JPH03226955A - Mass spectrometer - Google Patents
Mass spectrometerInfo
- Publication number
- JPH03226955A JPH03226955A JP2023434A JP2343490A JPH03226955A JP H03226955 A JPH03226955 A JP H03226955A JP 2023434 A JP2023434 A JP 2023434A JP 2343490 A JP2343490 A JP 2343490A JP H03226955 A JPH03226955 A JP H03226955A
- Authority
- JP
- Japan
- Prior art keywords
- space
- ion source
- exhaust
- pump
- mass spectrometry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004949 mass spectrometry Methods 0.000 claims abstract description 15
- 238000005192 partition Methods 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 abstract description 20
- 238000009792 diffusion process Methods 0.000 abstract description 10
- 238000012423 maintenance Methods 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 description 28
- 238000004458 analytical method Methods 0.000 description 17
- 238000000451 chemical ionisation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〉
本発明はケミカルイオン化イオン源を備えた質量分析装
置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mass spectrometer equipped with a chemical ionization source.
(従来の技術)
ケミカルイオン化法(CI)では試料の分子量の情報が
得られるのでよく用いられている。CI法ではイオン源
のイオン化室に反応ガスを導入し、イオン化室内を比較
的低い真空度に保っておく必要がある。他方質量分析空
間は高真空を必要とする。イオン源と質量分析空間との
間は仕切られて、イオンが通過する小開口によって両方
の空間がつながっている。(Prior Art) Chemical ionization (CI) is often used because it provides information on the molecular weight of a sample. In the CI method, it is necessary to introduce a reactive gas into the ionization chamber of the ion source and maintain the interior of the ionization chamber at a relatively low degree of vacuum. Mass spectrometry spaces, on the other hand, require high vacuum. The ion source and mass analysis space are partitioned, and both spaces are connected by a small opening through which ions pass.
このようにイオン源と質量分析空間とは真空度が異るの
で、従来のCt法を用いる質量分析装置では、イオン源
と質量分析空間を別々の排気系に接続していた。このた
め、イオン源と質量分析空間の夫々に主ポンプと補助ポ
ンプが必要であり、高価となる上、排気系のポンプ等の
装置および部品の数が多(なるため、保守も面倒となり
、故障の確率も高くなると云う問題があった。Since the ion source and the mass analysis space have different degrees of vacuum in this way, in conventional mass spectrometers using the Ct method, the ion source and the mass analysis space are connected to separate exhaust systems. For this reason, a main pump and an auxiliary pump are required for each of the ion source and the mass spectrometry space, which is expensive and requires a large number of devices and parts, such as pumps in the exhaust system (this makes maintenance troublesome and failures). There was a problem that the probability of
(発明が解決しようとする課題)
本発明はCI法を用いる質量分析装置で排気系を簡単に
し、排気系の装置2部品の点数を半減させようとするも
のである。(Problems to be Solved by the Invention) The present invention aims to simplify the exhaust system of a mass spectrometer using the CI method and reduce the number of two parts of the exhaust system by half.
(課題を解決するための手段〉
第1図に示すように主ポンプ1の吸気口11をイオン源
2と質量分析空間3との間の隔壁4を境にして両方の空
間にまたがるように取付けた。(Means for Solving the Problem) As shown in Fig. 1, the inlet port 11 of the main pump 1 is installed so as to span the ion source 2 and the mass spectrometry space 3, with the partition wall 4 as the boundary. Ta.
(作用)
質量分析装置で用いられる主ポンプは高真空ポンプであ
るが、高真空ポンプは何等かの方法で吸気口から排気口
に向って、第1図で云えば11から排気口12に向って
次第に高(なる圧力勾配を形成し、これを維持する能力
を有するものである。排気口の圧力が一定であるとき、
吸気口の圧力は排気口が接続されている空間への外部か
らのガスの供給即ちリークガスと、CIイオン源の場合
であれば反応ガスが供給されているのて、ぞれを合ぜた
ガスの供給量によって決まり、C■イオン源の方がリー
クだけである質量分析空間よりも主ポンプの吸気口圧力
は高(なる。所で高真空ポンプは吸気口から排気口へ向
って高くなる圧力勾配を形成するが反面、後述実施例で
詳述するように吸気口から排気口へ向う方向と直交する
方向、第1図で云うと矢印A方向の排気ガスの拡散は妨
げる作用を有している。このため第1図のように一台の
主ポンプをイオン源と質量分析空間とにまたがって接続
した場合、吸気口のイオン源側と質量分析空間側とて圧
力が異っていても、主ポンプ内を通ってイオン源から質
量分析空間へのガスの拡散は起らず、夫々の空間は夫々
の空間へのガス供給量に応じた圧力に保持されるのであ
る。(Function) The main pump used in the mass spectrometer is a high vacuum pump, and the high vacuum pump uses some method to move the pump from the intake port to the exhaust port, from 11 to the exhaust port 12 in Fig. 1. It has the ability to form and maintain a pressure gradient that gradually increases.When the pressure at the exhaust port is constant,
The pressure at the intake port is the sum of the gas supplied from the outside to the space to which the exhaust port is connected, that is, the leak gas, and the reactant gas supplied in the case of a CI ion source. The inlet pressure of the main pump is higher in the C■ ion source than in the mass spectrometry space where there is only leakage.However, in a high vacuum pump, the pressure increases from the inlet to the exhaust port. On the other hand, as will be described in detail in the examples below, it has the effect of hindering the diffusion of exhaust gas in the direction perpendicular to the direction from the intake port to the exhaust port, that is, in the direction of arrow A in FIG. Therefore, when one main pump is connected across the ion source and mass analysis space as shown in Figure 1, even if the pressure is different between the ion source side and the mass analysis space side of the inlet, Gas does not diffuse from the ion source to the mass analysis space through the main pump, and each space is maintained at a pressure corresponding to the amount of gas supplied to each space.
(実施例)
第2図は本発明の一実施例を示す。図で1は主ポンプで
ターボ分子ポンプが用いられている。11は主ポンプの
吸気口であり、13は主ポンプゲージングの上記吸気口
11の周囲に設けられた取付は用フランジである。12
は排気口で図外補助ポンプのロータリポンプに接続され
ている。2はイオン源空間、3は質量分析空間で、4は
雨空間を隔てる隔壁である。隔壁4の中央には小孔41
があり、イオン源2で生成されたイオンはこの小孔を通
して質量分析空間に入射する。隔壁4は下縁がターボ分
子ポンプ1のロータ14の端面すれすれの所まで延びて
おり、イオン源空間2と質量分析空間3とは上記小孔4
1および、隔壁4の下縁と主ポンプのロータ14の上端
面との間の隙間によって連通しているが、これらの小孔
および隙間は小さいので、イオン源空間2から質量分析
空間へのガスの流量はきわめて少く、質量分析空間は高
真空に保たれる。(Example) FIG. 2 shows an example of the present invention. In the figure, 1 is the main pump, and a turbo molecular pump is used. Reference numeral 11 indicates an intake port of the main pump, and reference numeral 13 indicates a mounting flange provided around the intake port 11 of the main pump gauging. 12
is connected to an auxiliary rotary pump (not shown) at the exhaust port. 2 is an ion source space, 3 is a mass analysis space, and 4 is a partition wall that separates the rain space. There is a small hole 41 in the center of the partition wall 4.
The ions generated by the ion source 2 enter the mass spectrometry space through this small hole. The lower edge of the partition wall 4 extends to a point where it almost touches the end surface of the rotor 14 of the turbo-molecular pump 1, and the ion source space 2 and the mass analysis space 3 are connected to the small hole 4.
1 and a gap between the lower edge of the partition wall 4 and the upper end surface of the rotor 14 of the main pump, but since these small holes and gaps are small, gas does not flow from the ion source space 2 to the mass spectrometry space. The flow rate is extremely low, and the mass spectrometry space is kept at a high vacuum.
ターボ分子ポンプは第3図に示すようにロータRとステ
ータSが交互に配置され、夫々には放射状に多数のスリ
ットGが切っである。スリットGは軸方向に対して傾け
てあり、ロータとステータとでその傾きの方向が逆にな
っている。ロータが矢印r方向に回転すると、ロータの
左側から矢印mの方向に成る速さで進行する分子はロー
タのスリットGを1iIJするが、それ以外の方向およ
び速さの分子はスリットの壁に当り、スリットを通過で
きない。ロータの右側から来る分子は何の方向速度の分
子も皆スリットの壁に当たるので、スリットを通過でき
ない。かくしてロータを左から右へは分子の通過が可能
であるが、右から左へは通過抵抗が大へん高い。ステー
タはスリットの傾きがロータと逆で、ロータを通過した
分子は矢印mの方向に運動しているので、ステータのス
リットを通過する。従って分子ポンプ全体としてガス分
子は左から右へ移動し、左から右へ次第に高(なる圧力
勾配ができる。ロータ或はステータのスリット内にある
分子はスリットの壁が邪魔になってロータステータの円
周方向には拡散できない。As shown in FIG. 3, the turbo-molecular pump has rotors R and stators S arranged alternately, each having a large number of radially cut slits G. The slit G is inclined with respect to the axial direction, and the direction of the inclination is opposite between the rotor and the stator. When the rotor rotates in the direction of arrow r, molecules traveling from the left side of the rotor at a speed in the direction of arrow m will hit the slit G of the rotor 1iIJ, but molecules in other directions and speeds will hit the wall of the slit. , cannot pass through the slit. Molecules coming from the right side of the rotor cannot pass through the slit because all molecules with any direction velocity hit the slit wall. Thus, molecules can pass through the rotor from left to right, but the resistance to passage from right to left is very high. The inclination of the slits in the stator is opposite to that of the rotor, and the molecules that have passed through the rotor are moving in the direction of arrow m, so they pass through the slits in the stator. Therefore, in the molecular pump as a whole, gas molecules move from left to right, creating a pressure gradient that gradually increases from left to right. Molecules in the slits of the rotor or stator are obstructed by the walls of the slits, and the gas molecules move from left to right. It cannot be diffused in the circumferential direction.
またロータとステータとの間の隙間は小さいので、この
隙間を通っての拡散も無視できる。このため第2図でイ
オン源側の圧力が質量分析空間の圧力より高くても、イ
オン源側から質量分析空間側へターボ分子ポンプ内を通
って拡散して来るガス分子はきわめてわずかであり、タ
ーボ分子ポンプの吸気口がイオン源と質量分析空間とに
またがって取付けられていても、雨空間は夫々独自の圧
力を保っていることができるのである。Also, since the gap between the rotor and stator is small, diffusion through this gap can be ignored. Therefore, even if the pressure on the ion source side is higher than the pressure on the mass spectrometry space in Figure 2, very few gas molecules diffuse from the ion source side to the mass spectrometry space through the turbo molecular pump. Even if the turbomolecular pump inlet is installed across the ion source and mass analysis spaces, each rain space can maintain its own pressure.
ターボ分子ポンプは油を使わないので、真空装置内が清
浄に保てるため質量分析袋、置等によく用いられている
が、拡散ポンプを用いる場合でも本発明は適用できる。Since turbomolecular pumps do not use oil, they are often used in mass spectrometry bags, racks, etc. because they can keep the inside of a vacuum device clean, but the present invention can also be applied to cases where a diffusion pump is used.
第4図は拡散ポンプを用いた例である。第2図の各部と
対応する部分には同じ符号がつけである。1は油拡散ポ
ンプでHは油蒸気上昇管の上端に取付けられた笠で第1
段の下向きノズルNを形成している。隔壁4の下縁はこ
の笠Hの上面に当接する迄延長してあり、望ましくは第
5図に示すように隔壁の正面側から見たとき、隔壁下縁
の両側が笠Hの外周に沿って幾分下方まで延ばすのがよ
い。拡散ポンプの油蒸気上昇管の外周の排気作用空間で
はノズルNから下に向って油の蒸気の分圧は温度が下が
るにつれて低下しているが、被排気ガスの分圧力は逆に
次第に高くなり、両方の分圧の和は排気口の圧力即ち補
助ポンプの吸入口の圧力になっている。ノズルNの近辺
では油の蒸気圧が高く、その中でのガス分子の平均自由
行程はイオン源および、質量分析空間に比し著しく小さ
い。このためノズルN近辺での被排気ガスの拡散速度は
そこがイオン源或は質量分析空間の圧力である場合に比
し大へん小さくて、イオン源から質量分析空間へのガス
の拡散は無視できるのである。またこのため油蒸気内に
進入した被排気ガス分子は油蒸気の下向きの流れに乗っ
て運び去られるのである。FIG. 4 shows an example using a diffusion pump. Components corresponding to those in FIG. 2 are given the same reference numerals. 1 is an oil diffusion pump, and H is a cap attached to the upper end of the oil vapor riser pipe.
A step downward nozzle N is formed. The lower edge of the partition wall 4 extends until it comes into contact with the upper surface of the shade H, and preferably, as shown in FIG. It is best to extend it slightly downward. In the exhaust action space on the outer periphery of the oil vapor riser pipe of the diffusion pump, the partial pressure of the oil vapor decreases as the temperature decreases downward from the nozzle N, but on the contrary, the partial pressure of the exhaust gas gradually increases. , the sum of both partial pressures is the pressure at the exhaust port, that is, the pressure at the suction port of the auxiliary pump. The vapor pressure of oil is high near the nozzle N, and the mean free path of gas molecules therein is significantly smaller than in the ion source and mass analysis space. Therefore, the diffusion rate of the exhausted gas near the nozzle N is much smaller than when the pressure is in the ion source or mass analysis space, and the diffusion of gas from the ion source to the mass analysis space can be ignored. It is. Also, for this reason, the exhaust gas molecules that have entered the oil vapor are carried away by the downward flow of the oil vapor.
第2図に示すように主ポンプの吸気口は隔壁4が中心よ
り質量分析空間側に寄るように取付けられており、質量
分析空間の方が排気口面積が小さくしであるが、これは
質量分析空間は完全密閉で外部からの空気リークは殆ん
どないのに比し、イオン源側は反応ガスを供給している
ので、排気ガス量はイオン源側の方が大きいからである
。As shown in Figure 2, the intake port of the main pump is installed so that the partition wall 4 is closer to the mass analysis space than the center, and the exhaust port area is smaller in the mass analysis space; This is because the analysis space is completely sealed and there is almost no air leakage from the outside, whereas the ion source side supplies the reaction gas, so the amount of exhaust gas is larger on the ion source side.
(発明の効果)
本発明によれば一つの排気系で互いに圧力の異るイオン
源と質量分析空間の両方を共通に排気できるので、排気
装置が一セットあればよく、管系の部品が少くなり、排
気系が安価になると共に故障確率も下り、保守費用も低
減できることになる。(Effects of the Invention) According to the present invention, since both the ion source and the mass analysis space, which have different pressures, can be commonly evacuated using one exhaust system, only one set of exhaust equipment is required, and the number of piping system parts is reduced. As a result, the exhaust system becomes less expensive, the probability of failure decreases, and maintenance costs can also be reduced.
第1図は本発明の概要説明図、第2図は本発明の一実施
例の要部縦断側面図、第3図はターボ分子ポンプの説明
図、第4図は本発明の他の実施例の要部縦断側面図、第
5図は同実施例の要部横断面図である。
1・・・主ポンプ、2・・・イオン源空間、3・・・質
量分析空間、4・・・隔壁、11・・・吸気口、12・
・・排気口、13・・・7ランジ、41・・・イオン通
過小孔、14・・・ロータ。Fig. 1 is an explanatory diagram of the outline of the present invention, Fig. 2 is a longitudinal cross-sectional side view of essential parts of an embodiment of the invention, Fig. 3 is an explanatory diagram of a turbo molecular pump, and Fig. 4 is another embodiment of the invention. FIG. 5 is a cross-sectional view of the main part of the same embodiment. DESCRIPTION OF SYMBOLS 1... Main pump, 2... Ion source space, 3... Mass analysis space, 4... Partition wall, 11... Inlet port, 12...
...Exhaust port, 13...7 lunge, 41...Ion passage small hole, 14...Rotor.
Claims (1)
壁を境にして両方の空間にまたがるように取付けたこと
を特徴とする質量分析装置。A mass spectrometer characterized in that an inlet port of a main pump is installed so as to span an ion source and a mass spectrometry space with a partition between the two spaces as a boundary.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023434A JP2943207B2 (en) | 1990-01-31 | 1990-01-31 | Mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023434A JP2943207B2 (en) | 1990-01-31 | 1990-01-31 | Mass spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03226955A true JPH03226955A (en) | 1991-10-07 |
JP2943207B2 JP2943207B2 (en) | 1999-08-30 |
Family
ID=12110399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023434A Expired - Fee Related JP2943207B2 (en) | 1990-01-31 | 1990-01-31 | Mass spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2943207B2 (en) |
-
1990
- 1990-01-31 JP JP2023434A patent/JP2943207B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2943207B2 (en) | 1999-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8757987B2 (en) | Vacuum pump for differentially pumping multiple chambers | |
US7850434B2 (en) | Pumping arrangement | |
JP4732750B2 (en) | Vacuum exhaust device | |
US6705844B2 (en) | Dynamic seal | |
JP5719370B2 (en) | Mass spectrometry system | |
US6193461B1 (en) | Dual inlet vacuum pumps | |
US20140010676A1 (en) | Vacuum pump or vacuum apparatus with vacuum pump | |
JPS6356438B2 (en) | ||
JP2017057753A (en) | Vacuum pump and mass spectrograph | |
JP2013508595A (en) | Vacuum pump | |
JPH09170589A (en) | Turbo molecular pump | |
US20180163732A1 (en) | Vacuum pump | |
JP5027352B2 (en) | Improvement of vacuum pump | |
JP7252990B2 (en) | Molecular vacuum pump and method of influencing pumping speed of molecular vacuum pump | |
KR20220122622A (en) | vacuum pump and stator column | |
JPH03226955A (en) | Mass spectrometer | |
JPH10103018A (en) | Gland shaft seal device for back pressure steam turbine | |
GB2360066A (en) | Vacuum pump | |
JPS63192987A (en) | Centrifugal high vacuum pump | |
US11480181B2 (en) | Vacuum system with a multi-stage and multi-inlet vacuum pump with a directional element separating pump stages | |
JPH11159493A (en) | Molecular drag compressor having finned rotor structure | |
JPH1182375A (en) | Shaft seal device for rotary shaft of compressor | |
JPS63223394A (en) | Turbo vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |