JPH03225886A - Surface emission semiconductor laser array - Google Patents

Surface emission semiconductor laser array

Info

Publication number
JPH03225886A
JPH03225886A JP2021275A JP2127590A JPH03225886A JP H03225886 A JPH03225886 A JP H03225886A JP 2021275 A JP2021275 A JP 2021275A JP 2127590 A JP2127590 A JP 2127590A JP H03225886 A JPH03225886 A JP H03225886A
Authority
JP
Japan
Prior art keywords
lambdao
surface emission
semiconductor
wavelength
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021275A
Other languages
Japanese (ja)
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2021275A priority Critical patent/JPH03225886A/en
Publication of JPH03225886A publication Critical patent/JPH03225886A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Abstract

PURPOSE:To realize a laser array capable of lasing at different wavelengths by constructing surface emission lasers such that the cross-sectional area of at least one surface emission laser is different from that of the other surface emission laser. CONSTITUTION:The cross sectional area of a semiconductor multi-layered film 11 is set to determine an effective refractive index ne in the direction of a resonator at the central wavelength lambdao of the gain of an active layer 13. The semiconductor multi-layered film 11 and a semiconductor multi-layered film 12 are formed by alternately laminating two semiconductor layers of different refractive indexes with their thicknesses being lambdao/4ne. The spacing between the semiconductor multi-layered films 11, 12 is specified to be integer multiples of lambdao/2ne, for ensuring low thresholding for oscillator at the wavelength lambdao. Accordingly, oscillation wavelength can be changed from lambdao within a gain spectrum of the active layer substantially without causing the rise of the threshold by changing only the cross sectional area of the semiconductor multi-layered film without changing the optimum laser thickness lambdao/4ne of the same. Hereby, a surface emission laser array can easily be yielded with the good yield in which respective lasers oscillate at different wavelengths and other characteristics are uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大容量の光通信や光情報処理に利用できる面発
光半導体レーザアレイに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface-emitting semiconductor laser array that can be used in large-capacity optical communications and optical information processing.

(従来の技術) 基板に垂直方向に発振する複数個の面発光半導体レーザ
アレイは小型で2次元集積化が可能であることから、超
並列の光通信や光画像処理に不可欠なキーデバイスと考
えられる。面発光半導体レーザとしては広義には共振器
が基板に平行に形成され45度ミラーによって垂直方向
に光を取り出すタイプも含まれるが、ここで言う面発光
半導体レーザは基板に垂直方向に共振器が形成されたタ
イプをいう。この様な面発光レーザを用いたレーザアレ
イがエレクトロニクスレターズ(Electoroni
csLetters)25巻20号1377〜1378
頁、1989年に記載されている。
(Prior technology) Multiple surface-emitting semiconductor laser arrays that oscillate in a direction perpendicular to the substrate are small and can be integrated two-dimensionally, so they are considered to be key devices essential for massively parallel optical communication and optical image processing. It will be done. In a broad sense, surface-emitting semiconductor lasers include types in which a resonator is formed parallel to a substrate and a 45-degree mirror extracts light in the vertical direction, but the surface-emitting semiconductor laser referred to here has a resonator formed in a direction perpendicular to the substrate. Refers to the type formed. A laser array using such a surface-emitting laser is called Electronics Letters.
csLetters) Volume 25, No. 20, 1377-1378
Page, 1989.

(発明が解決しようとする課題) 光通信の特徴の一つは異なる波長の複数の光信号を光信
号を光ファイバーで同時に伝送できることである。従っ
て波長の数だけ多重度を上げることができ、大容量の光
通信が可能となる。そのためには異なる波長の複数個の
光源が必要となる。
(Problems to be Solved by the Invention) One of the characteristics of optical communication is that a plurality of optical signals of different wavelengths can be transmitted simultaneously through optical fibers. Therefore, the multiplicity can be increased by the number of wavelengths, and large-capacity optical communication becomes possible. This requires multiple light sources with different wavelengths.

このような多波長光源は光情幸艮処理の分野でも有用で
ある。発光素子を多数個集積した上述の多波長光源とし
て小型でコンパクトな面発光半導体レーザアレイが適し
ている。しかし多波長化する実用的な手段はこれまでな
かった。例えば必要な波長の数だけ結晶成長する方法が
考えられるが、数回以上成長すると成長層の品質が劣化
したり、きれいに成長するのが難しくなり歩留りが悪く
なるという問題があった。本発明の目的は並列光伝送や
光情報処理に適ししかも多波長光源として利用できる面
発光半導体レーザアレイを提供することにある。
Such a multi-wavelength light source is also useful in the field of optical entertainment processing. A small and compact surface emitting semiconductor laser array is suitable as the above-mentioned multi-wavelength light source in which a large number of light emitting elements are integrated. However, until now there has been no practical means of increasing the number of wavelengths. For example, a method of growing crystals for the required number of wavelengths is conceivable, but if the crystals are grown more than a few times, the quality of the grown layer deteriorates, or it becomes difficult to grow neatly, resulting in poor yields. An object of the present invention is to provide a surface-emitting semiconductor laser array suitable for parallel optical transmission and optical information processing and which can be used as a multi-wavelength light source.

(課題を解決するための手段) 本発明の面発光半導体レーザアレイは活性層と半導体多
層膜の反射鏡を備えた複数個の面発光レーザからなる半
導体面発光レーザアレイにおいて各面発光レーザの少な
くとも1つの面発光レーザの断面積が他の面発光レーザ
の断面積と異なっていることを特徴とする。
(Means for Solving the Problems) A surface-emitting semiconductor laser array of the present invention includes a plurality of surface-emitting lasers each having an active layer and a reflecting mirror made of a semiconductor multilayer film. It is characterized in that the cross-sectional area of one surface-emitting laser is different from the cross-sectional area of the other surface-emitting lasers.

(作用ン まず従来の面発光レーザの設計方法について説明する。(Action First, a conventional method for designing a surface emitting laser will be explained.

第4図(ス賽導体多層膜からなる反射鏡を上下に持つ典
型的な面発光半導体レーザの構造断面図である。反射鏡
としては誘電体膜多層膜によるものもあるが、半導体多
層膜の方が熱膨張係数の違いによるストレス等がないの
で信頼性が損なわれない利点がある。第4図の面発光レ
ーザの設計では1.半導体多層膜11の断面積を設定し
活性層13の利得の中心波長λ0での共振器方向の有効
屈折率neを求める。半導体多層膜11と12はそれぞ
れ屈折率の異なる2つの半導体層を交互に積層し、各半
導体層の層厚はλo/4neとする。また半導体多層膜
11と12の間隔はλo/2neの整数倍となるように
している。このようにして波長λ0での発振に対し低閾
値化が可能となる。
Figure 4 is a cross-sectional view of the structure of a typical surface-emitting semiconductor laser that has reflective mirrors made of semiconductor multilayer films on the upper and lower sides.Some reflective mirrors are made of dielectric multilayer films, but This has the advantage that reliability is not compromised because there is no stress caused by differences in thermal expansion coefficients.In the design of the surface emitting laser shown in FIG. Find the effective refractive index ne in the cavity direction at the center wavelength λ0.The semiconductor multilayer films 11 and 12 each have two semiconductor layers with different refractive indexes stacked alternately, and the layer thickness of each semiconductor layer is λo/4ne. Further, the distance between the semiconductor multilayer films 11 and 12 is set to be an integral multiple of λo/2ne.In this way, it is possible to lower the threshold value for oscillation at the wavelength λ0.

本発明の作用について説明する。半導体多層膜の最適層
厚λ。/4neは変えずにその断面積だけを変えること
により閾値の上昇をほとんど伴わずに、活性層の利得ス
ペクトル内で発振波長をλ0から変えることができる。
The operation of the present invention will be explained. Optimal layer thickness λ of semiconductor multilayer film. By changing only the cross-sectional area without changing /4ne, the oscillation wavelength can be changed from λ0 within the gain spectrum of the active layer with almost no increase in the threshold value.

第3図を用いてその作用を説明する。The operation will be explained using FIG.

第3図に面発光レーザの基本横モードH1lに対する有
効屈折率neの断面積依存性を示す。ここでは円筒状の
面発光レーザとし活性層はInGaAsでその円筒の外
側は空気として計算した。InGaAsを励起した時の
利得の中心波長入0は9800人、その波長に対する円
筒内の半導体の屈折率を3.258とした。円筒の半径
をrを横軸にnを縦軸にとって示した。rがある一定値
(ここでは約2pm)より小さくなるとnの値は低下す
る。そこで波長λと半径rを設定し半導体多層膜11の
層厚を最適化した厚さ八〇/4neとしたあと、面発光
レーザにおいて半径を設定値rQからずらしたr(r:
Fr□)とする。そうするとrが2μmより小さい領域
では有効屈折率neが変化するので最適波長λ′に変化
する。利得スペクトルの波長依存性がλ0を中心にある
範囲で平坦な特性を持っているとすると、半径即ち断面
積を変えることによりこの範囲で閾値電流密度を一定に
保ったまま発振波長を変えることができる。有効屈折率
の変化と断面積の関係は材料や形状により異なるので、
断面積の減少により有効屈折率の変化する領域を最適化
して用いればよい。
FIG. 3 shows the dependence of the effective refractive index ne on the cross-sectional area with respect to the fundamental transverse mode H1l of the surface emitting laser. Here, calculations were made assuming that a cylindrical surface emitting laser is used, the active layer is InGaAs, and the outside of the cylinder is air. When InGaAs is excited, the center wavelength of gain 0 is 9800, and the refractive index of the semiconductor inside the cylinder with respect to that wavelength is 3.258. The radius of the cylinder is shown with r as the horizontal axis and n as the vertical axis. When r becomes smaller than a certain value (approximately 2 pm here), the value of n decreases. Therefore, after setting the wavelength λ and radius r and setting the layer thickness of the semiconductor multilayer film 11 to an optimized thickness of 80/4ne, the radius was shifted from the set value rQ in the surface emitting laser to r(r:
Fr□). Then, in a region where r is smaller than 2 μm, the effective refractive index ne changes, so the optimum wavelength λ' changes. Assuming that the wavelength dependence of the gain spectrum has a flat characteristic within a certain range centered around λ0, it is possible to change the oscillation wavelength while keeping the threshold current density constant within this range by changing the radius, that is, the cross-sectional area. can. The relationship between changes in effective refractive index and cross-sectional area differs depending on the material and shape, so
It is sufficient to optimize and use the region where the effective refractive index changes as the cross-sectional area decreases.

そこで本発明によれば、他の構成要件は同じで断面積を
変えた面発光レーザを同一半導体基板上に複数個形成す
ることにより異なる波長で発振するレーザアレイが実現
できる。その波長を適当に選ぶことにより波長多重伝送
や多波長での光情報処理を行うことができる。
Therefore, according to the present invention, a laser array that oscillates at different wavelengths can be realized by forming a plurality of surface emitting lasers having different cross-sectional areas with the same other constituent elements on the same semiconductor substrate. By appropriately selecting the wavelength, wavelength multiplex transmission and optical information processing using multiple wavelengths can be performed.

(実施例) 第1図は本発明の一実施例の面発光レーザアレイの中の
1つのレーザ構造を示したものである。第1図を参照し
ながら詳細に説明する。n型GaAs基板30の上に、
n型AlAs層38(ドーピング濃度2刈い8cm−3
)とn型GaAs層39(ドーピング濃度2 X 10
18cm−3)とを交互に各20層積層しn型半導体多
層膜31を形成する。各AlAsとGaAsの層厚はと
もにλo/4neとした。続いてn型Al□、5Ga□
、5As32(ドーピング濃度lX1017cm−3)
、層厚100AのIn□、2GaO,BAs活性層33
、n型Alo、5Gao、5As32と同じ層厚のp型
A10.5Ga□、5As34(ドーピング濃度lX1
017cm ”)、層厚λ。14neのp型GaAs層
40(ドーピング濃度2刈018cm−3)とp型Al
As層41(ドーピング濃度2×1018cm−3)と
を交互にそれぞれ20層積層したp型半導体多層膜35
、層厚0.1μmのp型GaAsコンタクト層42(ド
ーピング濃度1刈019cm−3、Beドープ)をエピ
タキシャル成長により形成する。次にn型電極36、p
型電極37を形成し、半径r=1.4pmの円筒状にメ
サエッチングして素子が完成した。n型半導体多層膜3
1の上端とp型半導体多層膜35の下端との間隔はλ0
/2n8の整数倍とした。この半導体多層膜31と35
により99.9%近い反射率が得られた。この半導体多
層膜31と35の各層厚は円筒の半径r=(1)でのI
n□、2Ga□、BAsの利得の中心波長9800人に
最適化されている。本来、半径rが十分大きければこの
波長で発振するが、半径を1.4pmとすることにより
9750人で発振できた。発振閾値の上昇はなく波長を
変えることができた。
(Embodiment) FIG. 1 shows the structure of one laser in a surface emitting laser array according to an embodiment of the present invention. This will be explained in detail with reference to FIG. On the n-type GaAs substrate 30,
n-type AlAs layer 38 (doping concentration 2, 8 cm-3
) and n-type GaAs layer 39 (doping concentration 2×10
The n-type semiconductor multilayer film 31 is formed by alternately stacking 20 layers of 18 cm-3). The layer thicknesses of each AlAs and GaAs were both λo/4ne. Next, n-type Al□, 5Ga□
, 5As32 (doping concentration lX1017cm-3)
, In□, 2GaO, BAs active layer 33 with a layer thickness of 100A
, p-type A10.5Ga□, 5As34 with the same layer thickness as n-type Alo, 5Gao, 5As32 (doping concentration lX1
017 cm”), a p-type GaAs layer 40 with a layer thickness λ.14ne (doping concentration 2018 cm-3) and a p-type Al
A p-type semiconductor multilayer film 35 in which 20 layers of As layers 41 (doping concentration 2×10 18 cm −3 ) are laminated alternately.
, a p-type GaAs contact layer 42 (doping concentration 1019 cm-3, Be doped) with a layer thickness of 0.1 μm is formed by epitaxial growth. Next, the n-type electrode 36, p
A mold electrode 37 was formed and mesa etched into a cylindrical shape with a radius r=1.4 pm to complete the device. N-type semiconductor multilayer film 3
The distance between the upper end of 1 and the lower end of p-type semiconductor multilayer film 35 is λ0
/2n8 as an integer multiple. These semiconductor multilayer films 31 and 35
A reflectance of nearly 99.9% was obtained. The thickness of each layer of the semiconductor multilayer films 31 and 35 is I when the radius of the cylinder is r=(1).
The center wavelength of the gain of n□, 2Ga□, and BAs is optimized to 9800. Originally, if the radius r was large enough, oscillation would occur at this wavelength, but by setting the radius to 1.4 pm, 9750 people could oscillate. The wavelength could be changed without increasing the lasing threshold.

第2図はこうして製作した面発光レーザアレイの平面図
である。n型GaAs基板50上にメサ径の異なる面発
光レーザを6個を2列に配した。各レーザ51゜52、
54.55.56のメサ半径はそれぞれ2.2.2.0
.1.8.1.6゜1.5.1.4pmである。発振波
長は9800〜9750人までの範囲で順に短波長にシ
フトした。各レーザは発振閾値などの特性の劣化はなく
良好に発振した。メサ径はエツチング時に自由に設定で
きるので1枚のウェハー中に複数個の異なる波長のアレ
イを得ることができる。また各レーザは1回の結晶成長
とプロセスで作られるので発振閾値や温度特性などは均
一で、あり、歩留りも良好であった。
FIG. 2 is a plan view of the surface emitting laser array manufactured in this manner. Six surface emitting lasers with different mesa diameters were arranged in two rows on an n-type GaAs substrate 50. Each laser 51°52,
The mesa radius of 54, 55, and 56 is 2.2, 2.0 respectively.
.. 1.8.1.6°1.5.1.4pm. The oscillation wavelength shifted to shorter wavelengths in the range of 9,800 to 9,750 people. Each laser oscillated well without any deterioration in characteristics such as oscillation threshold. Since the mesa diameter can be freely set during etching, a plurality of arrays of different wavelengths can be obtained in one wafer. In addition, since each laser was made by one crystal growth and process, the oscillation threshold and temperature characteristics were uniform, and the yield was good.

本実施例ではアレイの個数は6個としたが何個でも同様
に容易に作製できる。また円形メサの形状としたがこれ
に限らず矩形等どんな形状でもよく、その場合は有効屈
折率が変化する領域で最適化すれば良い。
In this embodiment, the number of arrays is six, but any number of arrays can be easily produced. Further, although the shape is a circular mesa, the shape is not limited to this, and any shape such as a rectangle may be used. In that case, optimization may be performed in a region where the effective refractive index changes.

(発明の効果) 本発明によれば素子径を最適値から意図的に変えること
により利得内で発振波長が異なる面発光レーザが得られ
るので、各レーザが異なる波長で発振しその他の特性は
均一な面発光レーザアレイを容易に歩留り良く得ること
ができる。更に一枚のウェハー中に複数個の異なるアレ
イを作ることもできるので生産性が高い利点がある。
(Effects of the Invention) According to the present invention, surface emitting lasers with different oscillation wavelengths within the gain can be obtained by intentionally changing the element diameter from the optimum value, so each laser oscillates at a different wavelength and other characteristics are uniform. It is possible to easily obtain a surface-emitting laser array with a high yield. Furthermore, since a plurality of different arrays can be formed on one wafer, there is an advantage of high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図はそれぞれ本発明による面発光レーザの
断面図とそのアレイの平面図である。第3図は有効屈折
率の素子半径(断面積)依存性を表す図。第4図は典型
的な面発光レーザの構造断面図である。 10−n型半導体基板、11.31・・・n型半導体多
層膜、12、35−p型半導体多層膜、13.38・・
・活性層、14.15・・・電極、30.50−n型G
aAs層、32−n型AlGaAs層、34、p型Al
GaAs層、42・p型GaAs層、36・n型電極、
37.p型電極、38・n型AlAs層、39−n型G
aAs層、40・p型GaAs層、41・p型AlAs
層、51.52゜53、54.55.56・・・面発光
レーザ。
1 and 2 are a cross-sectional view of a surface emitting laser according to the present invention and a plan view of an array thereof, respectively. FIG. 3 is a diagram showing the dependence of the effective refractive index on the element radius (cross-sectional area). FIG. 4 is a structural sectional view of a typical surface emitting laser. 10-n-type semiconductor substrate, 11.31...n-type semiconductor multilayer film, 12, 35-p-type semiconductor multilayer film, 13.38...
・Active layer, 14.15... Electrode, 30.50-n type G
aAs layer, 32-n-type AlGaAs layer, 34, p-type Al
GaAs layer, 42・p-type GaAs layer, 36・n-type electrode,
37. p-type electrode, 38-n-type AlAs layer, 39-n-type G
aAs layer, 40.p-type GaAs layer, 41.p-type AlAs
Layer, 51.52°53, 54.55.56...Surface emitting laser.

Claims (1)

【特許請求の範囲】[Claims] 活性層と半導体多層膜の反射鏡を備え基板面に垂直方向
に共振器が形成された、複数個の面発光レーザからなる
半導体面発光レーザアレイにおいて各面発光レーザの少
なくとも1つの面発光レーザの断面積が他の面発光レー
ザの断面積と異なっていることを特徴とする面発光半導
体レーザアレイ。
In a semiconductor surface emitting laser array consisting of a plurality of surface emitting lasers, each surface emitting laser has an active layer and a reflector made of a semiconductor multilayer film, and a resonator is formed in a direction perpendicular to the substrate surface. A surface-emitting semiconductor laser array characterized in that its cross-sectional area is different from that of other surface-emitting lasers.
JP2021275A 1990-01-30 1990-01-30 Surface emission semiconductor laser array Pending JPH03225886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021275A JPH03225886A (en) 1990-01-30 1990-01-30 Surface emission semiconductor laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021275A JPH03225886A (en) 1990-01-30 1990-01-30 Surface emission semiconductor laser array

Publications (1)

Publication Number Publication Date
JPH03225886A true JPH03225886A (en) 1991-10-04

Family

ID=12050574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021275A Pending JPH03225886A (en) 1990-01-30 1990-01-30 Surface emission semiconductor laser array

Country Status (1)

Country Link
JP (1) JPH03225886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595469A1 (en) * 1992-09-25 1994-05-04 Nec Corporation Vertical-to-surface optical semiconductor device and apparatus for coupling optical signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595469A1 (en) * 1992-09-25 1994-05-04 Nec Corporation Vertical-to-surface optical semiconductor device and apparatus for coupling optical signals
US5365540A (en) * 1992-09-25 1994-11-15 Nec Corporation Vertical-to-surface optical semiconductor device and apparatus for coupling optical signals

Similar Documents

Publication Publication Date Title
US6792026B2 (en) Folded cavity solid-state laser
AU2006285426B2 (en) Optical phase conjugation laser diode
JP4919639B2 (en) Surface emitting laser element, surface emitting laser array, surface emitting laser element manufacturing method, surface emitting laser module, electrophotographic system, optical communication system, and optical interconnection system
US6953702B2 (en) Fixed wavelength vertical cavity optical devices and method of manufacture therefor
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
JPH1084169A (en) Solid microlaser provided with optical pumping by direct-axis cavity semiconductor laser
JP2005044964A (en) Surface emitting laser element, method of manufacturing the same array, and module for surface emitting laser, electronic photography system, optical interconnection system, and optical communication system
JPH10284806A (en) Vertical resonator laser having photonic band structure
JPH0793419B2 (en) Light receiving and emitting integrated device
JPH11307882A (en) Surface light-emitting semiconductor laser, laser array thereof, and manufacture thereof
JPH08340149A (en) Surface-luminous laser with improved pumping efficiency
US6822992B2 (en) Folded cavity surface-emitting laser
JPH10233559A (en) Semiconductor laser device and its manufacture as well as optical communication system using the same
GB2582378A (en) Vertical external cavity surface emitting laser with improved external mirror structure
JPH03225886A (en) Surface emission semiconductor laser array
JPH1065266A (en) Planar emitting type semiconductor laser element, planar emitting type semiconductor laser array, planar emitting type semiconductor laser beam scanner, planar emitting laser beam recording device and laser recording method
JP3800852B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2595779B2 (en) Surface emitting laser and method of manufacturing the same
US6901096B2 (en) Material system for Bragg reflectors in long wavelength VCSELs
JP3840696B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
JP2008071829A (en) Surface emitting semiconductor element
JP2007227861A (en) Semiconductor light-emitting device
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JPH07321405A (en) Surface emitting semiconductor laser and its control method
KR20030045252A (en) Long wavelength vertical cavity surface emitting laser diode