JPH03226103A - Digital temperature compensated oscillator - Google Patents

Digital temperature compensated oscillator

Info

Publication number
JPH03226103A
JPH03226103A JP2097090A JP2097090A JPH03226103A JP H03226103 A JPH03226103 A JP H03226103A JP 2097090 A JP2097090 A JP 2097090A JP 2097090 A JP2097090 A JP 2097090A JP H03226103 A JPH03226103 A JP H03226103A
Authority
JP
Japan
Prior art keywords
temperature
frequency
control voltage
voltage
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2097090A
Other languages
Japanese (ja)
Other versions
JP2975386B2 (en
Inventor
Kuichi Kubo
九一 久保
Tsutomu Yamakawa
務 山川
Hiroshi Yoshida
浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2020970A priority Critical patent/JP2975386B2/en
Priority to US07/644,614 priority patent/US5081431A/en
Publication of JPH03226103A publication Critical patent/JPH03226103A/en
Application granted granted Critical
Publication of JP2975386B2 publication Critical patent/JP2975386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • H03B2201/0208Varying the frequency of the oscillations by electronic means the means being an element with a variable capacitance, e.g. capacitance diode

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To keep a prescribed frequency offset quantity in a prescribed temperature range by expanding a theoretical value of a control voltage into a series and calculating a 1st order term for the initial value of the control voltage and the temperature and a 2nd order term for an offset to control the oscillating frequency. CONSTITUTION:A control voltage Vc is expressed in equation I in a digital temperature compensation oscillator, in which a detected output from a temperature sensor 11 is digitally converted, a corresponding data is read from storage elements 13, 14 storing a temperature compensation data in advance and converted into an analog data as a control voltage, which is applied to a voltage capacity conversion element controlling the frequency of a crystal oscillator 16 for the temperature compensation, where K00, K01, N10 are constants Vco is an initial value of the control voltage, T is a temperature and F is a frequency offset quantity. Thus a prescribed frequency offset quantity is maintained over a wide temperature range regardless of the setting value of the frequency compensation voltage and the temperature compensation characteristic is not affected by the frequency compensation voltage.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、温度変化による発振周波数の変化をデジタル
的に補償するデジタル温度補償発振器に係わり、特にア
ナログ−デジタル変換器の改良に間する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a digital temperature-compensated oscillator that digitally compensates for changes in oscillation frequency due to temperature changes, and is particularly concerned with improving analog-to-digital converters.

(発明の技術的背景とその問題点) 近時、周波数、時間等の基準として水晶発振器が広く用
いられている。ところで水晶発振器に用いる水晶振動子
は一般に温度係数を持ち、温度の変化によって周波数も
変化する。たとえば、数MHzないし十数MHz程度の
周波数で使用する一般的なATカットの水晶振動子は、
略3次曲線状の温度係数を示し、その特性は切断角度に
応じて微細に変化し、変曲点は25℃前後になる。
(Technical background of the invention and its problems) Recently, crystal oscillators have been widely used as standards for frequency, time, etc. Incidentally, a crystal resonator used in a crystal oscillator generally has a temperature coefficient, and its frequency changes with changes in temperature. For example, a typical AT-cut crystal oscillator used at a frequency of several MHz to about 10-odd MHz,
It exhibits a temperature coefficient in the shape of a substantially cubic curve, and its characteristics change minutely depending on the cutting angle, with an inflection point around 25°C.

一方、電子機器の高精度化が進むにつれて水晶発振器に
あっても、発振周波数はより安定なことを要求される傾
向にある。
On the other hand, as electronic equipment becomes more precise, crystal oscillators are also required to have more stable oscillation frequencies.

このような要求を満たす水晶発振器としては恒温槽に収
納したものがある。しかしながら恒温槽を用いたもので
は形状が大型化し、槽内を一定温度に加熱するために消
費電力も大きく、電源の投入時に周波数が安定化するま
でに時間がかかり、しかも部品は70°C程度の比較的
高温度にさらされるために信頼性にも問題がある。
A crystal oscillator that satisfies these requirements is one that is housed in a thermostatic oven. However, those that use a constant temperature oven are larger in size, consume more power to heat the inside of the oven to a constant temperature, take time to stabilize the frequency when the power is turned on, and have parts that are heated to around 70°C. Reliability is also an issue due to exposure to relatively high temperatures.

