vlが同一であれば通電時間を一率にかつ電圧降
下量に対して通電時間を直線的に補正する制御方式では
、特定のインク、特定の濃度、特定の負荷変動に対して
たけ有効に印字濃度むらが補正できることになり、第8
図(a)及び第9図で示したように、それ以外の条件域
では補正量に過不足を生じてしまう。
The density characteristics of thermal transfer ink with respect to the supplied power differ depending on the type of ink (V) and also vary depending on the gradation level i, so unlike the conventional method described above, the head If the voltage drop △vl of the power supply is the same, the energization time is fixed at a constant rate, and the energization time is linearly corrected for the amount of voltage drop. This means that print density unevenness can be corrected as effectively as possible.
As shown in FIG. 9A and FIG. 9, in other condition ranges, the amount of correction will be too much or too little.

本発明は、ヘッド電源電圧降下△V1に伴う印字濃度む
らを可能な限り除去することができるカラーサーマルプ
リンタの階調制御方式を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gradation control method for a color thermal printer that can eliminate as much as possible print density unevenness caused by head power supply voltage drop ΔV1.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、サーマルプリンタのヘッド電源電圧降下量を
検出し、この降下量に応じて発熱体への通電パルス幅を
所定量延長することにより印字濃度むらを補正しつつ印
字を行なうカラーサーマルプリンタの階調制御方式にお
いて、前記通電パルス幅の延長量を、使用するサーマル
ヘッドごとに、かつ、所定の印字濃度となるようにヘッ
ド電源電圧降下量、インクの種類及び階調レベルごとに
設定した補正データ(係数データテーブル)に基づいて
決定するようにしたことを特徴とするカラーサーマルプ
リンタの階調制御方式である。
The present invention provides a color thermal printer that performs printing while correcting print density unevenness by detecting the amount of voltage drop in the head power supply of the thermal printer and extending the width of the energizing pulse to the heating element by a predetermined amount in accordance with the amount of the drop. In the gradation control method, the amount of extension of the energizing pulse width is set for each thermal head used, and for each head power supply voltage drop, ink type, and gradation level to achieve a predetermined print density. This is a gradation control method for a color thermal printer characterized in that the gradation is determined based on data (coefficient data table).

[作用] 本発明に係る補正データは、サーマルプリンタのヘッド
電源電圧降下量の実測値△vIに基づいて、通電パルス
幅t1に最適の延長量を決定する機能を有する。
[Operation] The correction data according to the present invention has a function of determining the optimum extension amount for the energization pulse width t1 based on the measured value ΔvI of the head power supply voltage drop amount of the thermal printer.

〔実施例〕〔Example〕

以下、本発明の実施例を図面と共に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明方式における通電パルス幅決定のため
のフローチャートで、21はインクの種類■及び階調レ
ベル1ごとに用意した基本通電データを格納したメモリ
、22はインクの種類V、各電圧降下△vl、各階調レ
ベル1における通電パルス幅係数kvldを格納したメ
モリで、補正された通電パルス幅はkvz・1.により
決定する。
FIG. 1 is a flowchart for determining the energization pulse width in the method of the present invention, in which 21 is a memory storing basic energization data prepared for each ink type (■) and gradation level 1, 22 is an ink type (V), and each In the memory that stores the voltage drop Δvl and the energization pulse width coefficient kvld at each gradation level 1, the corrected energization pulse width is kvz·1. Determined by.

次に本発明を、階調レベルが8段階(i=1〜8)、発
熱体総数が4個(R,〜R4)、電圧降下△vlを検出
するA/D変換器の出力が4段階(d、=0〜3)。イ
ンクの種類Vが2種類(A、B)の場合を例に第2図〜
第4図を用いて説明する。
Next, the present invention has eight gradation levels (i=1 to 8), a total number of heating elements of four (R, to R4), and an output of an A/D converter for detecting voltage drop Δvl that has four levels. (d, = 0-3). Figure 2 ~ takes the case where there are two types of ink (A and B) as an example.
This will be explained using FIG.

まず、従来方式と同様にして、電圧降下△vIが無視で
きる状態(dl=0.本例では同時通電発熱体個数pI
が1の場合)で所定の印字濃度(OD、〜0D8)が得
られるように基本通電データ(tAl”tAg、 ta
+〜tBa)を設定する(第7図参照)。
First, in the same way as the conventional method, the voltage drop △vI is negligible (dl = 0. In this example, the number of simultaneously energized heating elements pI
The basic energization data (tAl"tAg, ta
+~tBa) (see Fig. 7).

次に、インクAにおいて、階調レベルi=1として、同
時通電発熱体個数11+を、電圧降下検出器の出力がd
i =1.2.3となるように順次増加させて行き、こ
の各々の場合の印字濃度が電圧降下△Vlが無視できる
ときと同じ所定濃度OD+になるように通電パルス幅係
数kAIlk Al1 k Al1を設定する。次に階
調レベルなi=2として上記と同様に負荷を変えても印
字濃度は常に所定濃度OD2になるように通電パルス幅
係数k A2+、 k A□2. k A23を設定す
る。第3図にこのときの(a)電圧降下△vlと(b)
通電パルスの一例を示す。以下、順次階調レベルがi=
8になるまで同様の操作を繰り返し、全ての(i、di
)の組み合わせにおける通電パルス係数kA+aの行列
を得る(以下、これを係数データテーブルという)。ま
た同様にして、インクBについても係数データテーブル
を得る。
Next, for ink A, the gradation level i=1, the number of simultaneously energized heating elements is 11+, and the output of the voltage drop detector is d.
The energization pulse width coefficient kAIlk Al1 k Al1 is increased sequentially so that i = 1.2.3, and the printing density in each case becomes the same predetermined density OD+ as when the voltage drop △Vl can be ignored. Set. Next, assuming that the gradation level is i=2, the energizing pulse width coefficients k A2+, k A□2. k Set A23. Figure 3 shows (a) voltage drop △vl and (b)
An example of an energization pulse is shown. Below, the gradation levels are sequentially i=
Repeat the same operation until the number is 8, and all (i, di
) is obtained (hereinafter referred to as a coefficient data table) of the energization pulse coefficient kA+a for the combination. Similarly, a coefficient data table is obtained for ink B as well.

なお、第2図は同時通電発熱体個数p1の増加に伴うヘ
ッド電源の電圧降下△VIと、このときの電圧降下検出
器出力d1の説明図である。今の例では、電圧降下検出
器か2ビツトであるので電圧降下△V1の検出感度は低
いが、実際は更に高感度の検出器が使用されることは言
うまでもない。
FIG. 2 is an explanatory diagram of the voltage drop ΔVI of the head power supply as the number p1 of simultaneously energized heating elements increases and the output d1 of the voltage drop detector at this time. In the present example, since the voltage drop detector is 2 bits, the detection sensitivity of the voltage drop ΔV1 is low, but it goes without saying that in reality, a detector with even higher sensitivity is used.

また、一般に低濃度域(例えば1−1)での印字濃度は
、印加電圧の変動に対し変化が少ないので、同時通電発
熱体個数pIが増加(その結果d1が増加)しても通電
パルス幅係数k vldの変化は小さい。これに対し、
中濃度域では、印加電圧に対して印字濃度が大きく変化
するので、係数kvldでの差異は大きい。また、高濃
度域では、使用するサーマルヘッドあるいはインクの種
類ごとで大きく印字特性が異なるので、係数kvldも
これに応じて異なった値か必要となる。
In general, the print density in the low density range (for example, 1-1) does not change much with respect to changes in the applied voltage, so even if the number of simultaneously energized heating elements pI increases (as a result, d1 increases), the energization pulse width The change in the coefficient k vld is small. On the other hand,
In the medium density range, the print density changes greatly with respect to the applied voltage, so the difference in the coefficient kvld is large. Furthermore, in a high density region, printing characteristics vary greatly depending on the type of thermal head or ink used, so the coefficient kvld needs to have a different value accordingly.

本発明方式は、上記の如くして得られた補正データを用
いて次のようにして使用される。従来方式と同様に、階
調レベル1、インクの種類■、電圧降下検出器出力d1
に基づいて通電パルス幅データを決定しつつ印字を行な
う。本発明方式では、1回の通電パルス幅は、(v、i
、’d+ )の組み合わせに対応する通電パルス幅係数
k vldと(v、i)で決まる基本通電時間tvIの
積で決まる。各発熱体の総通電時間TIは各通電パルス
幅kv+a・jv+の総和として与えられる。
The method of the present invention is used in the following manner using the correction data obtained as described above. As with the conventional method, gradation level 1, ink type ■, voltage drop detector output d1
Printing is performed while determining the energization pulse width data based on the . In the method of the present invention, the width of one energization pulse is (v, i
, 'd+) is determined by the product of the energization pulse width coefficient k vld and the basic energization time tvI determined by (v, i). The total energization time TI of each heating element is given as the sum of each energization pulse width kv+a·jv+.

次に、本発明方式を用いた印字動作につき、第4図を用
いて具体的に説明する。今、インクはAが選択され、1
ライン中に入力データi=3の発熱体が2個(R+ 、
R2) 、i=4の発熱体が1個(R3)、i=6の発
熱体が1個(R4)あるものとする。始めに、階調レベ
ル1が1のときは、入力データが全てこのレベルより大
きいので、4個の発熱体(R,〜R4)の全てに通電さ
れ、これにより電圧降下量は最大(a、=]となる[第
4図(a)]。このとき、通通電パルス係数はk Al
1が選ばれ通電パルス幅はkA+3・tAlとなる。以
下、階調レベルi=3までは4個全ての発熱体に通電さ
れるので、通電時間は第4図(b)に示すように、 T3”kA+3・t++kA23・tA2+kA33・
tA3となり、入力データi=3の発熱体(R1,R2
)では所定の印字濃度OD3が得られる。次に階調レベ
ルがi=4になると、このとき通電される発熱体は2個
(R3,R4)となるので、電圧降下検出器出力はd4
=1となり[第4図(a)]、このときの通通電パルス
係数はkA41が選ばれる。従って、入力データi=4
の発熱体(R3)への通電時間は第4図(b)に示すよ
うに、T4=T3+kA41・tA4 となり、入力データj=4に対する所定の印字濃度OD
、が得られる。更に、階調レベルがi=5.6のときは
、通電される発熱体の数が1個(R4)となるので、電
圧降下検出器出力はd5.d6=oとなり[第4図(a
)]、このときの係数はどちらも1となるので、入力デ
ータがi=6の発熱体(R4)では T6=T3÷kA41・tA4+tA5+tA6の時間
だけ通電され、所定の印字濃度(OD、)が得られる[
第4図(b)]。
Next, the printing operation using the method of the present invention will be specifically explained using FIG. 4. Now, the ink is A and 1
There are two heating elements with input data i=3 in the line (R+,
R2), there is one heating element (R3) with i=4, and one heating element (R4) with i=6. First, when gradation level 1 is 1, all input data is higher than this level, so all four heating elements (R, ~ R4) are energized, and the voltage drop is the maximum (a, = ] [Figure 4 (a)]. At this time, the energization pulse coefficient is k Al
1 is selected and the energization pulse width becomes kA+3·tAl. Thereafter, all four heating elements are energized up to gradation level i=3, so the energization time is T3''kA+3・t++kA23・tA2+kA33・as shown in FIG. 4(b).
tA3, and the heating element (R1, R2
), a predetermined print density OD3 is obtained. Next, when the gradation level becomes i=4, the number of heating elements that are energized at this time is two (R3, R4), so the voltage drop detector output is d4.
=1 [FIG. 4(a)], and kA41 is selected as the energization pulse coefficient at this time. Therefore, input data i=4
As shown in FIG. 4(b), the energization time to the heating element (R3) is T4=T3+kA41・tA4, and the predetermined print density OD for input data j=4.
, is obtained. Furthermore, when the gradation level is i=5.6, the number of energized heating elements is one (R4), so the voltage drop detector output is d5. d6=o [Fig. 4 (a
)], the coefficients at this time are both 1, so in the heating element (R4) with input data i = 6, electricity is applied for a time of T6 = T3 ÷ kA41 · tA4 + tA5 + tA6, and the predetermined print density (OD, ) is achieved. can get[
FIG. 4(b)].

なお、本実施例第1図では、2種類のデータテーブルと
乗算器を用いたが、これらの演算結果を1つのROM(
リート・オンリ・メモリ)に格納してサーマルヘッドご
とにこのROMを交換して補正を行なうことが可能であ
る。
In this embodiment, FIG. 1 uses two types of data tables and multipliers, but these calculation results are stored in one ROM (
It is possible to perform correction by storing this ROM in a read-only memory) and exchanging this ROM for each thermal head.

