JPH0322555Y2 - - Google Patents

Info

Publication number
JPH0322555Y2
JPH0322555Y2 JP1987076992U JP7699287U JPH0322555Y2 JP H0322555 Y2 JPH0322555 Y2 JP H0322555Y2 JP 1987076992 U JP1987076992 U JP 1987076992U JP 7699287 U JP7699287 U JP 7699287U JP H0322555 Y2 JPH0322555 Y2 JP H0322555Y2
Authority
JP
Japan
Prior art keywords
output signal
blade angle
interlocking member
movable
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987076992U
Other languages
Japanese (ja)
Other versions
JPS63186974U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987076992U priority Critical patent/JPH0322555Y2/ja
Publication of JPS63186974U publication Critical patent/JPS63186974U/ja
Application granted granted Critical
Publication of JPH0322555Y2 publication Critical patent/JPH0322555Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、可動翼の角度を調整する翼角操作軸
の軸方向位置を確実にサーボ制御できるようにし
た可動翼流体機械に関するのものである。
[Detailed description of the invention] (Field of industrial application) The present invention relates to a movable blade fluid machine that enables reliable servo control of the axial position of a blade angle operating shaft that adjusts the angle of a movable blade. be.

(従来の技術) 従来の可動翼流体機械の一例の縦断面図を第4
図に示す。第4図において、回転軸1を中空と
し、この回転軸1内に軸方向に移動可能に翼角操
作軸2が挿入されている。そして、回転軸1の先
端部に羽根車ボス3が固定され、この羽根車ボス
3に放射状に可動翼4,4……が配設されてい
る。さらに、これらの可動翼4,4……の取付軸
5,5……に設けたアーム6,6……が、翼角操
作軸2の先端に設けられたクロスヘツド7とリン
ク8,8……で適宜に連結され、翼角操作軸2の
軸方向移動により可動翼4,4……の角度が調整
されるよう構成されている。
(Prior art) A vertical cross-sectional view of an example of a conventional movable blade fluid machine is shown in Fig. 4.
As shown in the figure. In FIG. 4, a rotating shaft 1 is hollow, and a blade angle operating shaft 2 is inserted into the rotating shaft 1 so as to be movable in the axial direction. An impeller boss 3 is fixed to the tip of the rotating shaft 1, and movable blades 4, 4, . . . are arranged radially on the impeller boss 3. Furthermore, the arms 6, 6... provided on the mounting shafts 5, 5... of these movable blades 4, 4... are connected to the crosshead 7 provided at the tip of the blade angle operating shaft 2 and the links 8, 8... The movable blades 4, 4, .

また、回転軸1の他端部(第4図で上端部)に
サーボシリンダ9が設けられ、このサーボシリン
ダ9内に翼角操作軸2に連結されるサーボピスト
ン10が収納されている。サーボシリンダ9は、
電動機台11に載置固定される図示しない電動機
の軸と継手12で連結されている。そして、回転
軸1の外周に基礎13に固定された給油環14が
嵌合され、この給油環14に設けられた2つの圧
油導孔15,16の一方が回転軸1とサーボシリ
ンダ9を通る孔17を介してサーボシリンダ9内
をサーボピストン10で2分した一方の室(第4
図で上方室)に連通され、他方が回転軸1を通る
孔18を介してサーボシリンダ9内の他方の室
(第4図で下方室)に連通されている。そして、
圧油導孔15,16が、四方切換弁19を介して
圧油源20に連通されている。
Further, a servo cylinder 9 is provided at the other end (upper end in FIG. 4) of the rotating shaft 1, and a servo piston 10 connected to the blade angle operating shaft 2 is housed within the servo cylinder 9. The servo cylinder 9 is
It is connected by a joint 12 to the shaft of an electric motor (not shown) that is placed and fixed on a motor stand 11 . Then, an oil supply ring 14 fixed to the foundation 13 is fitted to the outer periphery of the rotating shaft 1, and one of the two pressure oil guide holes 15 and 16 provided in the oil supply ring 14 connects the rotating shaft 1 and the servo cylinder 9. The inside of the servo cylinder 9 is divided into two chambers (the fourth
The other chamber communicates with the other chamber (the lower chamber in FIG. 4) in the servo cylinder 9 through a hole 18 passing through the rotating shaft 1. and,
Pressure oil guide holes 15 and 16 communicate with a pressure oil source 20 via a four-way switching valve 19.

