JPH0322576A - Manufacture of laminated type magnetoresistance element - Google Patents

Manufacture of laminated type magnetoresistance element

Info

Publication number
JPH0322576A
JPH0322576A JP1157328A JP15732889A JPH0322576A JP H0322576 A JPH0322576 A JP H0322576A JP 1157328 A JP1157328 A JP 1157328A JP 15732889 A JP15732889 A JP 15732889A JP H0322576 A JPH0322576 A JP H0322576A
Authority
JP
Japan
Prior art keywords
layer
magnetoresistive
etching
conductive layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1157328A
Other languages
Japanese (ja)
Inventor
Kazuo Murata
村田 一雄
Osamu Kitazawa
修 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP1157328A priority Critical patent/JPH0322576A/en
Publication of JPH0322576A publication Critical patent/JPH0322576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To protect a lower magnetoresistance film against corrosion when an upper conductive layer is chemically etched by a method wherein a magnetoresistance layer previously patterned into a prescribed shape is thoroughly covered with an insulating layer excluding a contact hole. CONSTITUTION:A magnetoresistance layer 1 with a prescribed pattern is formed on the surface of a substrate 2. Patterning is executed using either a wet etching method or a dry etching method. An insulating layer 4 is formed covering the whole surface of the substrate 2. The surface and the side face of the patterned magnetoresistance layer 1 are completely covered with the insulating layer 4. Then, a part of the insulating layer 4 is selectively etched to form an opening or a contact hole 5. A conductive layer 3 is formed on the whole surface of the insulating layer 4 and all the inside of the hole 5. The conductive layer 3 is filled into the the hole 5 and comes into electrical contact with the exposed surface of the magnetoresistance layer 1. Lastly, the uppermost conductive layer 3 is selectively wet-etched with an etching solution to remove the disused part so as to form an electrode with a prescribed form.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は外部磁界の印加によって電気抵抗が変1 2  ー 化するいわゆる磁気抵抗効果を利用した外部磁場を検出
する為の磁気抵抗素子に関し、特に強磁性薄膜を利用し
た積層型磁気抵抗素子の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetoresistive element for detecting an external magnetic field that utilizes the so-called magnetoresistive effect in which electrical resistance changes by application of an external magnetic field. In particular, the present invention relates to a method of manufacturing a multilayer magnetoresistive element using ferromagnetic thin films.

〔従来の技術〕[Conventional technology]

第2図は強磁性薄膜の磁気抵抗効果を説明する為の模式
図である。磁気抵抗体薄膜1は例えば囚に示す様に長尺
形状に形成されている。この磁気抵抗体薄膜1の面に平
行に且つその長尺方向を横切る様に外部磁界Hを印加す
ると、その外部磁昇Hの変化に応じて薄膜の電気抵抗値
が変化する。
FIG. 2 is a schematic diagram for explaining the magnetoresistive effect of a ferromagnetic thin film. The magnetoresistive thin film 1 is formed into an elongated shape, for example, as shown in the figure. When an external magnetic field H is applied parallel to the surface of the magnetoresistive thin film 1 and across its longitudinal direction, the electrical resistance value of the thin film changes in accordance with the change in the external magnetic elevation H.

従って薄膜の長尺方向に沿って電流工を流すと電気抵抗
値変化に応じた電位差が長手力向両端部に生じこれを出
力信号として利用する。
Therefore, when an electric current is passed along the longitudinal direction of the thin film, a potential difference corresponding to the change in electrical resistance is generated at both ends in the longitudinal force direction, and this is used as an output signal.

第3図は第2図に示す磁気抵抗体薄膜1を利用した積層
型磁気抵抗素子の層構造を示すlfriIili図であ
る。薄膜の長手方向に対して里直な面で切断した断面を
示す。基板2の表面には所定のパタンにエッチングされ
た磁気抵抗体膜1が形成されている。磁気抵抗体膜1の
一部表面に重なる様に導電膜3が形成されている。導電
膜3は同様にエッチングにより所定の形状に処理され電
極を構成する。かかる積層型磁気抵抗素子を平面的に見
た場合には、一対の電極が長尺状磁気抵抗体膜]の長平
方向両端部に電気的に接続しており一対の電極間に電流
を流す事により磁気抵抗素子を駆動し外部磁界を長手方
向両端部に生ずる電位差信号に変換する。
FIG. 3 is a diagram showing the layer structure of a multilayer magnetoresistive element using the magnetoresistive thin film 1 shown in FIG. A cross section cut along a plane perpendicular to the longitudinal direction of the thin film is shown. A magnetoresistive film 1 is formed on the surface of the substrate 2 by etching in a predetermined pattern. A conductive film 3 is formed so as to partially overlap the surface of the magnetoresistive film 1 . The conductive film 3 is similarly etched into a predetermined shape to form an electrode. When such a laminated magnetoresistive element is viewed from above, a pair of electrodes are electrically connected to both ends of the elongated magnetoresistive film in the longitudinal direction, and a current can flow between the pair of electrodes. drives the magnetoresistive element and converts the external magnetic field into a potential difference signal generated at both ends in the longitudinal direction.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

第3図に示す従来の積層型磁気抵抗素子は磁気抵抗体膜
1及び導電膜3を順次選択エッチングにより所定の形状
に形成して製造される。しかしながら磁気抵抗体膜1及
び導電膜3は互いに接している為湿式又は化学エッチン
グを行う場合には、共通のエッチング液を使う事ができ
ず製造工程が複雑になるという問題点があった。すなわ
ち下腸の磁気抵抗体膜を特定のエッチング液を用いて処
理した後基板面の全体に亘って導電膜を形成するが、こ
の導電膜をエッチングする際同一又は同系統のエッチン
グ液を用いると同時に下層の磁気抵3 4 抗体膜をも腐蝕してしまうという不具合か存在するから
である。
The conventional multilayer magnetoresistive element shown in FIG. 3 is manufactured by sequentially forming a magnetoresistive film 1 and a conductive film 3 into a predetermined shape by selective etching. However, since the magnetoresistive film 1 and the conductive film 3 are in contact with each other, when performing wet or chemical etching, a common etching solution cannot be used, complicating the manufacturing process. In other words, after the magnetoresistive film in the lower intestine is treated with a specific etching solution, a conductive film is formed over the entire surface of the substrate. This is because there is a problem in that the underlying magnetoresistive 34 antibody film is also corroded at the same time.

〔間通点を解決する為の手段〕[Means to resolve the gap]

上述した従来の製造方法の問題点に鑑み、本発明は上層
の導電膜を化学エッチングする際下層の磁気抵抗体膜を
腐蝕する事のない積層型磁気抵抗素子の製造方法を提供
する事を目的とする。
In view of the problems of the conventional manufacturing method described above, an object of the present invention is to provide a method for manufacturing a multilayer magnetoresistive element in which the lower layer magnetoresistive film is not corroded when the upper layer conductive film is chemically etched. shall be.

第1図A乃至第1図Dは本発明にかかる積層型磁気抵抗
素子の基本的製造工程を示す工程図である。
FIGS. 1A to 1D are process diagrams showing the basic manufacturing process of a multilayer magnetoresistive element according to the present invention.

第1図Aに示す工程において、基仮2の表面に所定のパ
タンを有する磁気抵抗体層1を形成する。
In the step shown in FIG. 1A, a magnetoresistive layer 1 having a predetermined pattern is formed on the surface of the substrate 2. In the step shown in FIG.

バタニングは湿式エッチング又は乾式エッチングのいず
れかの方法により行われる。乾式エッチングには例えば
スパッタエッチングが含まれる。
Batting is performed by either wet etching or dry etching. Dry etching includes, for example, sputter etching.

次に第1図Bに示す工程において、拙板2の全面を覆う
様に絶縁層4を形成する。図から明らかな様に、絶縁層
4はバタニングされた磁気抵抗体層1の表面部及び端而
部を完全に彼覆している。
Next, in the step shown in FIG. 1B, an insulating layer 4 is formed to cover the entire surface of the board 2. As is clear from the figure, the insulating layer 4 completely covers the surface and edges of the battened magnetoresistive layer 1.

次いで絶縁層4の一部が選択的エッチングにょり除去さ
れ開口又はコンタク1・ホール5が形成される。コンタ
ク1・ホールの底部において磁気抵抗体層1の表面が露
出している。
A portion of the insulating layer 4 is then removed by selective etching to form an opening or contact hole 5. The surface of the magnetoresistive layer 1 is exposed at the bottom of the contact 1 hole.

第1図Cに示す工程において、絶縁層4の表面全体及び
コンタクトホール5の内部に互って導電層3を形成する
。図から明らかな様に、導@層3はコンタクトホール5
の内部に充埴され露出していた磁気抵抗体層1の表面と
電気的に接続される。
In the step shown in FIG. 1C, a conductive layer 3 is formed on the entire surface of the insulating layer 4 and inside the contact hole 5. As is clear from the figure, the conductive@layer 3 has a contact hole 5
The inside of the magnetoresistive layer 1 is filled with clay and electrically connected to the exposed surface of the magnetoresistive layer 1.

最後に地1図Dに示す工程において、最上層の導電層3
はエッチング液を用いた湿式エッチング法により選択的
に不要部分が除去され所定の形状を有する電極が形成さ
れる。
Finally, in the step shown in Figure 1D, the uppermost conductive layer 3
An electrode having a predetermined shape is formed by selectively removing unnecessary portions by a wet etching method using an etching solution.

好ましくは絶縁層4は二酸化硅素膜により形成される。Preferably, the insulating layer 4 is formed of a silicon dioxide film.

又磁気抵抗体層1は例えば強磁性合金のパーマロイ膜に
より形成され、該導電層3は例えば金属アルミニウム膜
により形成される。加えてこれら2種類の金属膜は順次
共通のエッチング液を用いて化学エッチングされる。
Further, the magnetoresistive layer 1 is formed of, for example, a permalloy film of a ferromagnetic alloy, and the conductive layer 3 is formed of, for example, a metal aluminum film. In addition, these two types of metal films are sequentially chemically etched using a common etching solution.

あるいはより精密aつ微細な積層型磁気抵抗素子を製造
する為に、磁気抵抗体層をスパッタエッ5 6 チングにより処理し、高い加王精度を要しない導電層は
通常の湿式エッチングにより処理してもよい。
Alternatively, in order to manufacture a more precise and finer multilayer magnetoresistive element, the magnetoresistive layer may be processed by sputter etching, and the conductive layer that does not require high cutting precision may be processed by normal wet etching. good.

〔作  用〕[For production]

本発明にかかる製造方法によれば先に所定の形状にパタ
ニングされた磁気抵抗体層は絶縁層によってコンタクト
ホール部分を除いて完全に被覆される。特に重要な点は
磁気抵抗体層の表面部に加えてその端面部も絶縁層によ
って完全に外部から遮蔽されている点である。続いて絶
縁層の上部に形成された導電層を混式エッチングにより
処理するがその際に用いられるエッチング液は絶縁層に
よって遮断されるので下層の磁気抵抗体層を腐蝕する虞
れがない。特に磁気抵抗体層の端而部も絶縁層によって
被覆されているので従来問題となっていたサイドエッチ
ングも生じない。この様に導電層の湿式エッチングに使
われるエッチング液は磁気抵抗体層に何ら影響を及ぼす
事がないので作業条件や用いるレジスト被膜の種類に応
じて自由に適切な化学組成を選ぶ事ができる。例えば磁
気抵抗体層を特定のエッチング液を用いて処理した場合
には共通のエッチング波を用いて導電層を処理する事も
できる。又磁気抵抗体層を強磁性合金パーマロイで構成
し乾式エッチングで処理した場合においても、磁気抵抗
体層の伺質に無関係に導電層のエッチング処理に適した
エッチング液を選定する事ができる。例え選定したエッ
チング液が木質的に強磁性合金パーマロイを腐蝕するも
のであっても、本発明にかかる製遣方法においてはエッ
チング液は下層の磁気抵抗体層に接触する虞れがないの
で問題は生じない。
According to the manufacturing method according to the present invention, the magnetoresistive layer, which has been patterned in advance into a predetermined shape, is completely covered with the insulating layer except for the contact hole portion. A particularly important point is that in addition to the surface portion of the magnetoresistive layer, the end surface portion thereof is also completely shielded from the outside by the insulating layer. Subsequently, the conductive layer formed on top of the insulating layer is treated by mixed etching, but since the etching solution used at that time is blocked by the insulating layer, there is no risk of corroding the underlying magnetoresistive layer. In particular, since the edges of the magnetoresistive layer are also covered with the insulating layer, side etching, which has been a problem in the past, does not occur. In this way, the etching solution used for wet etching of the conductive layer has no effect on the magnetoresistive layer, so an appropriate chemical composition can be freely selected depending on the working conditions and the type of resist film used. For example, if the magnetoresistive layer is treated with a specific etching solution, the conductive layer can also be treated with a common etching wave. Further, even when the magnetoresistive layer is made of a ferromagnetic alloy permalloy and treated by dry etching, an etching solution suitable for etching the conductive layer can be selected regardless of the texture of the magnetoresistive layer. Even if the selected etching solution corrodes the ferromagnetic alloy Permalloy due to its woody nature, the manufacturing method of the present invention eliminates the problem because there is no risk of the etching solution coming into contact with the underlying magnetoresistive layer. Does not occur.

〔実 施 例〕〔Example〕

以下に添付図面を参照して本発明にかかる積層型磁気抵
抗素子の製造方法の好適な実施例を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method for manufacturing a multilayer magnetoresistive element according to the present invention will be described in detail below with reference to the accompanying drawings.

第4図A乃至第4図Iは本発明の製造方法にかかる実施
例を説明する為の工程図である。
FIGS. 4A to 4I are process diagrams for explaining an embodiment of the manufacturing method of the present invention.

第4図Aに示す工程において、半導体製造において一般
的に用いられるシリコンウエ/Xが基板2として用いら
れる。シリコンウエノ\の表山はあら7 かじめ加熱処理により膜厚およそ1μの熱酸化層6によ
って覆われている。熱酸化層6の全面に亘って下地層7
を電子ビーム真空蒸着法により形成する。下地層7は例
えば二酸化硅素からなり約2000人の膜厚を有する。
In the step shown in FIG. 4A, a silicon wafer/X commonly used in semiconductor manufacturing is used as the substrate 2. The top surface of the silicon Ueno is covered with a thermal oxidation layer 6 having a thickness of about 1 μm by heat treatment in advance. The base layer 7 covers the entire surface of the thermal oxidation layer 6.
is formed by electron beam vacuum evaporation. The base layer 7 is made of silicon dioxide, for example, and has a thickness of about 2000 nm.

下地層7の表面全体に互って磁気抵抗体層1を同様に電
子ビーム真空蒸着法により形成する。磁気抵抗体層1は
例えばニッケルと鉄の強磁性合金であるパーマロイから
なり 3ロO人から500人の膜厚を有する。特にニッ
ケル83二鉄l7の組成を有するパーマロイは逆磁歪定
数が0であって優れた強磁性材料である。磁気抵抗体層
1の表面全体に亘って電子ビーム真空蒸着法により遮断
層8を形成する。遮断層8は例えば二酸化硅素からなり
少くとも1000人以上の膜厚を有する。遮断層8は後
述する様にエッチングレジスト層の灰化に用いる反応性
プラズマを遮断する機能を有し製造工程において下層の
磁気抵抗体層を保護する。遮断層8の表面全体に亘って
電子ビーム真空蒸着法により表面層9を形成する。表面
層9は例えばアルミナからなり少くとも200人8 の膜厚を有する。この表面層9は川いるエッチングレジ
スト層に対して優れた密着性を有している。
Magnetoresistive layers 1 are similarly formed over the entire surface of the underlayer 7 by electron beam vacuum evaporation. The magnetoresistive layer 1 is made of, for example, permalloy, which is a ferromagnetic alloy of nickel and iron, and has a thickness of 3 to 500 mm. In particular, permalloy having a composition of nickel 83 diiron 17 has an inverse magnetostriction constant of 0 and is an excellent ferromagnetic material. A blocking layer 8 is formed over the entire surface of the magnetoresistive layer 1 by electron beam vacuum evaporation. The blocking layer 8 is made of silicon dioxide, for example, and has a thickness of at least 1000 nm or more. As will be described later, the blocking layer 8 has the function of blocking the reactive plasma used to ash the etching resist layer, and protects the underlying magnetoresistive layer during the manufacturing process. A surface layer 9 is formed over the entire surface of the blocking layer 8 by electron beam vacuum evaporation. The surface layer 9 is made of alumina, for example, and has a thickness of at least 200 mm. This surface layer 9 has excellent adhesion to the etching resist layer.

第4図Bに示す工程において、所定の形状にパタニング
されたレジスト層10を用いて前の工程により形成され
た積層の不要な部分をドライエッチング又はスパッタエ
ッチングにより除夫する。
In the step shown in FIG. 4B, unnecessary portions of the stack formed in the previous step are removed by dry etching or sputter etching using the resist layer 10 patterned into a predetermined shape.

レジスト層10の材質としては感光性のポジ型有機材料
を用いる事が好ましい。ポジ型レジス1・層はネガ型レ
ジスト層に比べ耐スパッタエッチング性に優れ且つ解像
度も優れているので高精度のエッチングに適している。
As the material of the resist layer 10, it is preferable to use a photosensitive positive organic material. The positive resist layer 1 has better sputter etching resistance and resolution than the negative resist layer, and is therefore suitable for high-precision etching.

第5図にスパッタエッチング処理に用いるスパッタ装置
を示す。スパッタ装置は真空チャンバ2lにより構成さ
れており、真空チャンバ2lはガスを導入する為の吸入
口22及びガスを排出する為の排気口23を備えている
。真空チャンバ21の天井部はアノード電極24を構成
しこれと対向して真空チャンバ21の内部にはカソード
電極25が収納されている。カソード電極25の内部は
ψ空になっており冷却管26を介して冷媒が導入されカ
ソード電極9 1 0 25の上面に配置された試料基板2を冷却する。カソー
ド電極25にはマッチングボックス27を介して高周波
電源28が接続されている。
FIG. 5 shows a sputtering apparatus used for sputter etching processing. The sputtering apparatus is composed of a vacuum chamber 2l, and the vacuum chamber 2l is equipped with an inlet 22 for introducing gas and an exhaust port 23 for discharging the gas. The ceiling of the vacuum chamber 21 constitutes an anode electrode 24, and a cathode electrode 25 is housed inside the vacuum chamber 21 opposite to this. The inside of the cathode electrode 25 is ψ empty, and a coolant is introduced through the cooling pipe 26 to cool the sample substrate 2 placed on the upper surface of the cathode electrode 9 1 0 25 . A high frequency power source 28 is connected to the cathode electrode 25 via a matching box 27.

第4図Bに示す工程におけるスパツタエッチングを行う
為に、まず吸入口22より不活性のアルゴンガスを真空
チャンバ21山に導入ずる。アノド電極24とカソード
電極25の間に高周波電圧を印加し導入されたアルゴン
ガスをプラズマ化する。
In order to perform sputter etching in the process shown in FIG. 4B, first, inert argon gas is introduced into the vacuum chamber 21 through the suction port 22. A high frequency voltage is applied between the anode electrode 24 and the cathode electrode 25 to turn the introduced argon gas into plasma.

イオン化されたアルゴン粒子は加速され試料風板2に衝
突しレジスト層IOによって被覆されていない不要な積
層部分を除去する。
The ionized argon particles are accelerated and collide with the sample air plate 2 to remove unnecessary laminated portions not covered by the resist layer IO.

スパッタエッチング処理に続いて不要となったレジスト
層lOを除去する為に同じスパツタ装置を用いて灰化処
理を行う。灰化処理は真空チャンバ内に反応性の酸素ガ
スを導入して行う。アノード電極24及びカソード電極
25間に高周波電圧を印加し導入された酸素ガスをプラ
ズマ化しイオン化された酸素粒子を表面のレジスト層1
0に衝突させる。
Following the sputter etching process, an ashing process is performed using the same sputtering device in order to remove the unnecessary resist layer IO. The ashing process is performed by introducing reactive oxygen gas into a vacuum chamber. A high frequency voltage is applied between the anode electrode 24 and the cathode electrode 25, the introduced oxygen gas is turned into plasma, and the ionized oxygen particles are transferred to the resist layer 1 on the surface.
Collision with 0.

レジスト層lOは有機材料から構威されている為反応性
の酸素粒子と反応し分解されて除去される。
Since the resist layer 1O is made of an organic material, it reacts with reactive oxygen particles, is decomposed, and removed.

この際遮断層8は反応性の酸素粒子が磁気抵抗体層1に
到達するのを防止し製造工程中において磁気抵抗体層1
の特性が劣化するのを防いでいる。
At this time, the blocking layer 8 prevents reactive oxygen particles from reaching the magnetoresistive layer 1 and prevents the reactive oxygen particles from reaching the magnetoresistive layer 1 during the manufacturing process.
This prevents the properties of the material from deteriorating.

第4図Cに示す工程において、同一のスパッタ装置を用
いマグネトロンスパッタ法により、前工程で所定の形状
にエッチングされた積層及び基板表面を絶縁層4で被覆
する。絶縁層4は例えば二酸化硅素からなりおよそ3μ
の膜厚を有する。膜厚がかなり厚い為、エッチングされ
た積層の表面はもちろんその端面部も完全に絶縁層4の
内部に埋設されてしまう。この様にして、磁気抵抗体層
1の露出していた端市部も完全に絶縁層4により被覆さ
れる。絶縁層4の形成において特にマグネ1・ロンスバ
ッタ法を用いたのは比較的低温で稠密なガラス構造をh
゜する二酸化硅素絶縁層を成膜できるからである。特に
熱的ス1・レスに対してその特性が変動しやすい強磁性
パーマロイ合金を磁気抵抗体層に用いる場合にはマグネ
トロンスパツタ法は有効である。
In the step shown in FIG. 4C, the laminated layer and substrate surface etched into a predetermined shape in the previous step are covered with an insulating layer 4 by magnetron sputtering using the same sputtering device. The insulating layer 4 is made of silicon dioxide, for example, and has a thickness of approximately 3μ.
It has a film thickness of Since the film thickness is quite thick, not only the surface of the etched stack but also the end faces thereof are completely buried inside the insulating layer 4. In this way, the exposed end portions of the magnetoresistive layer 1 are also completely covered with the insulating layer 4. In forming the insulating layer 4, the Magne 1-Roncebatter method was used to form a dense glass structure at a relatively low temperature.
This is because it is possible to form a silicon dioxide insulating layer with a high temperature. The magnetron sputtering method is particularly effective when a ferromagnetic permalloy alloy whose properties tend to change due to thermal stress is used for the magnetoresistive layer.

第4図Dに示す工程において、四フッ化メタン11 ガスを用いて同一のスバッタ装置により反応性プラズマ
エッチングを行い絶縁層4の所定部分を選択的に除去す
る。選択的エッチングは絶縁層4の膜厚部に加えて表面
層9及び遮断層8も除夫し最終的に磁気抵抗体層1の表
面を露出するまで行う。
In the step shown in FIG. 4D, reactive plasma etching is performed using the same spatter device using tetrafluoromethane 11 gas to selectively remove a predetermined portion of the insulating layer 4. The selective etching is performed until not only the thick portion of the insulating layer 4 but also the surface layer 9 and the blocking layer 8 are removed and the surface of the magnetoresistive layer 1 is finally exposed.

この様にしてコンタク1・ホール5が形成される。In this way, contacts 1 and holes 5 are formed.

次に第4図Eに示す工程において、基板2はスパッタ装
置から取出され真空蒸着装置に投入される。電子ビーム
真空蒸着法により絶縁層4の表面全体を覆う様に導電層
3を形成する。この時同時に導電層3はコンタクトホー
ル5の内部にも充馳され露出している磁気抵抗体層1に
電気的に接続する。導電層3は例えば金属アルミニウム
からなり膜厚およそ1.5μを有する。
Next, in the step shown in FIG. 4E, the substrate 2 is taken out from the sputtering device and put into a vacuum evaporation device. Conductive layer 3 is formed to cover the entire surface of insulating layer 4 by electron beam vacuum evaporation. At this time, the conductive layer 3 also fills the inside of the contact hole 5 and is electrically connected to the exposed magnetoresistive layer 1. The conductive layer 3 is made of metal aluminum, for example, and has a thickness of approximately 1.5 μm.

第4図Fに示す工程において、導電層3のうち電極とし
て必要な部分のみを覆う様にバタニングされたレジス1
・層11を形成する。レジス1・層l1はポジ型あるい
はネガ型感光性有機+4料から構成される。本実施例に
おいてはポジ型感光性右機材料を用いる。又ネガ型のレ
ジスト材を用いる場合に12 はその剥離に必要な剥離液の化学組成が磁気抵抗体層1
を構成するパーマロイを腐蝕する性質を有するので、仮
に抵抗体層1の端面部が完全に覆われていない場合には
サイドエッチングによる腐食が生じる恐れがある。しか
しながら本発明による製造方法によれば磁気抵抗体層1
の端面部は完全に絶縁層4により覆われているので、磁
気抵抗体層の腐食の恐れは減少する。
In the step shown in FIG.
- Form layer 11. The resist 1/layer 11 is composed of a positive or negative type photosensitive organic +4 material. In this example, a positive photosensitive material is used. In addition, when using a negative resist material, the chemical composition of the stripping solution required for stripping the magnetoresistive layer 12 is
Since it has the property of corroding the permalloy constituting the resistor layer 1, if the end face portion of the resistor layer 1 is not completely covered, corrosion due to side etching may occur. However, according to the manufacturing method according to the present invention, the magnetoresistive layer 1
Since the end face portion of is completely covered with the insulating layer 4, the risk of corrosion of the magnetoresistive layer is reduced.

次に亀4図Gに示す」二程において、湿式エッチングに
より導電層3の不要部分を除去する。湿式エッチング法
を用いたのは導電層3の寸法誤差許容範囲が磁気抵抗層
1の寸法誤差許容範囲に比べて大きいからである。この
湿式エッチングにおいては酸性のエッチング液例えば燐
酸系のエッチング液が用いられる。金属アルミニウムに
より構成される導電層3はアルカリ性のエッチング液に
よっても腐蝕されるが、アルカリ性のエッチング液例え
ば水酸化ナトリウム溶液は同時にポジ型レジス1・層1
lを侵してしまうのでこの場合適当でない。又用いられ
る酸性のエッチング液は同侍に14 パーマロイからなる磁気抵抗体層1をも腐蝕する性質を
有する。従って仮に従来の様に磁気抵抗体層1の端面部
が露出している場合にはサイドエッチングにより腐蝕が
生じ問題を生ずるであろうが、本発明にかかる製遣方法
においては、前述した様に磁気抵抗体層1の端面部は完
全に絶縁層4の内部に埋設されているのでかかるサイド
エッチングの問題は生じない。
Next, in step 2 shown in Figure 4G, unnecessary portions of the conductive layer 3 are removed by wet etching. The wet etching method was used because the allowable dimensional error range of the conductive layer 3 is larger than the allowable dimensional error range of the magnetoresistive layer 1. In this wet etching, an acidic etching solution, such as a phosphoric acid-based etching solution, is used. The conductive layer 3 made of metal aluminum is also corroded by an alkaline etching solution, but an alkaline etching solution such as a sodium hydroxide solution simultaneously corrodes the positive resist 1 and the layer 1.
This is not appropriate in this case because it violates l. The acidic etching solution used also has the property of corroding the magnetoresistive layer 1 made of 14 permalloy. Therefore, if the end face portion of the magnetoresistive layer 1 were exposed as in the conventional case, corrosion would occur due to side etching, which would cause problems, but in the manufacturing method according to the present invention, as described above, Since the end face portion of the magnetoresistive layer 1 is completely buried inside the insulating layer 4, such a problem of side etching does not occur.

第4図Hに示す工程において、不要となったレジスト層
1lを専用の剥離液により剥離し除去する。
In the step shown in FIG. 4H, the unnecessary resist layer 1l is peeled off and removed using a special stripping solution.

この様にして磁気抵抗体層1に電気的に接続し且つ所定
の形状を有する電極3が形戊される。
In this way, the electrode 3 electrically connected to the magnetoresistive layer 1 and having a predetermined shape is formed.

最後に第4図■に示す工程において、マグネトロンスパ
ッタ法により露出面全面を覆う様に保謹層12を形成す
る。保護層12は絶縁層4と同様に二酸化硅素の緻密な
膜により構威されおよそ5μの膜厚を有する。最後に弗
酸系のエッチング液を用いて保護層12を選択的に湿式
エッチングし下陥の電極を構威する導電層3の一部を露
出させボンディングパッド13を形成する。このボンデ
ィングパッドl3は外部回路との電気接続に用いられる
ものである。
Finally, in the step shown in FIG. 4, the protection layer 12 is formed by magnetron sputtering so as to cover the entire exposed surface. The protective layer 12, like the insulating layer 4, is made of a dense film of silicon dioxide and has a thickness of approximately 5 μm. Finally, the protective layer 12 is selectively wet-etched using a hydrofluoric acid-based etchant to expose a portion of the conductive layer 3 that forms the lower electrode, thereby forming the bonding pad 13. This bonding pad l3 is used for electrical connection with an external circuit.

〔発明の効果〕〔Effect of the invention〕

上記に説明した様に、本発明によれば、積層型磁気抵抗
素子を構成する磁気抵抗体層はその端市部も含めて絶縁
層により完全に被覆されている。
As explained above, according to the present invention, the magnetoresistive layer constituting the multilayer magnetoresistive element is completely covered with the insulating layer, including the edge portion thereof.

従って絶縁層の上に形成された導電層を湿式エッチング
により処理し外部電気接続用の電極を形成する場合にお
いても、用いるエッチング演は下層の磁気抵抗層に接触
する事がないので磁気抵抗層は不測の腐蝕を受ける事が
ないという効果がある。
Therefore, even when a conductive layer formed on an insulating layer is processed by wet etching to form an electrode for external electrical connection, the etching process used does not come into contact with the underlying magnetoresistive layer, so the magnetoresistive layer is It has the effect of not being subject to unexpected corrosion.

加えて磁気抵抗層及び導電層を同一もしくは同系統のエ
ッチング液を用いて処甥する事が可能であるので製造工
程管理が容易になるという効果もある。又レジスト剥離
液も下層の磁気抵抗体膜に直接的に接触する事がないの
で、ネガ型フォトレジスト膜専用剥離液を用いても磁気
抵抗体層が腐食される事が無い。従ってエッチング液と
ともにレジスト材料の選択にも自由度が増すという効果
がある。
In addition, since the magnetoresistive layer and the conductive layer can be etched using the same etching solution or the same type of etching solution, the manufacturing process can be easily controlled. Furthermore, since the resist stripping solution does not come into direct contact with the underlying magnetoresistive film, the magnetoresistive layer will not be corroded even if a stripping solution exclusively used for negative photoresist films is used. Therefore, there is an effect that the degree of freedom in selecting the resist material as well as the etching solution is increased.

15 1615 16

【図面の簡単な説明】[Brief explanation of drawings]

第1図A乃至第1図Dは本発明にかかる積層型磁気抵抗
素子の基本的な製造工程を示す王程図、第2図は磁気抵
抗素子の動作原理を説明する為の斜視図、第3図は従来
の積層型磁気抵抗累子の断面図、第4図A乃至第4図I
は本発明にかかる製造方法の実施例を示す工程図、及び
第5図は本発明にかかる製造方法に用いられるスパッタ
装置の構造を示す断面図である。 1・・・磁気抵抗体層 3・・・導電層 5・・・コンタクトホール 7・・・下地層 9・・・表曲層 10,.ll・・・レジスI・層 13・・・ボンディングパッド 2・・・基 板 4・・・絶縁層 6・・・熱酸化層 8・・・遮断層 l2・・・保護層
1A to 1D are diagrams showing the basic manufacturing process of the multilayer magnetoresistive element according to the present invention, FIG. 2 is a perspective view for explaining the operating principle of the magnetoresistive element, and FIG. Figure 3 is a cross-sectional view of a conventional laminated magnetoresistive element, and Figures 4A to 4I.
5 is a process diagram showing an embodiment of the manufacturing method according to the present invention, and FIG. 5 is a sectional view showing the structure of a sputtering apparatus used in the manufacturing method according to the present invention. 1... Magnetoresistive layer 3... Conductive layer 5... Contact hole 7... Base layer 9... Curved surface layer 10, . ll...Resist I layer 13...Bonding pad 2...Substrate 4...Insulating layer 6...Thermal oxidation layer 8...Blocking layer l2...Protective layer

Claims (1)

【特許請求の範囲】 1、基板と、該基板上に形成され所定のパタンを有する
磁気抵抗体層と、該磁気抵抗体層に電気的に接続し且つ
所定の形状を有する導電層とからなる積層型磁気抵抗素
子を製造する方法において、該基板面に磁気抵抗体層を
形成する工程と、該磁気抵抗体層をエッチングにより所
定のパタンに形成する工程と、 該エッチングされた磁気抵抗体層の表面及び端面を覆う
様に絶縁膜を形成する工程と、 該絶縁膜を選択的にエッチングし開口を設けて磁気抵抗
体層表面の一部を露出する工程と、該絶縁膜上に該開口
を塞ぐ様に導電層を形成する工程と、 湿式の化学エッチングにより該導電層を所定の形状に形
成する工程とを有する事を特徴とする積層型磁気抵抗体
素子の製造方法。 2、該絶縁層は二酸化硅素膜により形成されている請求
項1に記載の製造方法。 3、該磁気抵抗体層はパーマロイ膜により形成されてお
り、該導電層はアルミニウム膜により形成されており、
これら膜は共通の湿式エッチング液を用いた化学エッチ
ングにより各々所定のパタン及び形状に成形される請求
項1に記載の製造方法。 4、パーマロイ膜を侵さない剥離液によって剥離可能な
ポジ型レジスト層を用い、且つ該ポジ型レジスト層を侵
さない酸性エッチング液を用いて、該アルミニウム膜を
化学エッチングし所定の形状に形成する請求項3に記載
の製造方法。 5、該磁気抵抗体層はスパッタエッチングにより比較的
高精度で所定のパタンに形成され、該導電層は化学エッ
チングにより比較的低精度で所定の形状に形成される請
求項1に記載の製造方法。
[Claims] 1. Consisting of a substrate, a magnetoresistive layer formed on the substrate and having a predetermined pattern, and a conductive layer electrically connected to the magnetoresistive layer and having a predetermined shape. A method for manufacturing a multilayer magnetoresistive element, comprising: forming a magnetoresistive layer on the substrate surface; forming the magnetoresistive layer into a predetermined pattern by etching; and the etched magnetoresistive layer. a step of forming an insulating film so as to cover the surface and end faces of the insulating film; a step of selectively etching the insulating film to provide an opening to expose a part of the surface of the magnetoresistive layer; and a step of forming the opening on the insulating film. 1. A method for manufacturing a multilayer magnetoresistive element, comprising the steps of: forming a conductive layer so as to close the conductive layer; and forming the conductive layer into a predetermined shape by wet chemical etching. 2. The manufacturing method according to claim 1, wherein the insulating layer is formed of a silicon dioxide film. 3. The magnetoresistive layer is formed of a permalloy film, and the conductive layer is formed of an aluminum film,
2. The manufacturing method according to claim 1, wherein each of these films is formed into a predetermined pattern and shape by chemical etching using a common wet etching solution. 4. A claim in which the aluminum film is chemically etched to form a predetermined shape using a positive resist layer that can be removed with a stripping solution that does not attack the permalloy film, and an acidic etching solution that does not attack the positive resist layer. The manufacturing method according to item 3. 5. The manufacturing method according to claim 1, wherein the magnetoresistive layer is formed into a predetermined pattern with relatively high precision by sputter etching, and the conductive layer is formed into a predetermined shape with relatively low precision by chemical etching. .
JP1157328A 1989-06-20 1989-06-20 Manufacture of laminated type magnetoresistance element Pending JPH0322576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157328A JPH0322576A (en) 1989-06-20 1989-06-20 Manufacture of laminated type magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157328A JPH0322576A (en) 1989-06-20 1989-06-20 Manufacture of laminated type magnetoresistance element

Publications (1)

Publication Number Publication Date
JPH0322576A true JPH0322576A (en) 1991-01-30

Family

ID=15647294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157328A Pending JPH0322576A (en) 1989-06-20 1989-06-20 Manufacture of laminated type magnetoresistance element

Country Status (1)

Country Link
JP (1) JPH0322576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187110B2 (en) 2007-10-17 2012-05-29 Ntn Corporation Boot mounting structure for constant-speed universal joint, and silicone boot for the constant-speed universal joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999370A (en) * 1982-11-30 1984-06-08 Copal Co Ltd Production of magnetic detector with magneto-resistance element
JPS6292109A (en) * 1985-10-17 1987-04-27 Fujitsu Ltd Manufacture of magnetoresistance effect element
JPS63160388A (en) * 1986-12-24 1988-07-04 Tokai Rika Co Ltd Manufacture of magnetroresistance element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999370A (en) * 1982-11-30 1984-06-08 Copal Co Ltd Production of magnetic detector with magneto-resistance element
JPS6292109A (en) * 1985-10-17 1987-04-27 Fujitsu Ltd Manufacture of magnetoresistance effect element
JPS63160388A (en) * 1986-12-24 1988-07-04 Tokai Rika Co Ltd Manufacture of magnetroresistance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187110B2 (en) 2007-10-17 2012-05-29 Ntn Corporation Boot mounting structure for constant-speed universal joint, and silicone boot for the constant-speed universal joint

Similar Documents

Publication Publication Date Title
EP0106623B1 (en) Sputtering apparatus
CA2209884C (en) Method of separating wafers into individual die
JP5261629B2 (en) System and method for wafer processing including stop-on-aluminum processing
US6764960B2 (en) Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
JPH0321001A (en) Method of forming molybdenum resistor in superconductive integrated circuit
US4390404A (en) Process for manufacture of thin-film magnetic bubble domain detection device
JPH0322576A (en) Manufacture of laminated type magnetoresistance element
JP2003218431A (en) Method of manufacturing magnetic tunnel junction element
JP2002299705A (en) Method of manufacturing tunnel junction having very small area
JPS58123711A (en) Preparation of magnetic bubble memory element
JPH0321087A (en) Manufacturing method for laminated type magnetoresistance component
JP2003218413A (en) Superconduction radiation detector and its manufacturing method
JPH03283477A (en) Magnetoresistance effect element and manufacture thereof
JP2835850B2 (en) Manufacturing method of laminated magnetoresistive element
JPS61281523A (en) Formation of contact
JPH01303773A (en) Laminated element
JP2639838B2 (en) Method for manufacturing oxide high-temperature superconducting three-terminal device
JPH01181426A (en) Manufacture of semiconductor device
JPH0567026U (en) Through electrode of substrate
JPH01173308A (en) Manufacture of thin film magnetic head
JPS60160676A (en) Dry type etching method of magnetoresistance effect element
JPH01243426A (en) Etching method for resist film
JPH0320809B2 (en)
JPH02189986A (en) Processing method for niobium film or niobium nitride film
JPH0530310B2 (en)