[発明の効果] 以上詳細に説明したように、本発明によれば、ヘッド電
源電圧降下時の通電時間の延長量を、前記した補正デー
タに基づいて決定するようにしたので、との階調レベル
においても、負荷の大小によらず一定の印字濃度が得ら
れる。
[Effects of the Invention] As described above in detail, according to the present invention, the amount of extension of the energization time when the head power supply voltage drops is determined based on the above-mentioned correction data. Even at different levels, a constant print density can be obtained regardless of the magnitude of the load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方式における通電パルス幅決定のための
フローチャート第2図は同時通電発熱体個数p1と電圧
降下検出器出力d、の関係を示す図、第3図は電圧降下
△V1と通電パルスの一例を示す図で、(a)図は各d
+におけるヘッド電圧V7Hを、(b)図は各d、にお
ける通電パルスを示し、第4図はヘッド電圧と通電パル
スを示す図で、(a)図は階調レベルiとVTHと電圧
降下検出出力dIとの関係を、(b)図は各発熱体R,
−R4への通電パルスを示す図、第5図はサーマルヘッ
ドの概略説明図、第6図はサーマルヘッドの通電による
vHの電圧降下を示す図で、(a)図は発熱体への通電
パルスを、(b)図は通電時の電圧降下を示す図、第7
図(a)は理想0D−i曲線、第7図(b)は基本通電
データを示す図、第8図(a)は高負荷時の0D−i曲
線、第8図(b)は補正後の通電パルスを示す図、第9
図(a)は負荷が中位のときの0D−i曲線、第9図(
b)は補正後の通電パルスを示す図、第10図は従来方
式における通電パルス幅決定のためのフローチャートで
ある。 i・・・階調レベル、■・・・インクの種類、△V1・
・・電圧降下、d+・・・電圧降下検出器出力、pl・
・・同時通電発熱体個数、k vld・・・通電パルス
幅係数、tvl・・・基本通電データ。 特許出願人 日本ビクター株式会社 代表者垣木邦夫 O 〉 □ く r−一一′−一□−一 1す1−ρ°ぐ奇に γ γ 丑が18
Fig. 1 is a flowchart for determining the energization pulse width in the method of the present invention. Fig. 2 is a diagram showing the relationship between the number of simultaneously energized heating elements p1 and the voltage drop detector output d, and Fig. 3 is a diagram showing the relationship between the voltage drop △V1 and energization. A diagram showing an example of a pulse, (a) is a diagram showing an example of a pulse.
Figure 4 shows the head voltage V7H at +, Figure (b) shows the energizing pulse at each d, Figure 4 shows the head voltage and the energizing pulse, and Figure (a) shows the gradation level i, VTH, and voltage drop detection. Figure (b) shows the relationship with the output dI for each heating element R,
- Figure 5 is a diagram showing the energization pulse to R4, Figure 5 is a schematic explanatory diagram of the thermal head, Figure 6 is a diagram showing the voltage drop in vH due to energization of the thermal head, and (a) is the energization pulse to the heating element. , (b) is a diagram showing the voltage drop during energization, No. 7
Figure (a) is the ideal 0D-i curve, Figure 7 (b) is a diagram showing basic energization data, Figure 8 (a) is the 0D-i curve at high load, and Figure 8 (b) is after correction. Figure 9 shows the energizing pulse of
Figure (a) shows the 0D-i curve when the load is medium, and Figure 9 (
b) is a diagram showing the energization pulse after correction, and FIG. 10 is a flowchart for determining the energization pulse width in the conventional method. i...Gradation level, ■...Ink type, △V1・
... Voltage drop, d+... Voltage drop detector output, pl.
... Number of simultaneous energizing heating elements, k vld... Energizing pulse width coefficient, tvl... Basic energizing data. Patent applicant Kunio Kakiki O, representative of Victor Japan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] サーマルプリンタのヘッド電源電圧降下量を検出し、こ
の降下量に応じて発熱体への通電パルス幅を所定量延長
することにより印字濃度むらを補正しつつ印字を行なう
カラーサーマルプリンタの階調制御方式において、前記
通電パルス幅の延長量を、使用するサーマルヘッドごと
に、かつ、所定の印字濃度となるようにヘッド電源電圧
降下量、インクの種類及び階調レベルごとに設定した補
正データに基づいて決定するようにしたことを特徴とす
るカラーサーマルプリンタの階調制御方式。
A gradation control method for color thermal printers that corrects uneven print density while printing by detecting the amount of voltage drop in the thermal printer's head power supply and extending the width of the energizing pulse to the heating element by a predetermined amount according to this amount of drop. In this step, the amount of extension of the energizing pulse width is determined for each thermal head used, and based on correction data set for each head power supply voltage drop, ink type, and gradation level to achieve a predetermined print density. A gradation control method for a color thermal printer, characterized in that a gradation control method for a color thermal printer is determined.
JP63151929A 1988-06-20 1988-06-20 Gradation control method of color thermal printer Expired - Lifetime JPH07102710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63151929A JPH07102710B2 (en) 1988-06-20 1988-06-20 Gradation control method of color thermal printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63151929A JPH07102710B2 (en) 1988-06-20 1988-06-20 Gradation control method of color thermal printer

Publications (2)

Publication Number Publication Date
JPH023348A true JPH023348A (en) 1990-01-08
JPH07102710B2 JPH07102710B2 (en) 1995-11-08

Family

ID=15529286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63151929A Expired - Lifetime JPH07102710B2 (en) 1988-06-20 1988-06-20 Gradation control method of color thermal printer

Country Status (1)

Country Link
JP (1) JPH07102710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198955A (en) * 2015-04-10 2016-12-01 富士通コンポーネント株式会社 Thermal printer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090779A (en) * 1983-10-25 1985-05-21 Matsushita Graphic Commun Syst Inc Color image recorder
JPS6158763A (en) * 1984-08-31 1986-03-26 Fuji Xerox Co Ltd Thermal head driving device
JPS6179678A (en) * 1984-09-28 1986-04-23 Ricoh Co Ltd Thermal recording control circuit
JPS61123362A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Multi-gradation printer
JPS6377758A (en) * 1986-09-19 1988-04-07 Victor Co Of Japan Ltd Heat sensitive transfer gradation controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090779A (en) * 1983-10-25 1985-05-21 Matsushita Graphic Commun Syst Inc Color image recorder
JPS6158763A (en) * 1984-08-31 1986-03-26 Fuji Xerox Co Ltd Thermal head driving device
JPS6179678A (en) * 1984-09-28 1986-04-23 Ricoh Co Ltd Thermal recording control circuit
JPS61123362A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Multi-gradation printer
JPS6377758A (en) * 1986-09-19 1988-04-07 Victor Co Of Japan Ltd Heat sensitive transfer gradation controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198955A (en) * 2015-04-10 2016-12-01 富士通コンポーネント株式会社 Thermal printer

Also Published As

Publication number Publication date
JPH07102710B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
EP3266616B1 (en) Thermal printer
JPH023348A (en) Control system of gradation of color thermal printer
JPH07227991A (en) Driving of thermal printer
JPS58164368A (en) Halftone recording device of thermal head
EP3078498B1 (en) Thermal printer
JP2857837B2 (en) Thermal head heat control device
US5896160A (en) Thermal printing method and thermal printer
JPH0752436A (en) Thermal control circuit for thermal printer
JPH03227259A (en) Heating photographic printing device
JPS59202768A (en) Heat-sensing transfer printer
JPH08281992A (en) Line type thermal transfer printer
KR0138139B1 (en) Printing apparatus
JPH02217265A (en) Density gradation correcting device of density gradation printer
JP2000071506A (en) Apparatus for correcting heat history of thermal printer
JPS6392468A (en) Printing controlling method for thermal printer
JPH029644A (en) Thermal printer
JPH01288464A (en) Uneven record density correcting method
JPS60239258A (en) Driving system of thermal head
JPH03182367A (en) Color thermal printer of density gradation controlling type
JP2000094731A (en) Method for, measuring, and method for correcting accumulation heat amount of thermal print apparatus
JPH06989A (en) Intermediate tone recording device
JPH0691916A (en) Density gradation control type printer
JPH03224754A (en) Density gradation control-type thermal printer and current value detection device
JPS62271764A (en) Thermal transfer gradation controller
JPH02134257A (en) Printing apparatus