また、水晶振動子にサーミスタ等の温度検出素子を接続
してそのリアクタンスの変化によって温度補償を行うも
のがある。しかしながらこのようなものでは上記恒温槽
を用いたものに比べて周波数安定度は10倍以上悪くな
る。
In addition, there are devices that connect a temperature detection element such as a thermistor to a crystal resonator and perform temperature compensation by changing the reactance of the element. However, in such a device, the frequency stability is 10 times worse than that in the above-mentioned device using a constant temperature bath.

このために、たとえば第4図に示すような構成のデジタ
ル温度補償発振器が知られている。
For this purpose, a digital temperature compensated oscillator having a configuration as shown in FIG. 4, for example, is known.

この発振器では温度センサ】の検出出力を補償電圧発生
回路2へ与えて温度補償電圧Vco(T)を発生させる
。そして温度補償電圧Vco(T)に周波数調整端子3
に与えられる周波数補償電圧Vfを加えて制御電圧Vc
 (T)を得る。
In this oscillator, the detection output of the temperature sensor is applied to a compensation voltage generation circuit 2 to generate a temperature compensation voltage Vco(T). Then, the temperature compensation voltage Vco (T) is connected to the frequency adjustment terminal 3.
By adding the frequency compensation voltage Vf given to the control voltage Vc
Obtain (T).

上記周波数補償電圧Vfは経年変化等による基準周波数
からの実際の発振周波数のずれを補償するために発振周
波数を微調整してオフセットさせるものである。
The frequency compensation voltage Vf is used to finely adjust and offset the oscillation frequency in order to compensate for deviations in the actual oscillation frequency from the reference frequency due to aging or the like.

しかして温度補償電圧■co(T)は抵抗4(抵抗(l
αR1)を介して、周波数補償電圧は抵抗5(抵抗値R
2)を介して加えて制御電圧Vc(T)を得る。
Therefore, the temperature compensation voltage ■ co (T) is the resistance 4 (resistance (l
The frequency compensation voltage is applied via the resistor 5 (resistance value R
2) to obtain the control voltage Vc(T).

そして制御電圧Vc (T)を、たとえばコルピッツ型
の水晶発振器の水晶振動子6に直列に介挿したバリキャ
ップダイオード7に印加して発振周波数を微細に可変し
、一定の発振周波数を維持するようにしている。
Then, the control voltage Vc (T) is applied to, for example, a varicap diode 7 inserted in series with the crystal oscillator 6 of a Colpitts-type crystal oscillator to finely vary the oscillation frequency and maintain a constant oscillation frequency. I have to.

したがって、制御電圧Vc(T)は次の0式で与えられ
る。
Therefore, the control voltage Vc(T) is given by the following equation 0.

Vc (T)=AXVco (T)+BXVf ・・■
ただし A=R2/ (R1+R2) B=R1/ (R1+R2) しかしながら一般にこのような発振回路においてはバリ
キャップの印加電圧に対する周波数の変化量は、たとえ
ば第5図に示すグラフのように非直線的になる。たとえ
ば制御電圧Vclにおいて微小電圧△Vcだけ変化させ
たときの周波数オフセット量ΔFlと、制御電圧Vc2
において微小電圧△Vcだけ変化させたときの周波数オ
フセット量ΔF2とは異なる値となる。また制御電圧■
Cを一定の値だけ変化させたときの周波数の変化量は温
度の影響も受ける。
Vc (T)=AXVco (T)+BXVf...■
However, A=R2/ (R1+R2) B=R1/ (R1+R2) However, in general, in such an oscillation circuit, the amount of change in frequency with respect to the applied voltage of the varicap is non-linear, as shown in the graph shown in Figure 5. Become. For example, the frequency offset amount ΔFl when the control voltage Vcl is changed by a minute voltage ΔVc and the control voltage Vc2
The frequency offset amount ΔF2 is different from the frequency offset amount ΔF2 when only the minute voltage ΔVc is changed. Also, the control voltage
The amount of change in frequency when C is changed by a certain value is also affected by temperature.

このため、たとえは常温において発振周波数を一定のオ
フセットΔFとなるように制御電圧Vcを微調整しても
、広い温度範囲でこの周波数オフセットΔFを一定値に
維持することはできない。
For this reason, even if the control voltage Vc is finely adjusted so that the oscillation frequency has a constant offset ΔF at room temperature, the frequency offset ΔF cannot be maintained at a constant value over a wide temperature range.