さらに、連結杆21がサーボシリンダ9の上部
壁を軸方向に移動可能であるとともに封密的に貫
通され、その一端がサーボピストン10に固着さ
れ、他端が回転軸1の外側で軸方向に移動可能な
環状の追従輪22に固着されている。そして、軸
23に揺動自在に設けられたレバー24の揺動端
が追従輪22に係合されている。この軸23には
図示しない出力信号発生器が設けられ、軸23の
回転角に応じた出力信号が出力される。そして、
この出力信号と翼角設定器25で設定出力される
設定信号とが比較増幅器26に与えられ、この比
較増幅器26の出力により出力信号と設定信号が
一致するよう四方切換弁19が切り換え制御され
る。
Further, a connecting rod 21 is axially movable and sealingly penetrates the upper wall of the servo cylinder 9, one end of which is fixed to the servo piston 10, and the other end is axially movable on the outside of the rotating shaft 1. It is fixed to a movable annular follower wheel 22. A swinging end of a lever 24 swingably provided on the shaft 23 is engaged with the follower wheel 22 . This shaft 23 is provided with an output signal generator (not shown), and an output signal corresponding to the rotation angle of the shaft 23 is output. and,
This output signal and the setting signal set and outputted by the blade angle setting device 25 are given to a comparison amplifier 26, and the four-way switching valve 19 is switched and controlled by the output of the comparison amplifier 26 so that the output signal and the setting signal match. .

かかる構成において、電動機を回転駆動させる
と、継手12を介して回転軸1が回転し、羽根車
ボス3に配設された可動翼4,4……が回転軸1
を軸として回転して揚力を生じさせる。
In such a configuration, when the electric motor is rotationally driven, the rotating shaft 1 rotates via the joint 12, and the movable blades 4, 4, .
It rotates around the axis to generate lift.

ここで、出力信号発生器から出力される出力信
号と翼角設定器25で設定出力される設定信号と
が一致していれば、比較増幅器26は出力を発生
せず、圧油導孔15,16のいずれにも圧油が導
入されずにサーボピストン10が軸方向に移動し
ない。そして、翼角操作軸2は回転軸1とともに
回転し、可動翼4,4……の角度は変化しない。
Here, if the output signal output from the output signal generator and the setting signal set and output by the blade angle setting device 25 match, the comparator amplifier 26 does not generate an output, and the pressure oil guide hole 15, Pressure oil is not introduced into any of the servo pistons 16 and the servo piston 10 does not move in the axial direction. The blade angle operating shaft 2 rotates together with the rotary shaft 1, and the angles of the movable blades 4, 4, . . . do not change.

ところで、出力信号発生器から出力される出力
信号と翼角設定器25から出力される設定信号と
が一致しないならば、比較増幅器26は四方切換
弁19を切り換えて圧油導孔15,16のいずれ
か一方に圧油を導入するとともに他方から排油さ
せて、サーボピストン10が軸方向に移動され
る。このサーボピストン10の移動にともないレ
バー24が揺動し、軸23に設けられた出力信号
発生器からの出力信号が変化して設定信号に一致
すると、比較増幅器26からの出力が消滅して四
方切換弁19が切り換えられてサーボピストン1
0の軸方向移動が停止する。この結果、サーボピ
ストン10に連結される翼角操作軸2は翼角設定
器25で設定された設定信号に応じたサーボ制御
がなされる。そして、翼角操作軸2の軸方向移動
により、クロスヘツド7とリンク8,8……およ
びアーム6,6……を介して取付軸5,5……が
回転され、可動翼4,4……の角度の調整がなさ
れる。
By the way, if the output signal output from the output signal generator and the setting signal output from the blade angle setting device 25 do not match, the comparison amplifier 26 switches the four-way switching valve 19 to adjust the pressure oil guide holes 15 and 16. The servo piston 10 is moved in the axial direction by introducing pressure oil into one of the pistons and draining the oil from the other. As the servo piston 10 moves, the lever 24 swings, and when the output signal from the output signal generator provided on the shaft 23 changes and matches the set signal, the output from the comparator amplifier 26 disappears and The switching valve 19 is switched and the servo piston 1
0's axial movement stops. As a result, the blade angle operating shaft 2 connected to the servo piston 10 is servo-controlled in accordance with the setting signal set by the blade angle setting device 25. Then, by the axial movement of the blade angle operating shaft 2, the mounting shafts 5, 5... are rotated via the crosshead 7, links 8, 8... and arms 6, 6..., and the movable blades 4, 4... The angle is adjusted.

(考案が解決しようとする問題点) ところで、上記した従来の可動翼流体機械にあ
つては、サーボピストン10の位置を連結杆21
を介して追従輪22に伝達しているが、この追従
輪22は回転軸1とともに回転されており、追従
輪22が回転軸1の軸芯に直角な平面上で回転さ
れていなければ、レバー24の揺動端が振れて軸
23の回転角が一定しない。このため、出力信号
発生器から翼角操作軸2の軸方向位置に正確に対
応した出力信号が出力されず、正確なサーボ制御
が難しい。このため、追従輪22を回転軸1の軸
芯に直角な平面上に精度良く組み立てなければな
らず、熟練した作業者が多くの作業時間を必要と
するという問題点がある。また、運転状態の切り
換えによる流体力的加振力や地震等による加振力
により、回転軸1が芯振れを生じた際にも、レバ
ー24の揺動端が振れて出力信号発生器からの出
力信号が変化し易いという問題点がある。
(Problem to be solved by the invention) By the way, in the above-mentioned conventional movable blade fluid machine, the position of the servo piston 10 is set to the connecting rod 21.
However, the following wheel 22 is rotated together with the rotating shaft 1, and if the following wheel 22 is not rotated on a plane perpendicular to the axis of the rotating shaft 1, the lever The swing end of the shaft 24 swings, and the rotation angle of the shaft 23 is not constant. For this reason, the output signal generator does not output an output signal that accurately corresponds to the axial position of the blade angle control shaft 2, making accurate servo control difficult. For this reason, the follower wheel 22 must be accurately assembled on a plane perpendicular to the axis of the rotary shaft 1, which poses a problem in that a skilled worker requires a lot of work time. Furthermore, even when the rotating shaft 1 undergoes center runout due to hydrodynamic excitation force due to switching of operating conditions or excitation force due to earthquakes, the swing end of the lever 24 swings and the output signal generator is turned off. There is a problem that the output signal tends to change.

なお、追従輪22に相当する金属製円板の軸方
向の位置を、1つの磁気近接センサーにより検出
する技術が実開昭60−90987号公報に開示されて
いるが、上記従来例と同様に、金属製円板を回転
軸の軸芯と直交する平面上に確実に組み立てなけ
ればならず、組み立て作業が難しいという問題点
がある。そして、金属製の円板が回転軸と直交す
るように組み立てられていないと、磁気近接セン
サーで検出される信号に脈動が含まれる。さら
に、この従来技術にあつては、金属製の円板の軸
方向移動を軸方向距離の変化量として磁気近接セ
ンサーで検出しており、大型の可動翼流体機械に
あつては翼角を制御する軸の軸方向移動が100mm
に及ぶものもあり、かかる大きな距離の変化を測
定できる磁気近接センサーは特殊で高価なもので
あり、装置全体が高価になるという不具合があ
る。
Note that a technique for detecting the axial position of a metal disk corresponding to the follower wheel 22 using a single magnetic proximity sensor is disclosed in Japanese Utility Model Application Publication No. 60-90987; However, there is a problem in that the metal disk must be reliably assembled on a plane perpendicular to the axis of the rotating shaft, making the assembly work difficult. If the metal disk is not assembled perpendicular to the rotation axis, the signal detected by the magnetic proximity sensor will contain pulsations. Furthermore, in this conventional technology, the axial movement of the metal disc is detected as a change in axial distance using a magnetic proximity sensor, and in the case of large movable blade fluid machines, the blade angle is controlled. The axial movement of the axis is 100mm.
Magnetic proximity sensors that can measure such large changes in distance are special and expensive, making the entire device expensive.

本考案の目的は、上記した従来の可動翼流体機
械の問題点を解決すべくなされたもので、翼角操
作軸の軸方向の位置を検出する機構が容易に組み
立てられ、しかも翼角操作軸の軸方向位置を確実
にサーボ制御できるようにした可動翼流体機械を
提供することにある。
The purpose of the present invention was to solve the above-mentioned problems of conventional movable blade fluid machines. An object of the present invention is to provide a movable blade fluid machine in which the axial position of the blade can be reliably servo controlled.

(問題を解決するための手段) かかる目的を達成するために、本考案の可動翼
流体機械は、軸方向に移動可能に翼角操作軸を回
転軸内に設け、この翼角操作軸の移動によつて前
記回転軸の先端部に設けた可動翼の角度を調整す
る可動翼流体機械において、前記回転軸の外側に
前記翼角操作軸と連動して軸方向に移動する環状
連動部材を配設し、この環状連動部材の外周に軸
直角方向から臨んで同芯上を均等分割した位置に
前記環状連動部材の軸方向移動を軸直角方向から
検出して出力信号が変化する複数の非接触形位置
検出器を配設し、前記複数の非接触形位置検出器
の出力信号を演算器に与えて前記出力信号の加算
値に応じた演算出力信号を発生させ、この演算出
力信号と翼角設定器から出力される設定信号とに
より前記翼角操作軸をサーボ制御するように構成
されている。
(Means for Solving the Problem) In order to achieve the above object, the movable blade fluid machine of the present invention includes a blade angle operating shaft that is movable in the axial direction and is provided within the rotating shaft, and the blade angle operating shaft is moved. In the movable blade fluid machine that adjusts the angle of a movable blade provided at the tip of the rotating shaft, an annular interlocking member that moves in the axial direction in conjunction with the blade angle operating shaft is disposed outside the rotating shaft. A plurality of non-contact sensors are installed on the outer periphery of the annular interlocking member at positions equally divided concentrically from the direction perpendicular to the axis, and the output signal changes by detecting the axial movement of the annular interlocking member from the direction perpendicular to the axis. A type position detector is provided, and the output signals of the plurality of non-contact type position detectors are provided to a computing unit to generate a computed output signal corresponding to the sum of the output signals, and the computed output signal and the blade angle are The blade angle control shaft is configured to be servo-controlled by a setting signal output from a setting device.

(作用) 翼角操作軸と連動して軸方向に移動する環状連
動部材を配設し、この環状連動部材の外周に軸直
角方向から臨んで同芯円上を均等分割した位置に
複数の非接触形位置検出器を配設し、これらの出
力信号の加算値に応じた演算出力信号を演算器か
ら出力させるようにしたので、環状連動部材の軸
芯が回転軸の軸芯と一致せずに横振れ等しても、
複数の非接触形位置検出器からの出力信号の加算
値はほぼ一定であり、演算器から翼角操作軸の軸
方向位置に応じて安定した演算出力信号が得られ
る。また、非接触形位置検出器は、環状連動部材
の外周に軸直角方向から臨んで配設されるので、
この環状連動部材の軸方向移動の大きな変位量を
小さいレンジの変化量に変換して測定し得る。
(Function) An annular interlocking member that moves in the axial direction in conjunction with the blade angle operating shaft is provided, and a plurality of non-contact members are placed on the outer periphery of the annular interlocking member at positions equally divided on a concentric circle, facing from a direction perpendicular to the axis. Since a contact type position detector is installed and a calculation output signal corresponding to the sum of these output signals is output from the calculation unit, the axis of the annular interlocking member does not coincide with the axis of the rotating shaft. Even if there is a sideways shake, etc.,
The sum of the output signals from the plurality of non-contact position detectors is approximately constant, and a stable calculation output signal can be obtained from the calculation unit according to the axial position of the blade angle operation axis. In addition, since the non-contact position detector is arranged facing the outer periphery of the annular interlocking member from the direction perpendicular to the axis,
A large amount of displacement in the axial movement of this annular interlocking member can be converted into a change amount in a small range and measured.

(実施例の説明) 以下、本考案の実施例を第1図を参照して説明
する。第1図は、本考案の可動翼流体機械の翼角
操作軸の軸方向の位置を検出する機構を示す要部
縦断面図である。第1図において、第4図と同一
部材には同一符号を付して重複する説明を省略す
る。
(Description of Embodiments) Hereinafter, embodiments of the present invention will be described with reference to FIG. FIG. 1 is a longitudinal sectional view of a main part showing a mechanism for detecting the axial position of a blade angle operating shaft of a movable blade fluid machine according to the present invention. In FIG. 1, the same members as those in FIG. 4 are given the same reference numerals and redundant explanations will be omitted.

第1図において、複数の連結杆21,21がサ
ーボシリンダ9の上部壁を軸方向に移動可能であ
るとともに封密的でしかも回転軸1の軸芯対称の
位置に貫通され、それぞれの一端がサーボピスト
ン10に固着され、それぞれの他端が回転軸1の
外側で軸方向に移動可能であるとともに外周が下
拡がりのテーパ状の強磁性体金属の筒体からなる
環状連動部材30に固着されている。さらに、こ
の環状連動部材30の外周に軸直角方向から臨ん
で2個の非接触形位置検出器としての磁気近接セ
ンサー31,31が回転軸1の軸芯対称の位置に
配設されている。これらの磁気近接センサー3
1,31から出力される出力信号は演算器32に
より加算値または平均値が算出されて演算出力信
号として出力される。そして、この演算出力信号
と翼角設定器25から出力される設定信号が比較
増幅器26で比較されて、四方切換弁19の制御
がなされる。
In FIG. 1, a plurality of connecting rods 21, 21 are movable in the axial direction of the upper wall of the servo cylinder 9, are hermetically penetrated at positions symmetrical to the axis of the rotating shaft 1, and one end of each rod is axially movable. It is fixed to the servo piston 10, and its other end is fixed to an annular interlocking member 30 which is movable in the axial direction outside the rotating shaft 1 and is made of a tapered ferromagnetic metal cylinder whose outer periphery widens downward. ing. Further, two magnetic proximity sensors 31, 31 as non-contact type position detectors are disposed on the outer periphery of the annular interlocking member 30 in positions symmetrical to the axis of the rotating shaft 1, facing from a direction perpendicular to the axis. These magnetic proximity sensors 3
A calculation unit 32 calculates an addition value or an average value of the output signals output from the output signals 1 and 31, and outputs the resultant value as a calculation output signal. The comparator output signal and the setting signal output from the blade angle setter 25 are compared by a comparator amplifier 26, and the four-way switching valve 19 is controlled.

かかる構成において、翼角操作軸2の軸方向の
位置に連動し環状連動部材30の軸方向の位置が
変化し、環状連動部材30の外周のテーパにより
磁気近接センサー31,31との距離が変化して
出力信号が変化する。なお、磁気近接センサー3
1,31は、環状連動部材30を感応片とするう
ず電流効果によりインダクタンスが変化する高周
波コイルを備え、このインダクタンスの変化によ
り出力電圧が変化するものである。
In this configuration, the axial position of the annular interlocking member 30 changes in conjunction with the axial position of the blade angle operation shaft 2, and the distance from the magnetic proximity sensors 31, 31 changes due to the taper of the outer periphery of the annular interlocking member 30. The output signal changes. In addition, magnetic proximity sensor 3
Reference numerals 1 and 31 are equipped with high-frequency coils whose inductance changes due to the eddy current effect using the annular interlocking member 30 as a sensitive piece, and the output voltage changes due to the change in inductance.

ここで、環状連動部材30の軸芯が回転軸1の
軸芯とずれまたは傾いて組み立てられているとす
ると、軸芯が一致した場合に比べて交互に2個の
磁気近接センサー31,31の一方の出力信号が
小さくなり他方の出力信号が大きくなる。しかし
ながら、2個の磁気近接センサー31,31が対
称の位置に配設されるので、一方の出力信号が小
さくなつた分だけ他方の出力信号が大きくなり、
演算器32から出力される加算値または平均値で
ある演算出力信号はほぼ一定となる。
Here, if the axis of the annular interlocking member 30 is misaligned or tilted with respect to the axis of the rotating shaft 1, the two magnetic proximity sensors 31, 31 are alternately connected to each other, compared to a case where the axes are aligned. One output signal becomes small and the other output signal becomes large. However, since the two magnetic proximity sensors 31, 31 are arranged at symmetrical positions, as the output signal of one becomes smaller, the output signal of the other becomes larger.
The calculation output signal, which is an added value or an average value, output from the calculation unit 32 is approximately constant.

そして、この演算出力信号は翼角操作軸2の軸
方向の位置に正確に対応するとともに安定してお
り、翼角操作軸2の軸方向位置を正確にサーボ制
御できる。
This calculated output signal accurately corresponds to the axial position of the blade angle operating shaft 2 and is stable, allowing accurate servo control of the axial position of the blade angle operating shaft 2.

また、環状連動部材30の軸方向移動の大きな
変位量が、環状連動部材30の外周のテーパの角
度により、環状連動部材30と磁気近接センサー
31,31の距離の小さな変化量に変換される。
このため、テーパーの角度を適宜に設定すること
で、環状連動部材30の軸方向の大きい変位量
を、磁気近接センサー31,31の測定レンジの
範囲に応じた小さなレンジの軸直角方向の距離の
変化量に変換することができ、大型な可動翼流体
機械の測定であつても市販の安価な磁気近接セン
サーを使用することができる。
Further, a large amount of displacement in the axial direction of the annular interlocking member 30 is converted into a small amount of change in the distance between the annular interlocking member 30 and the magnetic proximity sensors 31, 31, depending on the taper angle of the outer periphery of the annular interlocking member 30.
Therefore, by appropriately setting the angle of the taper, a large amount of displacement in the axial direction of the annular interlocking member 30 can be controlled by a distance in the direction perpendicular to the axis in a small range corresponding to the measurement range of the magnetic proximity sensors 31, 31. It can be converted into a change amount, and a commercially available inexpensive magnetic proximity sensor can be used even when measuring a large movable blade fluid machine.

第2図および第3図は、本考案の可動翼流体機
械の非接触形位置検出器として光センサーを用い
た他の実施例である。第2図は、要部縦断面図で
あり、第3図は、第2図のA矢視図である。
FIGS. 2 and 3 show other embodiments in which an optical sensor is used as a non-contact position detector for a movable blade fluid machine according to the present invention. FIG. 2 is a longitudinal sectional view of a main part, and FIG. 3 is a view taken along arrow A in FIG.

第2図および第3図において、連結杆21,2
1に固着される環状連動部材40は、筒状であつ
て、側面に軸方向片側に拡大する三角窓41,4
1が軸芯対称に穿設され、この三角窓41,41
を挟むようにして受光素子を発光素子と配置され
る光センサー42,42が回転軸1の軸芯対称に
配設されている。そして、環状連動部材40の軸
方向位置により受光素子の受光量が変化し、受光
素子のインピーダンスが適宜に電圧等に変換され
て出力信号とされる。
In Figures 2 and 3, connecting rods 21, 2
The annular interlocking member 40 fixed to 1 has a cylindrical shape, and has triangular windows 41, 4 on the side that expand to one side in the axial direction.
1 are drilled axially symmetrically, and these triangular windows 41, 41
Photosensors 42, 42, in which a light receiving element and a light emitting element are arranged in such a way as to sandwich the light receiving element and the light emitting element, are arranged symmetrically about the axis of the rotating shaft 1. The amount of light received by the light receiving element changes depending on the axial position of the annular interlocking member 40, and the impedance of the light receiving element is appropriately converted into a voltage or the like and used as an output signal.

かかる構成において、環状連動部材40の軸芯
が回転軸1の軸芯からずれまたは傾いていても、
対称に配設された光センサー42,42からの出
力信号の加算値または平近値はほぼ一定である。
また、環状連動部材40の三角窓41,41の形
状により、環状連動部材40の軸方向の変位量
を、光センサー42,42の適宜な範囲の受光量
の変化に変換できる。
In such a configuration, even if the axis of the annular interlocking member 40 is deviated from or tilted from the axis of the rotating shaft 1,
The sum or average value of the output signals from the symmetrically arranged optical sensors 42, 42 is approximately constant.
Further, due to the shape of the triangular windows 41, 41 of the annular interlocking member 40, the amount of displacement in the axial direction of the annular interlocking member 40 can be converted into a change in the amount of light received by the optical sensors 42, 42 within an appropriate range.

なお、上記実施例では、非接触形位置検出器と
しての2個の磁気近接センサー31,31および
2個の光センサー42,42が回転軸1に対して
対称に配設されているが、これらに限られず、2
個以上の非接触形位置検出器を同芯円上を均等分
割する位置に配設し、これらの出力信号の加算値
または平均値を演算器32で演算出力信号として
出力させても良い。また、光センサー42,42
は上記実施例のごとく透過形に限られず、反射形
であつても良く、さらに非接触形位置検出器は上
記実施例に限られず、ホール素子等を用いて構成
しても良い。そして、感応片としての環状連動部
材30,40は、筒体に限られず円板状であつて
も良い。さらに、本考案の可動翼流体機械は、ポ
ンプのみならず水車や風車および逆風機等にも応
用することができる。そしてさらに、翼角操作軸
2が機械的に軸方向に移動されるものであつても
良い。
In the above embodiment, two magnetic proximity sensors 31, 31 and two optical sensors 42, 42 as non-contact position detectors are arranged symmetrically with respect to the rotation axis 1. Not limited to 2
It is also possible to arrange more than one non-contact type position detector at equally divided positions on a concentric circle, and have the arithmetic unit 32 output the sum or average value of these output signals as a calculated output signal. In addition, the optical sensors 42, 42
The sensor is not limited to the transmission type as in the above embodiment, but may be a reflection type.Furthermore, the non-contact position detector is not limited to the above embodiment, but may be constructed using a Hall element or the like. The annular interlocking members 30 and 40 as sensitive pieces are not limited to cylinders, but may be disk-shaped. Furthermore, the movable blade fluid machine of the present invention can be applied not only to pumps but also to water turbines, wind turbines, headwind machines, and the like. Further, the blade angle operating shaft 2 may be mechanically moved in the axial direction.

(考案の効果) 以上説明したように、本考案の可動翼流体機械
によれば、環状連動部材の軸芯が回転軸の軸芯か
らずれまたは傾いて組み立てられていても、演算
器から翼角操作軸の軸方向位置に正確に対応して
安定な演算出力信号を得ることができ、正確なサ
ーボ制御ができるので、環状連動部材の組み立て
誤差が許容されて組み立てや保守点検が容易であ
る。また、回転軸の芯振れ等に対しても安定した
演算出力信号が得られてサーボ制御が正確になし
得る。また、翼角操作軸の軸方向移動に連動する
環状連動部材の軸方向移動の変位量を非接触形位
置検出器の測定レンジの範囲に応じて適宜な変化
量に変換して測定することができ、大量に市販さ
れる安価な非接触形位置検出器を用いることがで
きて装置全体が安価なものとなるという優れた効
果を奏する。
(Effect of the invention) As explained above, according to the movable blade fluid machine of the invention, even if the axis of the annular interlocking member is deviated from or tilted from the axis of the rotating shaft, the blade angle It is possible to obtain a stable calculation output signal that accurately corresponds to the axial position of the operating shaft, and accurate servo control is possible, so assembly errors in the annular interlocking member are tolerated, making assembly and maintenance inspection easy. In addition, a stable calculation output signal can be obtained even with respect to center runout of the rotating shaft, and servo control can be performed accurately. In addition, it is possible to convert the amount of displacement of the axial movement of the annular interlocking member that is linked to the axial movement of the blade angle operation shaft into an appropriate amount of change according to the measurement range of the non-contact position detector. This has an excellent effect in that inexpensive non-contact position detectors that are commercially available in large quantities can be used, and the entire device can be made inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の可動翼流体機械の翼角操作
軸の軸方向の位置を検出する機構を実す要部縦断
面図であり、第2図は、本考案の可動翼流体機械
の非接触形位置検出器として光センサーを用いた
他の実施例の要部縦断面図であり、第3図は、第
2図のA矢視図であり、第4図は、従来の可動翼
流体機械の一例の縦断面図である。 1……回転軸、2……翼角操作軸、4……可動
翼、25……翼角設定器、30,40……環状連
動部材、31……磁気近接センサー、32……演
算器、42……光センサー。
FIG. 1 is a longitudinal cross-sectional view of the main part of the mechanism for detecting the axial position of the blade angle operating axis of the movable blade fluid machine of the present invention, and FIG. FIG. 3 is a vertical sectional view of a main part of another embodiment using an optical sensor as a non-contact position detector, FIG. 3 is a view taken in the direction of arrow A in FIG. 2, and FIG. FIG. 2 is a vertical cross-sectional view of an example of a fluid machine. DESCRIPTION OF SYMBOLS 1... Rotation axis, 2... Blade angle operation axis, 4... Movable blade, 25... Blade angle setter, 30, 40... Annular interlocking member, 31... Magnetic proximity sensor, 32... Arithmetic unit, 42...Light sensor.

Claims (1)

【実用新案登録請求の範囲】 (1) 軸方向に移動可能に翼角操作軸を回転軸内に
設け、この翼角操作軸の移動によつて前記回転
軸の先端部に設けた可動翼の角度を調整する可
動翼流体機械において、前記回転軸の外側に前
記翼角操作軸と連動して軸方向に移動する環状
連動部材を配設し、この環状連動部材の外周に
軸直角方向から臨んで同芯円上を均等分割した
位置に前記環状連動部材の軸方向移動を軸直角
方向から検出して出力信号が変化する複数の非
接触形位置検出器を配設し、前記複数の非接触
形位置検出器の出力信号を演算器に与えて前記
出力信号の加算値に応じた演算出力信号を発生
させ、この演算出力信号と翼角設定器から出力
される設定信号とにより前記翼角操作軸をサー
ボ制御するように構成したことを特徴とする可
動翼流体機械。 (2) 前記環状連動部材が外周をテーパ状とした筒
体からなり、前記非接触形位置検出器が磁気近
接センサーであることを特徴とする実用新案登
録請求の範囲第1項記載の可動翼流体機械。
[Claims for Utility Model Registration] (1) A blade angle operating shaft is provided within the rotating shaft so as to be movable in the axial direction, and movement of the blade angle operating shaft allows the movable blade provided at the tip of the rotating shaft to be moved. In a movable blade fluid machine that adjusts an angle, an annular interlocking member that moves in the axial direction in conjunction with the blade angle operating shaft is disposed outside the rotating shaft, and the outer periphery of the annular interlocking member is faced from a direction perpendicular to the axis. A plurality of non-contact type position detectors that detect the axial movement of the annular interlocking member from a direction perpendicular to the axis and change the output signal are arranged at positions equally divided on a concentric circle by the plurality of non-contact type position detectors. The output signal of the shape position detector is given to a calculation unit to generate a calculation output signal according to the sum of the output signals, and the blade angle is controlled by this calculation output signal and the setting signal output from the blade angle setting device. A movable wing fluid machine characterized in that the axis is configured to be servo controlled. (2) The movable wing according to claim 1, wherein the annular interlocking member is a cylindrical body with a tapered outer periphery, and the non-contact position detector is a magnetic proximity sensor. Fluid machinery.
JP1987076992U 1987-05-22 1987-05-22 Expired JPH0322555Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987076992U JPH0322555Y2 (en) 1987-05-22 1987-05-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987076992U JPH0322555Y2 (en) 1987-05-22 1987-05-22

Publications (2)

Publication Number Publication Date
JPS63186974U JPS63186974U (en) 1988-11-30
JPH0322555Y2 true JPH0322555Y2 (en) 1991-05-16

Family

ID=30924584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987076992U Expired JPH0322555Y2 (en) 1987-05-22 1987-05-22

Country Status (1)

Country Link
JP (1) JPH0322555Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562497A (en) * 1979-06-22 1981-01-12 Hitachi Ltd Blade controller for movable-blade pump
JPS6090987A (en) * 1983-10-25 1985-05-22 Ebara Corp Blade angle control device for hydraulic machine equipped with movable blade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562497A (en) * 1979-06-22 1981-01-12 Hitachi Ltd Blade controller for movable-blade pump
JPS6090987A (en) * 1983-10-25 1985-05-22 Ebara Corp Blade angle control device for hydraulic machine equipped with movable blade

Also Published As

Publication number Publication date
JPS63186974U (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US6213713B1 (en) Apparatus for indicating pitch angle of a propeller blade
US10184780B2 (en) Position sensor and actuator with position sensor
US4668911A (en) Apparatus for making non-contact angular deflection measurements
KR20070117448A (en) Device for measuring the adjusting stroke of a hydrualic adjustment device
US4899596A (en) Self-calibrating torque measuring system
JPH0322555Y2 (en)
EP3379198B1 (en) Method and system for detecting bend in rotating shaft of magnetic bearing
CN106123809A (en) A kind of sub-rad level angle-measuring equipment
JPH0526485Y2 (en)
JPH03530Y2 (en)
CN109163676A (en) A kind of development machine suspending arm rotary angle detection method and device
CN214502489U (en) Magnetic suspension rotor pose sensor calibration table
KR100396300B1 (en) Absolute angle sensor of steering system for vehicle
JPH05142071A (en) Torque transmission device
JP3438460B2 (en) Magnetic rotation angle sensor
CN112066870A (en) Agricultural machinery steering angle measuring device
JPH11325858A (en) Method for detecting angle position of element rotatable or turnable around rotary axis
JP2000171239A (en) Rotational angle detecting device
JPH041344Y2 (en)
CN216815340U (en) Centering device for paired wheels of steam turbine
JPH07224600A (en) Method of measuring segment shape for shielding construction work
CN220437339U (en) Magnetic induction single-turn absolute encoder
CN115876076A (en) Centering device for paired wheels of steam turbine
CN113566887A (en) Suspension motor rotor suspension position, deflection angle and rotating speed integrated detection system and application
JP2000018943A (en) Displacement measuring instrument for circumferential surface