JPH03226967A - Manufacture of nickel sintered base - Google Patents

Manufacture of nickel sintered base

Info

Publication number
JPH03226967A
JPH03226967A JP2023126A JP2312690A JPH03226967A JP H03226967 A JPH03226967 A JP H03226967A JP 2023126 A JP2023126 A JP 2023126A JP 2312690 A JP2312690 A JP 2312690A JP H03226967 A JPH03226967 A JP H03226967A
Authority
JP
Japan
Prior art keywords
water
sintering
reducing gas
sintered
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023126A
Other languages
Japanese (ja)
Other versions
JP2773349B2 (en
Inventor
Kohei Fukuhara
福原 耕平
Ryoji Ikemizu
池水 良二
Yasuhiro Uchida
泰弘 内田
Ko Gomikawa
五味川 香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2023126A priority Critical patent/JP2773349B2/en
Publication of JPH03226967A publication Critical patent/JPH03226967A/en
Application granted granted Critical
Publication of JP2773349B2 publication Critical patent/JP2773349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To facilitate decomposition of water soluble macromolecules so as to obtain a strong sintered base stable over a long period by sintering the base in a reducing gas containing water. CONSTITUTION:A slurry composed of nickel powder, water and water soluble macromolecules is applied to a porous conductive core and is dried and then sintered in a reducing gas containing water. Before the core is put in a sintering furnace, the reducing gas such as an ammonium cracked gas, etc., is passed through water so that a base is sintered in the reducing gas containing water. Generation of undecomposed carbon is thereby prevented over a long time and sintering of the nickel powder is accelerated and strong sintered bases are continuously manufactured at low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケルーカドミウム電池などに用いられるニ
ッケル焼結基板の製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a method for manufacturing nickel sintered substrates used in nickel-cadmium batteries and the like.

従来の技術 ニッケルーカドミウム電池におけるニッケル焼結基板の
製造方法としては、カーボニルニッケル等の焼結用金属
粉末とカルボキシメチルセルロース(CMC)やメチル
セルロース(MC)等の水溶性高分子と水とのスラリー
状混合物を、開孔ニッケル板やニッケルメッキ開孔鋼板
等の多孔性導電芯材に塗布し、乾燥後、アンモニア分解
ガス等の還元雰囲気中で、800〜1100℃で焼結し
て多孔性ニッケルからなる焼結基板を得るのが一般的で
ある。
Conventional technology A method for producing a sintered nickel substrate in a nickel-cadmium battery involves a slurry of a sintering metal powder such as carbonyl nickel, a water-soluble polymer such as carboxymethyl cellulose (CMC) or methyl cellulose (MC), and water. The mixture is applied to a porous conductive core material such as a perforated nickel plate or a nickel-plated perforated steel plate, and after drying, it is sintered at 800 to 1100°C in a reducing atmosphere such as ammonia decomposition gas to form porous nickel. Generally, a sintered substrate is obtained.

発明が解決しようとする課題 このような基板の焼結時の反応としては、水溶性高分子
の分解、一部酸化されたニッケル粉末の還元、およびニ
ッケル粉末の焼結が考えられる。
Problems to be Solved by the Invention Possible reactions during sintering of such a substrate include decomposition of water-soluble polymer, reduction of partially oxidized nickel powder, and sintering of nickel powder.

しかし、連続運転中において、焼結炉の上部および下部
に使用しているゴムシールが熱により劣化し、還元ガス
が漏れ出し、水溶性高分子の分解に必要な、水素が不足
して、未分解の炭素が基板中に残留する。その結果、ニ
ッケル粉末の焼結を妨げることにより、著しく強度が低
下するという問題があった。そのため、還元ガスの流量
をあげることによって、未分解炭素の発生を抑制するこ
とは可能であるが、この措置はコストアップとなり、実
用上好ましくなかった。
However, during continuous operation, the rubber seals used at the top and bottom of the sintering furnace deteriorate due to heat, and reducing gas leaks out, resulting in a lack of hydrogen needed to decompose water-soluble polymers, resulting in undecomposed polymers. of carbon remains in the substrate. As a result, there was a problem in that the sintering of the nickel powder was hindered, resulting in a significant decrease in strength. Therefore, although it is possible to suppress the generation of undecomposed carbon by increasing the flow rate of the reducing gas, this measure increases costs and is not practical.

課題を解決するための手段 本発明は、アンモニア分解ガス等の還元ガスを、焼結炉
に入れる以前に水中を通し、水分を含んだ還元ガス中に
おいて、基板を焼結することにより、長時間にわたり未
分解の炭素が発生することなく、ニッケル粉末の焼結を
進め、強度の大きい焼結基板を安価に連続して作ること
を可能にしたことを特徴とするものである。
Means for Solving the Problems The present invention allows reducing gas such as ammonia decomposition gas to pass through water before entering the sintering furnace, and sintering the substrate in the reducing gas containing moisture for a long time. The nickel powder is sintered without generating undecomposed carbon over a long period of time, making it possible to continuously produce sintered substrates with high strength at low cost.

作用 メチルセルロース(以下、MC)の分子構造は、下記の
通りであり、水分を含んだ還元ガス中での炭素の分解反
応は、(1)式が考えられる。
Function The molecular structure of methyl cellulose (hereinafter referred to as MC) is as shown below, and the decomposition reaction of carbon in a reducing gas containing moisture can be expressed by formula (1).

但しRはH、CH3、CH2CH(OH) CH3C十
H20ヰH2+ CO・・・・・・(1)又、MC中の
酸素(0)による分解は(2)式が考えられる。
However, R is H, CH3, CH2CH(OH) CH3C+H20iH2+ CO (1) Also, equation (2) can be considered for decomposition by oxygen (0) in MC.

c + o=c o              ・・
・・・・(2)又、MC中の水素(H)による反応は、
(31,+4+式が考えられる。
c+o=co...
...(2) Also, the reaction due to hydrogen (H) in MC is
(31,+4+ expressions are possible.

0 + 2 H#H20・・・・・・(3)C+H20
:CO+H2・・・・・・(4)いずれも、MCの分解
反応であるが、水分を含んだ還元ガス中においては、(
1)式の反応が容易に進み、基板中への残留炭素の蓄積
を防止でき、ニッケル粉末の焼結を阻害することなく、
強度の大きい基板を得ることが可能である。
0 + 2 H#H20... (3) C+H20
:CO+H2...(4) Both are decomposition reactions of MC, but in a reducing gas containing moisture, (
1) The reaction of the formula proceeds easily, prevents the accumulation of residual carbon in the substrate, and does not inhibit the sintering of the nickel powder.
It is possible to obtain a substrate with high strength.

実施例 公知の多孔性導電芯材に、公知のニッケルスラリーを一
定のスリット幅にて塗布し、乾燥後、10mm/s e
 c、  900℃の条件下にて焼結して基板を得た。
Example: A known nickel slurry was applied to a known porous conductive core material with a constant slit width, and after drying, it was applied at a rate of 10 mm/s e
c. A substrate was obtained by sintering at 900°C.

なお還元ガスとしては、表−1の条件にて焼結を行い、
それぞれ(a)〜ld)の基板を得た。
The reducing gas was used for sintering under the conditions shown in Table 1.
Substrates (a) to ld) were obtained, respectively.

(以  下  余  白  ) 表−1 NH3分解ガス(ウェット)は、30℃の水中に通し、
0.044 m/耐−N)+3の水分を含ませた。
(Left below) Table 1 NH3 decomposition gas (wet) is passed through water at 30℃,
0.044 m/N resistance)+3 moisture was added.

約10時間、連続的に焼結したときの焼結炉内の一酸化
炭素量を第1図に示す。又、焼結基板の厚み及び強度と
の関係を第2図に示す。N H3分解ガス(ウェット)
の増加に伴って一酸化炭素量が増大し、また焼結基板の
厚みが減少し、強度が増大していることが分かる。つま
り、(1)式の反応によって、MC中の炭素が分解され
、その後のニッケル粉末の焼結が進んでいることを示し
ている。
Figure 1 shows the amount of carbon monoxide in the sintering furnace during continuous sintering for about 10 hours. Furthermore, the relationship between the thickness and strength of the sintered substrate is shown in FIG. N H3 decomposition gas (wet)
It can be seen that as the sintered substrate increases, the amount of carbon monoxide increases, the thickness of the sintered substrate decreases, and the strength increases. In other words, this shows that the carbon in MC is decomposed by the reaction of formula (1), and the subsequent sintering of the nickel powder progresses.

発明の効果 本発明のニッケルーカドミウム電池におけるニッケル焼
結基板の製造方法は、以上のように水分を含んだ還元ガ
ス中にて焼結することにより、水溶性高分子の分解を容
易にし、長期間安定した強度の大きい焼結基板を得るも
のであり、その工業的価値は極めて大きい。
Effects of the Invention The method for manufacturing a nickel sintered substrate for a nickel-cadmium battery of the present invention facilitates the decomposition of water-soluble polymers by sintering in a reducing gas containing moisture as described above, and provides a long-lasting product. A sintered substrate with high strength that is stable over a period of time can be obtained, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結炉内の一酸化炭素量の変化を示した図、第
2図は焼結基板の厚み及び強度との関係を示した図であ
る。
FIG. 1 is a diagram showing changes in the amount of carbon monoxide in the sintering furnace, and FIG. 2 is a diagram showing the relationship between the thickness and strength of the sintered substrate.

Claims (1)

【特許請求の範囲】[Claims] ニッケル粉末、水、水溶性高分子からなるスラリーを多
孔性導電芯材に塗布、乾燥後、水を含んだ還元ガス中に
て焼結することを特徴としたニッケル焼結基板の製造方
法。
A method for producing a nickel sintered substrate, which comprises applying a slurry consisting of nickel powder, water, and a water-soluble polymer to a porous conductive core material, drying it, and then sintering it in a water-containing reducing gas.
JP2023126A 1990-01-31 1990-01-31 Manufacturing method of nickel sintered substrate Expired - Fee Related JP2773349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023126A JP2773349B2 (en) 1990-01-31 1990-01-31 Manufacturing method of nickel sintered substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023126A JP2773349B2 (en) 1990-01-31 1990-01-31 Manufacturing method of nickel sintered substrate

Publications (2)

Publication Number Publication Date
JPH03226967A true JPH03226967A (en) 1991-10-07
JP2773349B2 JP2773349B2 (en) 1998-07-09

Family

ID=12101826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023126A Expired - Fee Related JP2773349B2 (en) 1990-01-31 1990-01-31 Manufacturing method of nickel sintered substrate

Country Status (1)

Country Link
JP (1) JP2773349B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860973B2 (en) 2008-03-18 2014-10-14 Ricoh Company, Ltd. Image processing apparatus, image processing method, and computer program product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726107A (en) * 1980-06-09 1982-02-12 Inco Europ Ltd Production of porous nickel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726107A (en) * 1980-06-09 1982-02-12 Inco Europ Ltd Production of porous nickel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860973B2 (en) 2008-03-18 2014-10-14 Ricoh Company, Ltd. Image processing apparatus, image processing method, and computer program product

Also Published As

Publication number Publication date
JP2773349B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
Lian et al. Electrochemical and surface characterization of electrocatalytically active amorphous Ni Co alloys
Bond et al. Spectrophotometric and voltammetric characterization of complexes of bis (2, 2'-bipyridine)(2, 2'-bibenzimidazole) ruthenium and-osmium in oxidation states II, III, and IV in acetonitrile/water mixtures
US3380856A (en) Method of making fuel cell electrodes comprised of borides, carbides, nitrides and/or silicides of one or more transition metals
JP2009291706A5 (en)
Fan et al. SnO 2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation
Coltharp et al. Surface of a carbon with sorbed oxygen on pyrolysis
CN109088079B (en) Method for synthesizing platinum-palladium-copper ternary metal nano cubic framework material in one step
Gouerec et al. Dioxygen reduction electrocatalysis in acidic media: effect of peripheral ligand substitution on cobalt tetraphenylporphyrin
Hou et al. FeNi 3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate
JPH03226967A (en) Manufacture of nickel sintered base
US4430294A (en) Process for producing porous nickel bodies
KR101475621B1 (en) Making method of tungsten carbide catalyst
CN111874900B (en) Metal coordination block copolymer, preparation method and application thereof
KR20190063289A (en) Method of core-shell catalyst production including gas phase nitriding
Ertl Surface science and catalysis
Winter Exchange reactions of solid oxides. Part VI. The reactions of carbon monoxide, carbon dioxide, and oxygen on cuprous oxide, nickel oxide, and chromium oxide
GB1349476A (en) Electrode for electrochemical reduction of oxygen and process for its production
JPS6042586B2 (en) Method for manufacturing sintered substrate for storage battery electrode
Fawcett et al. Homolytic fission of metal metal bonded carbonyls
CN113161559A (en) Carbon-based oxygen reduction/oxygen precipitation dual-function catalyst and preparation method thereof
Castellanos et al. Electrocatalytic properties of novel ruthenium-based compounds for the oxygen reduction reaction in 0.5 M H2SO4: effects of the synthesis atmosphere and temperature
KR20190063290A (en) Method of core-shell catalyst production including liquid phase nitriding
CN112563513B (en) Covalent organic framework/transition metal lanthanum acid composite material and preparation method and application thereof
KR20190063292A (en) Core-shell type catalyst
JPH01100006A (en) Production of aluminum nitride powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees