JPH032256B2 - - Google Patents

Info

Publication number
JPH032256B2
JPH032256B2 JP58109029A JP10902983A JPH032256B2 JP H032256 B2 JPH032256 B2 JP H032256B2 JP 58109029 A JP58109029 A JP 58109029A JP 10902983 A JP10902983 A JP 10902983A JP H032256 B2 JPH032256 B2 JP H032256B2
Authority
JP
Japan
Prior art keywords
resin layer
electrodes
power supply
liquid leakage
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58109029A
Other languages
Japanese (ja)
Other versions
JPS60338A (en
Inventor
Motoro Imaizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP10902983A priority Critical patent/JPS60338A/en
Priority to DE19843422394 priority patent/DE3422394A1/en
Publication of JPS60338A publication Critical patent/JPS60338A/en
Publication of JPH032256B2 publication Critical patent/JPH032256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/165Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means by means of cables or similar elongated devices, e.g. tapes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 この発明は、微少漏液を確実に且つ経済的に検出
することが可能な漏液検知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid leak detection device that can reliably and economically detect minute liquid leaks.

例えば、石油、ガソリン、重油等の液化炭化水
素、或いは四塩化炭素、MEK、トルエン等の各
種有機溶剤などの絶縁性液体の漏洩を検知するセ
ンサとして、特願昭52−59859号(特開昭53−
145697号)「流体検知素子」が提案されている。
For example, a sensor for detecting the leakage of insulating liquids such as liquefied hydrocarbons such as petroleum, gasoline, and heavy oil, or various organic solvents such as carbon tetrachloride, MEK, and toluene, has been proposed in Japanese Patent Application No. 52-59859. 53−
No. 145697) "Fluid sensing element" has been proposed.

ところで、この流体検知素子は、導電性物質を
含有する連続多孔質四弗化エチレン樹脂材料によ
つて少なくとも二本の導体を隔離した構造であ
り、該材料への漏液の到来による二本の導体間の
抵孔値の変化によつて液を検知するものであつ
た。しかしながらこの検知素子は、多孔質樹脂材
料を用いるものであるため、多孔内に湿気や気中
ガス成分が侵入したり、或いは温度の上昇又は下
降により前記材料の抵抗値が変化してしまい、こ
れらの外乱と微少漏液検出との区別をし難く、有
効に微少漏液の検出を行なうことができない欠点
があつた。この欠点を解決するためには、検出素
子を加温して素子内部の湿気やガス成分を追い出
しかつ温度変化による影響を除くことにより耐候
性を高めることによつてできる。しかしながら、
このような方法によると、検出素子を加温するた
めには、測定電圧の何倍かの高い電圧を検出素子
に与えなければならないため、測定回路の変更や
デジタル装置の桁数の増加等を必要とし、非常に
不経済になる欠点が現れてきた。
By the way, this fluid detection element has a structure in which at least two conductors are isolated by a continuous porous tetrafluoroethylene resin material containing a conductive substance, and when liquid leaks to the material, two conductors are separated. The liquid was detected by the change in the resistance value between the conductors. However, since this sensing element uses a porous resin material, the resistance value of the material changes due to moisture or atmospheric gas components entering the pores, or a rise or fall in temperature. It is difficult to distinguish between external disturbances and the detection of minute liquid leaks, and there is a drawback that it is not possible to effectively detect minute liquid leaks. In order to solve this drawback, weather resistance can be improved by heating the detection element to drive out moisture and gas components inside the element and eliminating the effects of temperature changes. however,
According to this method, in order to heat the detection element, a voltage several times higher than the measurement voltage must be applied to the detection element, so it is necessary to change the measurement circuit or increase the number of digits in the digital device. A disadvantage has emerged that makes it necessary and extremely uneconomical.

そこでこの発明は、確実かつ経済的に微少漏液
を検出することができる漏液検知装置を提供する
ことを目的とする。このためこの発明によれば、
導電体を充填してなる気孔質導電樹脂層と該気孔
質導電樹脂層に導電接続する少なくとも一対の電
極とからなる絶縁性液体を検知するための漏液セ
ンサと、該電極間に導電接続する電源と、該電極
間に導電接続する電圧検知器とを備え、且つ、該
電源による給電は、該気孔質導電樹脂層の内部抵
抗を用いる加温の為の該電極間への給電(以下こ
れを加温電圧の印加と呼ぶ)と、該気孔質導電樹
脂層の内部抵抗による電圧降下を測定する為の該
電極間及び該電圧検知器への給電(以下これを測
定電圧の印加と呼ぶ)とを選択的に給電すること
を特徴とする漏液検知装置を構成する。
Therefore, an object of the present invention is to provide a liquid leakage detection device that can reliably and economically detect minute liquid leaks. Therefore, according to this invention,
A liquid leakage sensor for detecting an insulating liquid, comprising a porous conductive resin layer filled with a conductor and at least a pair of electrodes conductively connected to the porous conductive resin layer, and a conductive connection between the electrodes. It is equipped with a power source and a voltage detector conductively connected between the electrodes, and the power supply by the power source is a power supply between the electrodes for heating using the internal resistance of the porous conductive resin layer (hereinafter referred to as "power supply"). (hereinafter referred to as application of a heating voltage), and power supply between the electrodes and to the voltage detector for measuring the voltage drop due to the internal resistance of the porous conductive resin layer (hereinafter referred to as application of measurement voltage). A liquid leakage detection device is configured, which is characterized by selectively supplying power to.

この構成によれば、漏液センサには加温電圧と
測定電圧とが別々に印加されるため、漏液センサ
の加温により微少漏液の検知等の特性向上と、安
価な電圧検知器による測定が可能になるので、確
実かつ経済的に微少漏液を検知できる漏液検知装
置を提供できる。
According to this configuration, since the heating voltage and the measurement voltage are applied separately to the liquid leakage sensor, heating of the liquid leakage sensor improves characteristics such as detecting minute liquid leakage, and it is possible to use an inexpensive voltage detector. Since measurement becomes possible, it is possible to provide a liquid leak detection device that can reliably and economically detect minute liquid leaks.

この発明の構成において、電源は加温電圧と測
定電圧を交互に給電するようにすれば、連続監視
用として便利であり、その際電圧検知器は電源が
測定電圧を給電している時のみ作動するようにす
ることができる。またこの発明の構成において、
漏液センサの気孔質導電樹脂層は、押し出し成形
した導電性四弗化エチレン樹脂層によつて形成す
ることができる。この材料は押し出し後潤滑助材
を気化させることにより、気孔質となる。気孔率
を更に高めるためには、発泡又は延伸多孔化によ
る処理を施すことができる。気孔質導電樹脂層と
して四弗化エチレン樹脂を用いる場合は未焼成材
又は半焼成材を用い、焼成材は用いない。
In the configuration of this invention, it is convenient for continuous monitoring if the power supply alternately supplies the heating voltage and the measurement voltage, and in this case, the voltage detector operates only when the power supply is supplying the measurement voltage. You can do as you like. Furthermore, in the configuration of this invention,
The porous conductive resin layer of the leakage sensor can be formed from an extruded conductive tetrafluoroethylene resin layer. This material becomes porous by vaporizing the lubricating aid after extrusion. In order to further increase the porosity, foaming or stretching may be performed. When using tetrafluoroethylene resin as the porous conductive resin layer, an unfired material or a semi-fired material is used, and a fired material is not used.

次に第1図及び第2図に示す実施例によつてこ
の発明を更に詳細に説明する。
Next, the present invention will be explained in more detail with reference to the embodiments shown in FIGS. 1 and 2.

第1図において、漏液センサ1の気孔質導電樹
脂層2の両端部には一対の給電電極3,3が電気
的に接触して設けられ、この両給電電極3,3の
内側において更に一対の測定電極4,4が気孔質
導電樹脂層に接して設けられている。これらの両
電極3,4と気孔質導電樹脂層2は、通液性外被
5,5によつて包囲封止されている。この通液性
外被5として延伸連続多孔質四弗化エチレン樹脂
を好適に用いることができる。
In FIG. 1, a pair of power supply electrodes 3, 3 are provided at both ends of a porous conductive resin layer 2 of a liquid leakage sensor 1 in electrical contact with each other, and a further pair of power supply electrodes 3, 3 are provided on the inside of both power supply electrodes 3, 3. Measuring electrodes 4, 4 are provided in contact with the porous conductive resin layer. Both electrodes 3 and 4 and porous conductive resin layer 2 are surrounded and sealed by liquid-permeable jackets 5 and 5. As this liquid-permeable jacket 5, stretched continuous porous tetrafluoroethylene resin can be suitably used.

延伸連続多孔質四弗化エチレン樹脂は撥水性に
富むので、外被5として用いると水以外の液を選
択検知するのに好都合である。
Since the stretched continuous porous tetrafluoroethylene resin is highly water repellent, its use as the outer cover 5 is convenient for selectively detecting liquids other than water.

また、気孔質導電樹脂層2としては押し出し成
形した導電性充填材入り四弗化エチレン樹脂を好
適に用いることができる。
Further, as the porous conductive resin layer 2, extruded tetrafluoroethylene resin containing a conductive filler can be suitably used.

四弗化エチレン樹脂を用いた場合は、撥水性が
あるので水以外の例えば石油その他の液を検知す
る場合に好都合であるが、目的に応じてその他の
樹脂を用いることができる。樹脂内に充填する導
電体としては、例えばグラフアイト粉末、カーボ
ンブラツク粉末、炭素繊維、各種金属粉、サーメ
ツト、金属の窒化物、金属のホウ化物、金属のケ
イ化物、金属の酸化物、金属半導体、有機半導体
などを用いることができる。これらの充填導電体
は5〜70重量%四弗化エチレン樹脂内に混合し、
この混和物に潤滑助材を混合して押し出し成形し
て気孔質導電樹脂層を得る。
When tetrafluoroethylene resin is used, it is convenient for detecting liquids other than water, such as petroleum, because of its water repellency, but other resins can be used depending on the purpose. Examples of the conductor filled in the resin include graphite powder, carbon black powder, carbon fiber, various metal powders, cermets, metal nitrides, metal borides, metal silicides, metal oxides, and metal semiconductors. , organic semiconductors, etc. can be used. These filled conductors are mixed in 5-70% by weight tetrafluoroethylene resin,
This mixture is mixed with a lubricating aid and extruded to obtain a porous conductive resin layer.

このようにして得られた漏液センサ1の給電電
極3,3には漏液センサ1を加温するための加温
電圧と測定電圧とを交互に出力する電源6が接続
されている。この場合加温電圧は測定電圧の何倍
かの高い電圧であり、そのため漏液センサ1の測
定電極4,4に接続される電圧検知器7は電源6
が測定電圧を出力する間だけ作動するようになさ
れている。
A power source 6 is connected to the power supply electrodes 3, 3 of the liquid leakage sensor 1 obtained in this way, which alternately outputs a heating voltage for heating the liquid leakage sensor 1 and a measurement voltage. In this case, the heating voltage is several times higher than the measurement voltage, so the voltage detector 7 connected to the measurement electrodes 4, 4 of the leakage sensor 1 is connected to the power supply 6.
It is designed to operate only while outputting the measured voltage.

この実施例によれば、電源6によつて加温電圧
が加えられるのでセンサ内部の湿気やガスは追い
出され、かつ導電樹脂層は一定温度で安定状態に
保たれるので安定した特性で微少漏液を確実に検
知でき、その検知に当つては電源6から低い測定
電圧を給電している時に電圧検知器が作動するよ
うになつているので、安価な装置で検知できるこ
とになる。また、特にこの実施例においては、測
定電極4,4が給電電極3,3の内側にあるので
漏液検知が適確で早い利益がある。
According to this embodiment, since a heating voltage is applied by the power supply 6, moisture and gas inside the sensor are expelled, and the conductive resin layer is kept in a stable state at a constant temperature, so it has stable characteristics and minimal leakage. The liquid can be detected reliably, and since the voltage detector is designed to operate when a low measurement voltage is supplied from the power source 6, the detection can be performed with an inexpensive device. Moreover, especially in this embodiment, since the measuring electrodes 4, 4 are located inside the power supply electrodes 3, 3, there is an advantage that leakage detection is accurate and quick.

第2図はこの発明の他の実施例を示すもので、
この実施例における漏液センサ8は、気孔質導電
樹脂層9と導電接触する電極10,10は一対の
みであり、給電用電極と測定電極とを兼ねる。こ
の実施例の漏液センサ8も第1図の実施例と同様
に通液性外被11によつて包囲封止されている。
電極10,10には加温電圧と測定電圧とを交互
に漏液センサ8に給電する電源12が接続され、
この電極10,10には電源12が測定電圧を給
電する間だけ作動する電圧検知器13も接続され
ている。
FIG. 2 shows another embodiment of this invention.
The leakage sensor 8 in this embodiment has only one pair of electrodes 10, 10 that are in conductive contact with the porous conductive resin layer 9, and serve as both a power supply electrode and a measurement electrode. The liquid leakage sensor 8 of this embodiment is also surrounded and sealed by a liquid-permeable jacket 11 as in the embodiment of FIG.
A power source 12 is connected to the electrodes 10, 10, which alternately supplies a heating voltage and a measurement voltage to the leakage sensor 8.
A voltage detector 13 is also connected to the electrodes 10, 10, which is activated only while the power supply 12 supplies the measuring voltage.

この実施例による漏液検知装置も第1図の実施
例と同様な微少漏液の検知が得られる。
The liquid leak detection device according to this embodiment can also detect minute liquid leaks similar to the embodiment shown in FIG.

以上の通りこの発明によれば、導電体を充填し
てなる気孔質導電樹脂層と該気孔質導電樹脂層に
導電接続する少なくとも一対の電極とからなる絶
縁性液体を検知するための漏液センサと、該電極
間に導電接続する電源と、該電極間に導電接続す
る電圧検知器とを備え、且つ、該電源による給電
は、該気孔質導電樹脂層の内部抵抗を用いる加温
の為の該電極間への給電と、該気孔質導電樹脂層
の内部抵抗による電圧降下を測定する為の該電極
間及び該電圧検知器への給電とを選択的に給電す
ることを特徴とする漏液検知装置を構成すること
により、確実かつ経済的に微少漏液の検出が可能
な装置を提供することができる。
As described above, according to the present invention, a leakage sensor for detecting an insulating liquid includes a porous conductive resin layer filled with a conductor and at least a pair of electrodes conductively connected to the porous conductive resin layer. , a power source that is conductively connected between the electrodes, and a voltage detector that is conductively connected between the electrodes, and the power supply by the power source is for heating using the internal resistance of the porous conductive resin layer. A leakage liquid characterized by selectively supplying power between the electrodes and supplying power between the electrodes and to the voltage detector for measuring a voltage drop due to internal resistance of the porous conductive resin layer. By configuring the detection device, it is possible to provide a device that can reliably and economically detect minute leakage.

尚、この発明は上記実施例に限定されるもので
はなく、この発明の思想の範囲内で種々変更実施
することができるものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be modified and implemented in various ways within the scope of the idea of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれこの発明による異
なる実施例を示す漏液検知装置の概念図である。 1,8:漏液センサ、2,9:気孔質導電樹脂
層、3:給電電極、4:測定電極、5,11:通
液性外被、10:電極、6,12:電源、7,1
3:電圧検知器。
FIG. 1 and FIG. 2 are conceptual diagrams of a liquid leakage detection device showing different embodiments of the present invention. 1, 8: liquid leakage sensor, 2, 9: porous conductive resin layer, 3: power supply electrode, 4: measurement electrode, 5, 11: liquid-permeable jacket, 10: electrode, 6, 12: power supply, 7, 1
3: Voltage detector.

Claims (1)

【特許請求の範囲】 1 導電体を充填してなる気孔質導電樹脂層と該
気孔質導電樹脂層に導電接続する少なくとも一対
の電極とからなる絶縁性液体を検知するための漏
液センサと、該電極間に導電接続する電源と、該
電極間に導電接続する電圧検知器とを備え、且
つ、該電源による給電は、該気孔質導電樹脂層の
内部抵抗を用いる加温の為の該電極間への給電
と、該気孔質導電樹脂層の内部抵抗による電圧降
下を測定する為の該電極間及び該電圧検知器への
給電とを選択的に給電することを特徴とする漏液
検知装置。 2 特許請求の範囲第1項に記載の漏液検知装置
において、該電源による給電は、該気孔質導電樹
脂層の内部抵抗を用いる加温の為の該電極間への
給電と、該気孔質導電樹脂層の内部抵抗による電
圧降下を該電圧検知器によつて測定する為の該電
極間への給電とを交互に給電することを特徴とす
る漏液検知装置。 3 特許請求の範囲第1項又は第2項のいずれか
に記載の漏液検知装置において、該電源による該
電圧検知器への給電は、測定する為の該電源によ
る該電極間に給電する時のみに給電することを特
徴とする漏液検知装置。 4 特許請求の範囲第1項から第3項のいずれか
に記載の漏液検知装置において、該気孔質導電樹
脂層は押し出し成形した導電性四弗化エチレン樹
脂層からなることを特徴とする漏液検知装置。 5 特許請求の範囲第4項に記載の漏液検知装置
において、押し出し成形した導電性四弗化エチレ
ン樹脂層は未焼成又は半焼成であることを特徴と
する漏液検知装置。 6 特許請求の範囲第1項から第5項のいずれか
に記載の漏液検知装置において、漏液センサは外
周に通液性外被を有することを特徴とする漏液検
知装置。 7 特許請求の範囲第1項から第6項のいずれか
に記載の漏液検知装置において、漏液センサは該
気孔質導電樹脂層に導電接続する一対の給電電極
とこの給電電極の内側において該気孔質導電樹脂
層に導電接続する一対の測定電極との二対の電極
を有することを特徴とする漏液検知装置。
[Scope of Claims] 1. A liquid leakage sensor for detecting an insulating liquid, comprising a porous conductive resin layer filled with a conductor and at least a pair of electrodes conductively connected to the porous conductive resin layer; It is equipped with a power supply conductively connected between the electrodes and a voltage detector conductively connected between the electrodes, and the power supply is supplied to the electrodes for heating using the internal resistance of the porous conductive resin layer. A liquid leakage detection device characterized in that power is selectively supplied between the electrodes and to the voltage detector for measuring a voltage drop due to internal resistance of the porous conductive resin layer. . 2. In the liquid leakage detection device according to claim 1, power supply by the power supply includes power supply between the electrodes for heating using the internal resistance of the porous conductive resin layer, and power supply between the electrodes for heating using the internal resistance of the porous conductive resin layer. A liquid leakage detection device characterized in that power is alternately supplied between the electrodes for measuring a voltage drop due to the internal resistance of the conductive resin layer using the voltage detector. 3. In the liquid leakage detection device according to claim 1 or 2, power is supplied to the voltage detector by the power supply when power is supplied between the electrodes by the power supply for measurement. A liquid leakage detection device characterized by supplying power only to the 4. The liquid leakage detection device according to any one of claims 1 to 3, wherein the porous conductive resin layer is made of an extruded conductive tetrafluoroethylene resin layer. Liquid detection device. 5. The liquid leakage detection device according to claim 4, wherein the extruded conductive tetrafluoroethylene resin layer is unfired or semi-fired. 6. The liquid leakage detection device according to any one of claims 1 to 5, wherein the liquid leakage sensor has a liquid-permeable jacket on its outer periphery. 7. In the liquid leakage detection device according to any one of claims 1 to 6, the liquid leakage sensor includes a pair of power supply electrodes that are conductively connected to the porous conductive resin layer and a power supply electrode that is connected to the porous conductive resin layer. A liquid leakage detection device characterized by having two pairs of electrodes, a pair of measurement electrodes conductively connected to a porous conductive resin layer.
JP10902983A 1983-06-16 1983-06-16 Liquid leakage detector Granted JPS60338A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10902983A JPS60338A (en) 1983-06-16 1983-06-16 Liquid leakage detector
DE19843422394 DE3422394A1 (en) 1983-06-16 1984-06-15 Indicator for loss of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10902983A JPS60338A (en) 1983-06-16 1983-06-16 Liquid leakage detector

Publications (2)

Publication Number Publication Date
JPS60338A JPS60338A (en) 1985-01-05
JPH032256B2 true JPH032256B2 (en) 1991-01-14

Family

ID=14499796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10902983A Granted JPS60338A (en) 1983-06-16 1983-06-16 Liquid leakage detector

Country Status (2)

Country Link
JP (1) JPS60338A (en)
DE (1) DE3422394A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440057U (en) * 1987-09-04 1989-03-09
JPH0249552Y2 (en) * 1985-06-19 1990-12-27
JPH01163861U (en) * 1988-05-09 1989-11-15
JPH0227559U (en) * 1988-08-11 1990-02-22
DE4239495C2 (en) * 1992-11-25 1995-04-13 Willibald Luber Device for the non-destructive detection of damage to extensive seals such as bridges, tubs, landfill soles and flat roofs
DE10249787A1 (en) * 2002-10-24 2004-05-13 Körber, Karin System with sensors for the detection and location of wetting surfaces with liquid media and sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145697A (en) * 1977-05-25 1978-12-19 Junkosha Co Ltd Fluid sensor element
JPS564850B2 (en) * 1977-09-10 1981-02-02
JPS57165750A (en) * 1981-04-03 1982-10-12 Marcon Electronics Co Ltd Humidity-sensitive element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564850U (en) * 1979-06-26 1981-01-17

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145697A (en) * 1977-05-25 1978-12-19 Junkosha Co Ltd Fluid sensor element
JPS564850B2 (en) * 1977-09-10 1981-02-02
JPS57165750A (en) * 1981-04-03 1982-10-12 Marcon Electronics Co Ltd Humidity-sensitive element

Also Published As

Publication number Publication date
DE3422394C2 (en) 1989-09-14
JPS60338A (en) 1985-01-05
DE3422394A1 (en) 1984-12-20

Similar Documents

Publication Publication Date Title
US4206632A (en) Liquid detecting device
US5483164A (en) Water quality sensor apparatus
US2472214A (en) Pressure responsive electrical resistor
US4890492A (en) Differential pressure level sensor with temperature sensing elements
RU97117939A (en) MATRIX SENSOR FOR DETECTING ANALYTES IN LIQUIDS
US4891574A (en) Hygrometer with plural measuring bones and redundancy system circuit
SE9401711D0 (en) Cable for detecting fluid leakage
JPS5947256B2 (en) Fluid sensing element
JPH032256B2 (en)
EP0354673B1 (en) A solvent detecting sensor
EP0341932A3 (en) A leak detecting sensor
KR950009267A (en) Insulation oil deterioration measuring method and its measuring device
JPS55128123A (en) Device for detecting quantity of liquid in vessel
GB1472415A (en) Sensor cell
KR970706489A (en) Sensor for measuring gas concentration
US4415876A (en) Gas sensor
JPS59224550A (en) Liquid leak sensor
US20020032970A1 (en) Orientation sensor utilizing intra-pattern property measurements
US4894636A (en) Oil leakage detection device
JPS6324416Y2 (en)
JP2844162B2 (en) Vaporizable liquid discriminator
JPH03111751A (en) Kerosene detecting element
RU95121488A (en) GAS SENSOR
JPH0453556Y2 (en)
RU2081441C1 (en) Electrical field sensor contact electrode