第6図は第4図に示すような水晶発振器において70℃
の温度でOPPM、+2PPM、−2PPMおよび+4
PPM、−・1PPMの周波数オフセットΔFをそれぞ
れ設定した後、温度を一20℃〜+70℃まで変化させ
たときの基準周波数Fからの周波数オフセットΔFの割
合ΔF/Fを実測した結果を示すグラフである。
Figure 6 shows a crystal oscillator as shown in Figure 4 at 70°C.
OPPM, +2PPM, -2PPM and +4 at temperatures of
This is a graph showing the results of actually measuring the ratio ΔF/F of the frequency offset ΔF from the reference frequency F when changing the temperature from -20℃ to +70℃ after setting the frequency offset ΔF of PPM and -1PPM, respectively. be.

この結果からも明らかなように特定の設定した周波数オ
フセットΔFは、温度の変化に応じて変動するために一
定の周波数オフセラMlを維持することはできず、特に
低温度領域においてオフセット量の変動は大きくなる。
As is clear from this result, it is not possible to maintain a constant frequency offset ΔF because the frequency offset ΔF that has been set changes in response to changes in temperature, and the offset amount does not vary particularly in the low temperature region. growing.

さらに周波数補償電圧Vfを可変することによって温度
補償電圧Vco(T)による補償特性自体にも影響を与
えるために正確な温度補償を行えなくなる問題があった
Furthermore, since varying the frequency compensation voltage Vf affects the compensation characteristic itself by the temperature compensation voltage Vco(T), there is a problem that accurate temperature compensation cannot be performed.

(発明の目的〉 本発明は、上記の事情に鑑みてなされたもので、周波数
補償電圧の設定値に係わらず広い温度域において一定の
周波数オフセット量を維持することができ、しかも周波
数補償電圧によって温度補償特性が影響されることのな
いデジタル温度補償発振器を提供することを目的とする
ものである。
(Purpose of the Invention) The present invention has been made in view of the above circumstances, and is capable of maintaining a constant frequency offset amount in a wide temperature range regardless of the set value of the frequency compensation voltage. It is an object of the present invention to provide a digital temperature compensated oscillator whose temperature compensation characteristics are not affected.

(発明の概要) 本発明は、温度を検出する温度センサの検出値をデジタ
ル変換して記憶素子のアドレスを選択して予め格納した
温度補償データを読みだし、このデータをアナログ変換
した制御電圧を水晶発振回路の電圧容量変換素子に印加
して周波数を制御するものにおいて、上記制御電圧の理
論値を級数に展開して制御電圧の初期値および温度は一
次の項、オフセット量は二次の項までを演算して発振周
波数を制御することを特徴とするものである。
(Summary of the Invention) The present invention digitally converts the detected value of a temperature sensor that detects temperature, selects the address of a storage element, reads out pre-stored temperature compensation data, and converts this data into an analog control voltage. In a crystal oscillator circuit whose frequency is controlled by applying it to a voltage-capacitance conversion element, the theoretical value of the control voltage described above is expanded into a series, and the initial value and temperature of the control voltage are expressed as a first-order term, and the offset amount is a second-order term. This feature is characterized in that the oscillation frequency is controlled by calculating the above.

(実施例) 以下、本発明の一実施例を第1図に示すデジタル温度補
償発振器のブロック図を参照して詳細に説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described in detail with reference to a block diagram of a digital temperature compensated oscillator shown in FIG.

図中11は温度センサで、たとえば温度によって抵抗値
が変化するサーミスタである。そして、この温度センサ
11の抵抗値の変化を検出信号として演算回路12へ与
える。演算回路12には、さらに第1、第2の各デジタ
ル記憶素子13.14から、オフセットΔF、所定の温
度ステップ毎に温度を変化させて実測した制御電圧の初
期値VCOに関する補償データを与えられる。
In the figure, 11 is a temperature sensor, for example, a thermistor whose resistance value changes depending on the temperature. Then, this change in the resistance value of the temperature sensor 11 is given to the arithmetic circuit 12 as a detection signal. The arithmetic circuit 12 is further provided with compensation data regarding the offset ΔF and the initial value VCO of the control voltage actually measured by changing the temperature at every predetermined temperature step from the first and second digital storage elements 13.14. .

そして演算回路12は後述する所定のデジタル演算を行
い演算結果をデジタル−アナログ変換器15へ与える。
The arithmetic circuit 12 then performs a predetermined digital arithmetic operation, which will be described later, and provides the arithmetic result to the digital-to-analog converter 15.

そしてデジタル−アナログ変換器15のアナログ変換出
力を制御電圧Vcとして水晶発振器の発振周波数を制御
する電圧容量変換素子、たとえはバリキャップダイオー
ドへ印加してその静電容量を可変する。この電圧容量変
換素子は、たとえは第4図に示すようにコルピッツ型の
水晶発振器の水晶振動子に直列に接続されその静電容量
を可変することによって発振周波数を微細に変化させる
ものである。
Then, the analog conversion output of the digital-to-analog converter 15 is applied as a control voltage Vc to a voltage capacitance conversion element, such as a varicap diode, which controls the oscillation frequency of the crystal oscillator, thereby varying its capacitance. This voltage-capacitance conversion element is connected in series with the crystal resonator of a Colpitts-type crystal oscillator, for example, as shown in FIG. 4, and finely changes the oscillation frequency by varying its capacitance.

そして上記演算回路12は、たとえば中央演算処理装置
いわゆるCPUであってその演算は次のように行う。
The arithmetic circuit 12 is, for example, a central processing unit (CPU), and its arithmetic operations are performed as follows.

すなわち、このような温度補償発振器において発振周波
数を微小周波数dfだけ変化させるために必要な制御電
圧Vcの微小変化量をdVcとすると、d V c /
 d fは一定ではなく制御電圧Vcおよび温度Tの関
数として次の0式で与えられる。
That is, in such a temperature compensated oscillator, if the amount of minute change in control voltage Vc required to change the oscillation frequency by minute frequency df is dVc, then dV c /
df is not constant but is given as a function of control voltage Vc and temperature T by the following equation 0.

dVc/df=f(■c、T)  ・・00式を変形す
れば次の0式を得る。
dVc/df=f(■c, T)...If the 00 formula is transformed, the following 0 formula is obtained.

dVc/f (Vc、T)=df  ・・■この0式を
周波数調整前の状態(Vc=Vco、△F=0)からΔ
Fだけ周波数をオフセットした状態まで積分すると次の
0式になる。
dVc/f (Vc, T) = df...■Convert this formula 0 to Δ from the state before frequency adjustment (Vc=Vco, △F=0)
Integrating to the state where the frequency is offset by F results in the following 0 formula.

この0式の左辺は制御電圧Vcおよび温度Tの間数であ
りVcについて解けばVcはVco、T、ΔFの間数と
なり、一般に次の0式で与えられる。
The left side of this equation 0 is the number between the control voltage Vc and the temperature T, and when solved for Vc, Vc becomes the number between Vco, T, and ΔF, which is generally given by the following equation 0.

Vc=Vco+ΣΣakjiV c o’T」ΔF’−
−■しかして0式の右辺第2項を制御電圧に加えるよう
にすれば周波数オフセット量を変化しても温度変化に係
わらず一定の周波数オフセットΔFを維持することがで
きる。
Vc=Vco+ΣΣakjiV co'T'ΔF'-
-■ However, if the second term on the right side of equation 0 is added to the control voltage, a constant frequency offset ΔF can be maintained regardless of temperature changes even if the frequency offset amount is changed.

しかしながら、厳密に0式に基づいて温度補償を行うこ
とは膨大な計算を行うことになり非現実的である。
However, performing temperature compensation strictly based on Equation 0 requires a huge amount of calculation, which is unrealistic.

そこで0式の間数f (Vc、  T)を決定するため
に、発振周波数fOを一定に制御するための制御電圧V
cを温度補償すべき全温度域にわたって測定し、次に発
振周波数fOを一定の微小周波数dfだけオフセットし
た周波数fO+dfに維持するための制御電圧V c 
+ d V cを同様に全温度域にわたって測定した。
Therefore, in order to determine the interval number f (Vc, T) of equation 0, the control voltage V for controlling the oscillation frequency fO to be constant is determined.
c is measured over the entire temperature range to be temperature compensated, and then a control voltage V c for maintaining the oscillation frequency fO at a frequency fO + df offset by a certain minute frequency df.
+ d V c was similarly measured over the entire temperature range.

第2図はこの測定結果の一例を示すグラフである。FIG. 2 is a graph showing an example of the results of this measurement.

この結果から、±0.  IPPMの周波数安定度を目
標にした場合、上記0式は制御電圧Vcおよび温度Tに
ついて一次の近似で必要充分な精度を得ろれることが実
験的に確かめられ、この場合dVc/dfは次の0式で
与えられる。
From this result, ±0. When the frequency stability of IPPM is targeted, it has been experimentally confirmed that the above equation 0 can obtain necessary and sufficient accuracy with a first-order approximation for the control voltage Vc and temperature T. In this case, dVc/df is expressed as the following 0. It is given by Eq.

dVc/df=K00+に10Vc+KO1−T  ・
・■ただしK001KIO5KOIは定数 したがって制御電圧Vcは0式から次の0式で与えられ
る。
dVc/df=10Vc+KO1-T to K00+
・■ However, K001KIO5KOI is a constant, so the control voltage Vc is given by the following equation from equation 0.

V c = (V c o +(K10+KO1−T)
 /KIO) Xexp(KlO゛△F)−(K10+
KO1−T)/KIO・・・■ ここで周波数オフセットΔFがあまり大きくなければ+
i<io八へ+<<1てあり上記0式のexp(KIO
△F)は二次の項までティラー展間した次の0式で実用
上充分な精度が得られる。
V c = (V c o +(K10+KO1-T)
/KIO) Xexp(KlO゛△F)−(K10+
KO1-T)/KIO...■ If the frequency offset ΔF is not too large, +
i<io to 8+<<1 and exp(KIO
For ΔF), sufficient accuracy for practical use can be obtained using the following 0 formula, which is expanded to the second-order term by the tiller.

exp (KIOThF)=1+KIO△F+1/2 
(KIOΔF)2・■ よって0式を上記0式に代入して次の0式を得る。
exp (KIOThF)=1+KIO△F+1/2
(KIOΔF)2·■ Therefore, by substituting the 0 formula into the above 0 formula, the following 0 formula is obtained.

V c =V c o + (K00+V c o・K
lO+KO1−T) X(△F+△F2×K10/2)
   ・・■そして、この0式の演算によって得られた
制御電圧Vcをデジタル−アナログ変換器に与えてアナ
ログ変換した後、電圧容量変換素子に印加して温度補償
を行うようにしている。
V c =V co + (K00+V co・K
lO+KO1-T) X(△F+△F2×K10/2)
...■Then, the control voltage Vc obtained by calculating this equation 0 is applied to a digital-to-analog converter for analog conversion, and then applied to the voltage capacitance conversion element to perform temperature compensation.

(具体例) 以下具体例について説明する。(Concrete example) A specific example will be explained below.

発振周波数12.8Mhzの発振器において、所定の温
度域において一定の周波数オフセット値を維持するため
の制御電圧Vcを実測した結果0式における各定数は次
のようになった。
As a result of actually measuring the control voltage Vc for maintaining a constant frequency offset value in a predetermined temperature range in an oscillator with an oscillation frequency of 12.8 MHz, the constants in Equation 0 were as follows.

K00=3.481X10−3 (V/Hz)KIO=
2.627X10−3 (1/Hz)KO1=8.76
6X10−5 (V/Hz/℃)そして、この定数を0
式に代入して演算した値と実測値との標準誤差は7.4
8X10−5(V/Hz)であり実用上、充分な近似を
行うことができた。第3図は、このような演算によって
温度補償を行った温度補償発振器に対して、常温でOP
PM、+2PPM、−2PPMおよび+4PPM、−4
PPMの周波数オフセットΔFをそれぞれ設定した後、
温度を一20℃〜+70℃まで変化させたときの発振周
波数を実測した結果を示すグラフである。この結果から
も明かなように所定の温度域において一定のオフセット
量を維持することができ、しかも温度補償特性を損なう
こともなかった。
K00=3.481X10-3 (V/Hz)KIO=
2.627X10-3 (1/Hz)KO1=8.76
6X10-5 (V/Hz/℃) and set this constant to 0
The standard error between the value calculated by substituting it into the formula and the actual value is 7.4
8×10 −5 (V/Hz), which was a sufficient approximation for practical use. Figure 3 shows a temperature compensated oscillator that has been temperature compensated by such calculations, and is operated OP at room temperature.
PM, +2PPM, -2PPM and +4PPM, -4
After setting the PPM frequency offset ΔF,
It is a graph showing the results of actually measuring the oscillation frequency when the temperature was changed from -20°C to +70°C. As is clear from these results, a constant amount of offset could be maintained in a predetermined temperature range, and the temperature compensation characteristics were not impaired.

(発明の効果) 以上詳述したように、本発明によれば所定の温度域にお
いて一定の周波数オフセット量を維持することができ、
しかも周波数オフセットの値によって温度補償特性が影
響されることのないデジタル温度補償発振器を提供する
ことができる。
(Effects of the Invention) As detailed above, according to the present invention, a constant frequency offset amount can be maintained in a predetermined temperature range,
Furthermore, it is possible to provide a digital temperature compensated oscillator whose temperature compensation characteristics are not affected by the value of the frequency offset.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のデジタル温度補償発振器の一例を示す
ブロック図、 第2図は一定の周波数オフセットを得るために必要な制
御電圧の温度変化に対する実測結果を示すグラフ、 第3図は本発明によるデジタル温度補償発振器の温度変
化に対する発振周波数の変化を示すグラフ、 第4図は従来の温度補償発振器の一例を示すブロック図
、 第5図は従来の温度補償発振器における制御電圧の変化
に対する周波数の変化を示すグラフ、第6図は第4図に
示す温度補償発振器において一定のオフセット電圧を印
加したときの温度変化に対する発振周波数の変化を示す
グラフである。 11・・・・・温度センサ 12・・・・・演算回路 V面の浄書(内容に変更なし) 第2図 過LT→ 第3図 第4図 第5図 第6図 ;!ITじC〕 手続補正書 (方式) %式%) 1、事件の表示 特願平2−20970号2、発明の名
称 デジタル温度補償発振器3、補正をする者 事件との関係 特許出願人 住所 東京都渋谷区西原1丁目21番2号日 本 電 
波 工 業 株式会社 手続補正書 平成3年1月10日 1゜ 2゜ 3゜ 事件の表示 特願平2−20970号 発明の名称 デジタル温度補償発振器 補正をする者 事件との関係 特許出願人 住所 東京都渋谷区西原1丁目21番2号日 本 電 
波 工 業 株式会社 自発 5、補正の対象 明細書 ・3・S≧\ 6、補正の内容 明細書の第10頁、第7行目ないし同頁第9行目に Vc= (Vc o+ (K10+KO14) /KI
O) Xexp (K10・ΔF)  =(K10+K
O1−T) /KIO・・・■ とあるを V c = (V c o + (K00+KO14)
 / KIO) XeX1)(KIO−ΔF) −(K
00+KO1−T) /KIO・・・■ と訂正する。
Fig. 1 is a block diagram showing an example of the digital temperature compensated oscillator of the present invention, Fig. 2 is a graph showing actual measurement results with respect to temperature changes in the control voltage required to obtain a constant frequency offset, and Fig. 3 is the invention of the present invention. Figure 4 is a block diagram showing an example of a conventional temperature compensated oscillator, and Figure 5 is a graph showing changes in oscillation frequency with respect to temperature changes in a conventional temperature compensated oscillator. Graph showing changes. FIG. 6 is a graph showing changes in oscillation frequency with respect to temperature changes when a constant offset voltage is applied in the temperature compensated oscillator shown in FIG. 11...Temperature sensor 12...Engraving of calculation circuit V side (no change in content) Fig. 2 over LT→ Fig. 3 Fig. 4 Fig. 5 Fig. 6;! ITjiC] Procedural amendment (method) % formula %) 1. Indication of the case Japanese Patent Application No. 2-20970 2. Title of the invention Digital temperature compensated oscillator 3. Relationship with the person making the amendment Patent applicant address Tokyo Nippon Den, 1-21-2 Nishihara, Shibuya-ku, Miyako
Nami Kogyo Co., Ltd. Procedural Amendment January 10, 1991 1゜2゜3゜Indication of the case Japanese Patent Application No. 2-20970 Title of the invention Relationship with the digital temperature compensation oscillator correction case Address of the patent applicant Nippon Den, 1-21-2 Nishihara, Shibuya-ku, Tokyo
Nami Kogyo Jihatsu Co., Ltd. 5, Specification subject to amendment・3・S≧\6, Vc= (Vco+ (K10+KO14 ) /KI
O) Xexp (K10・ΔF) = (K10+K
O1-T) /KIO...■ A certain thing V c = (V co + (K00+KO14)
/ KIO) XeX1) (KIO−ΔF) −(K
00+KO1-T) /KIO...■ Correct.

Claims (1)

【特許請求の範囲】 温度センサの検出出力をデジタル変換して予め温度補償
データを記憶した記憶素子から対応するデータを読みだ
してアナログ変換した制御電圧を水晶発振器の周波数を
制御する電圧容量変換素子に印加して温度補償を行うも
のにおいて、 上記制御電圧(Vc)は Vc=Vco+(K00+Vco・K10+K01・T
)×(ΔF+ΔF^2×K10/2) ただしK00、K01、K10は定数 Vcoは制御電圧の初期値 Tは温度 ΔFは周波数オフセット量 としたことを特徴とするデジタル温度補償発振器。
[Claims] A voltage-capacitance conversion element that converts the detection output of a temperature sensor into digital, reads out the corresponding data from a storage element that stores temperature compensation data in advance, and controls the frequency of a crystal oscillator using a control voltage that is converted into analog. In the case where temperature compensation is performed by applying the above control voltage (Vc) to Vc=Vco+(K00+Vco・K10+K01・T
)×(ΔF+ΔF^2×K10/2) where K00, K01, and K10 are constants Vco is an initial value T of a control voltage, and temperature ΔF is a frequency offset amount.
JP2020970A 1990-01-26 1990-01-31 Digital temperature compensated oscillator Expired - Fee Related JP2975386B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020970A JP2975386B2 (en) 1990-01-31 1990-01-31 Digital temperature compensated oscillator
US07/644,614 US5081431A (en) 1990-01-26 1991-01-23 Digital temperature-compensated oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020970A JP2975386B2 (en) 1990-01-31 1990-01-31 Digital temperature compensated oscillator

Publications (2)

Publication Number Publication Date
JPH03226103A true JPH03226103A (en) 1991-10-07
JP2975386B2 JP2975386B2 (en) 1999-11-10

Family

ID=12042027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020970A Expired - Fee Related JP2975386B2 (en) 1990-01-26 1990-01-31 Digital temperature compensated oscillator

Country Status (1)

Country Link
JP (1) JP2975386B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077326A (en) * 1993-06-15 1995-01-10 Nec Corp Frequency modulator
KR100685489B1 (en) * 2006-03-30 2007-02-26 김병우 Digial frequency deviation compensator
JP2016082472A (en) * 2014-10-20 2016-05-16 旭化成エレクトロニクス株式会社 Oscillator and calibration method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077326A (en) * 1993-06-15 1995-01-10 Nec Corp Frequency modulator
KR100685489B1 (en) * 2006-03-30 2007-02-26 김병우 Digial frequency deviation compensator
JP2016082472A (en) * 2014-10-20 2016-05-16 旭化成エレクトロニクス株式会社 Oscillator and calibration method thereof

Also Published As

Publication number Publication date
JP2975386B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US4079280A (en) Quartz resonator cut to compensate for static and dynamic thermal transients
US4160183A (en) Oscillator having a quartz resonator cut to compensate for static and dynamic thermal transients
US3719838A (en) Temperature compensating digital system for electromechanical resonators
JP4738409B2 (en) Temperature compensated thermostatic chamber controlled crystal oscillator
US6784756B2 (en) On-board processor compensated oven controlled crystal oscillator
US20020005765A1 (en) Digital indirectly compensated crystal oscillators
US20080061899A1 (en) Apparatus and method for temperature compensation of crystal oscillators
CA1134466A (en) Temperature-compensated crystal oscillator
US4839613A (en) Temperature compensation for a disciplined frequency standard
US5525936A (en) Temperature-compensated oscillator circuit
CN107257239A (en) A kind of temperature-compensating high frequency crystal oscillator based on analog compensation
CN107276582B (en) Temperature compensation crystal oscillator based on analog circuit
US4072912A (en) Network for temperature compensation of an AT cut quartz crystal oscillator
JPH03226103A (en) Digital temperature compensated oscillator
JP2002076774A (en) Method for regulating temperature compensated oscillator
Jackson et al. The microcomputer compensated crystal oscillator a progress report
JP2713214B2 (en) Temperature compensation device for crystal oscillation circuit
JPS60149223A (en) Temperature-frequency characteristic correcting method
JP2931595B2 (en) Digital temperature compensated oscillator
CA1078932A (en) Quartz crystal resonator
JPH10270942A (en) Temperature compensation crystal oscillator and its adjusting method
JPH09307355A (en) Oscillator
JPS6062727A (en) Frequency stabilizer to temperature change in crystal oscillator
JP3243680B2 (en) Frequency correction method for digitally controlled oscillator
GB1596845A (en) Quartz crystal resonator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees