JPH0322515A - Impregnation of electrode for energy storage element with solid electrolyte - Google Patents

Impregnation of electrode for energy storage element with solid electrolyte

Info

Publication number
JPH0322515A
JPH0322515A JP1157484A JP15748489A JPH0322515A JP H0322515 A JPH0322515 A JP H0322515A JP 1157484 A JP1157484 A JP 1157484A JP 15748489 A JP15748489 A JP 15748489A JP H0322515 A JPH0322515 A JP H0322515A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
electrolyte
organic solvent
polalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1157484A
Other languages
Japanese (ja)
Other versions
JPH0715861B2 (en
Inventor
Satoru Okubo
哲 大久保
Yoshikatsu Kimura
好克 木村
Kaname Kurihara
要 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP1157484A priority Critical patent/JPH0715861B2/en
Publication of JPH0322515A publication Critical patent/JPH0322515A/en
Publication of JPH0715861B2 publication Critical patent/JPH0715861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To effectively impregnate high molecular conductive solid electrolyte into a polalized electrode by a method wherein a solid electrolyte monomer is diluted with an organic solvent, a crosslinking agent to be used to bring an electrolyte into the state of high molecule is added, and after the above-mentioned solution has been impregnated into a polalized electrode, a crosslinking reaction progressing process, in which the organic solvent is volatiled, is repeated in a prescribed number of times by volatiling the organic solution. CONSTITUTION:After a solid electrolyte monomer has been diluted into an organic solution, a crosslinking agent to be used to bring an electrolyte into the state of high molecule is added. Before a crosslinking reaction makes progress and the electrolyte is brought in the state of high molecule, after the solution has been impregnated into a polalized electrode, a crosslinking reaction makes progress by volatiling the organic solvent. The above-mentioned process is repeated in the prescribed number of times until the high molecule conductive solid electrolyte is filled up into the inner part of fine holes of the molecular electrode. The impregnation into the molecular electrode is conducted using a nozzle and the like, for example, and pertaining to the volatiling method for the organic solvent, a heating method and the like is used, for example. As a result, the solid electrolyte can be impregnated into the minute parts of the polalized electrode in the monomer state having low molecular weight, and a highly efficient polalized electrode utilizing the carbon and activated charcoal having a very wide surface area, can be obtained by progressing crosslinking reaction and also by bringing the electrolyte into the state of molecule.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気二重層コンデンサ、リチウムニ次電池な
どのエネルギー貯蔵素子に用いられる分極性電極に関し
、さらに詳しく言えば、その分極性電極に対する固体電
解質の含浸方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a polarizable electrode used in energy storage devices such as electric double layer capacitors and lithium secondary batteries, and more specifically, to a solid electrolyte for the polarizable electrode. The present invention relates to an impregnation method.

〔従来の技術〕[Conventional technology]

電気二重層コンデンサを例にとって説明すると、この種
のコンデンサは例えばカーボン、活性炭を適当なバイン
ダー(ポリテ1−ラフルオロエチレン;PTFE)で混
練してなるシート状の分極性電極、または活性炭繊維を
素材とした分極性電極を備え、このような分極性電極に
高分子化させた導電性固体電解質を加熱、加圧などで含
浸させていた。
Taking an electric double layer capacitor as an example, this type of capacitor is made of sheet-like polarizable electrodes made of carbon or activated carbon kneaded with a suitable binder (polytetrafluoroethylene; PTFE), or activated carbon fibers. These polarizable electrodes were impregnated with a polymerized conductive solid electrolyte by heating, pressurizing, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この分極性電極に使用されるカーボンや活性炭あるいは
活性炭繊維は微細孔を多くもつために表面積がきわめて
大きい。しかしながら、高分子導電性固体電解質は粘性
が非常に尚いため、その分極性電極の細部にまで含浸さ
せることは困難であり、したがって表向積が大きく微細
孔をもつカーボンや活性炭あるいは活性炭繊維の性能を
十分に利用することができなかった。
The carbon, activated carbon, or activated carbon fiber used in this polarizable electrode has many micropores and therefore has an extremely large surface area. However, the viscosity of polymeric conductive solid electrolytes is very low, so it is difficult to impregnate the polarizable electrodes into the fine details. could not be fully utilized.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、この発明においては、カーボ
ンや活性炭あるいは活性炭繊維などからなる分極性電極
へ固体電解質を含浸させるにあたって、 固体電解質のモノマーを有機溶媒に溶かして(好ましく
は5〜50wt%)希釈したのち、その溶液に電解質を
高分子化するための架橋剤を添加する。
In order to solve the above problems, in this invention, when impregnating a polarizable electrode made of carbon, activated carbon, activated carbon fiber, etc. with a solid electrolyte, a monomer of the solid electrolyte is dissolved in an organic solvent (preferably 5 to 50 wt%). After dilution, a crosslinking agent for polymerizing the electrolyte is added to the solution.

架橋反応が進み高分子化する前に、上記溶液を分極性電
極に含浸させ、しかるのち有機溶媒を揮発させて架橋反
応を進行させる。これを分極性電極の細孔内部まで高分
子化された導電性固体電解質が充填されるまで所定回数
繰り返す。
Before the crosslinking reaction progresses and polymerization occurs, the polarizable electrode is impregnated with the above solution, and then the organic solvent is evaporated to allow the crosslinking reaction to proceed. This is repeated a predetermined number of times until the interior of the pores of the polarizable electrode is filled with the polymerized conductive solid electrolyte.

分極性電極への含浸は例えばノズルなどにより行うこと
が好ましく、また、有機溶媒の揮発方法としては、例え
ば加熱、減圧、送風などがある。
The polarizable electrode is preferably impregnated using a nozzle, and methods for volatilizing the organic solvent include, for example, heating, reduced pressure, and blowing air.

これによれば、固体電解質を分子量の低い七ノマーの状
態で分極性電極の細部にまで含浸させることができ、そ
の後架橋反応が進み高分子化することで、表面積の非常
に大きいカーボンや活性炭あるいは活性炭繊維を利用し
た高性能の分極性電極が得られる。
According to this method, the solid electrolyte can be impregnated into the fine details of the polarizable electrode in the state of a heptamer with a low molecular weight, and then the crosslinking reaction progresses and the polymer is formed. A high-performance polarizable electrode using activated carbon fibers can be obtained.

〔実 施 例〕〔Example〕

活性炭粉末、カーボンブラック、有機バインダー (P
TFE)を80:10:10の割合で混練し、直径1 
2mm、厚さ0,65n+II1に形成したシート状の
分極性電極を用意し、これに希釈度合の異なる品分子の
導電性固体電解質を含浸した2枚の分極性電極を対向さ
せて電気二重層コンデンサを試作(翫1〜9)し、その
静電容量(Cap;F)および等価直列抵抗(ESR;
Ω)を測定した結果を次頁の表に示す。
Activated carbon powder, carbon black, organic binder (P
TFE) in a ratio of 80:10:10, and
A sheet-like polarizable electrode formed to a thickness of 2 mm and a thickness of 0.65n+II1 is prepared, and two polarizable electrodes impregnated with conductive solid electrolytes of different dilutions are placed facing each other to form an electric double layer capacitor. (1 to 9), and its capacitance (Cap; F) and equivalent series resistance (ESR;
The results of measuring Ω) are shown in the table on the next page.

なお、この実施例ではポリエーテル系のポリマーをメチ
ルエチルケトンを溶媒として希釈した。
In this example, the polyether polymer was diluted using methyl ethyl ketone as a solvent.

メチルエチルケトンに代えてアセトンを使用することも
できる。そして、この希釈液に架橋剤を添加したもので
ある。
Acetone can also be used instead of methyl ethyl ketone. A crosslinking agent is added to this diluted solution.

−3− 《表》 −4− される分極性電極に対して高分子導電性固体電解質を効
果的に含浸させることができ,したがって、高性能なエ
ネルギー貯蔵素子を製造することが可能となる。
-3- <<Table>> -4- It is possible to effectively impregnate the polarizable electrode with the conductive polymer solid electrolyte, and therefore it becomes possible to manufacture a high-performance energy storage element.

Claims (2)

【特許請求の範囲】[Claims] (1)カーボンや活性炭あるいは活性炭繊維などからな
るエネルギー貯蔵素子用分極性電極への固体電解質の含
浸方法において、 固体電解質のモノマーを有機溶媒で希釈するとともに、
同電解質を高分子化するための架橋剤を添加し、この溶
液を上記分極性電極に含浸させたのち、有機溶媒を揮発
させて架橋反応を進行させる工程を所定回数繰り返すこ
とを特徴とするエネルギー貯蔵素子用電極への固体電解
質の含浸方法。
(1) In a method of impregnating a polarizable electrode for an energy storage device made of carbon, activated carbon, or activated carbon fiber with a solid electrolyte, the monomer of the solid electrolyte is diluted with an organic solvent, and
Energy characterized by adding a crosslinking agent to polymerize the electrolyte, impregnating the polarizable electrode with this solution, and then repeating the process of volatilizing the organic solvent to advance the crosslinking reaction a predetermined number of times. A method for impregnating an electrode for a storage element with a solid electrolyte.
(2)上記有機溶媒の揮発を加熱、減圧、送風などにて
行う請求項1に記載のエネルギー貯蔵素子用電極への固
体電解質の含浸方法。
(2) The method of impregnating a solid electrolyte into an electrode for an energy storage element according to claim 1, wherein the organic solvent is volatilized by heating, reducing pressure, blowing air, or the like.
JP1157484A 1989-06-20 1989-06-20 Method for impregnating electrode for energy storage device with solid electrolyte Expired - Fee Related JPH0715861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157484A JPH0715861B2 (en) 1989-06-20 1989-06-20 Method for impregnating electrode for energy storage device with solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157484A JPH0715861B2 (en) 1989-06-20 1989-06-20 Method for impregnating electrode for energy storage device with solid electrolyte

Publications (2)

Publication Number Publication Date
JPH0322515A true JPH0322515A (en) 1991-01-30
JPH0715861B2 JPH0715861B2 (en) 1995-02-22

Family

ID=15650693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157484A Expired - Fee Related JPH0715861B2 (en) 1989-06-20 1989-06-20 Method for impregnating electrode for energy storage device with solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0715861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014755A1 (en) * 1998-09-04 2000-03-16 Kemet Electronics Corporation Process of preparing a solid electrolytic capacitor containing a conductive polymer counter electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014755A1 (en) * 1998-09-04 2000-03-16 Kemet Electronics Corporation Process of preparing a solid electrolytic capacitor containing a conductive polymer counter electrode
GB2357903A (en) * 1998-09-04 2001-07-04 Kemet Electronics Corp Process of preparing a solid electrolytic capacitor containing a conductive polymer counter electrode
US6391379B1 (en) 1998-09-04 2002-05-21 Kemet Electronics Corporation Process of preparing a solid electrolytic capacitor containing a conductive polymer counter electrode
GB2357903B (en) * 1998-09-04 2002-11-13 Kemet Electronics Corp Process of preparing a solid electrolytic capacitor containing a conductive polymer counter electrode

Also Published As

Publication number Publication date
JPH0715861B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JP4722239B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2644002B2 (en) Immobilized liquid membrane electrolyte
JP3791180B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
US20020020946A1 (en) Method of manufacturing a material having a fine structure
Guan et al. Stretchable ionic-liquid-based gel polymer electrolytes for lithium-ion batteries
CN107924770B (en) Composition for gel electrolyte
US10418189B2 (en) Enhanced structural supercapacitors
CN102299284B (en) Active composite porous membrane for lithium ion battery, and preparation method thereof
JP2007122902A (en) Manufacturing method of lithium ion battery
JP2002110245A (en) Polymer solid electrolyte lithium ion secondary battery
JPH0322515A (en) Impregnation of electrode for energy storage element with solid electrolyte
US6287630B1 (en) Polymer electrolyte with enhanced impregnation
CN113345717B (en) Capacitor cathode material, preparation method and application thereof
JPS63190318A (en) Electric double-layer capacitor
Mitra et al. Integration of a Flexible, Stretchable, Environment-Benign, and Highly Conductive PVA/H3PO4 Hydrogel as a Quasi Solid-State Electrolyte in Reduced Graphene Oxide Supercapacitors
Beg et al. Organic Electrolytes for Flexible Supercapacitors
JP2000036219A5 (en)
CN115497750B (en) Super capacitor based on gel polymer electrolyte and preparation method thereof
JP2662885B2 (en) Manufacturing method of electric double layer capacitor
Yarmolenko et al. Novel plasticized electrolytes based on oligourethane methacrylate and polypropylene glycol monomethacrylate
JPH08306365A (en) Organic electrolyte-battery
JPH05217416A (en) Electrolytic thin film and manufacture thereof
JP2005093123A (en) Separator for proton conductive polymer secondary battery and proton conductive polymer secondary battery
JPH11185815A (en) Battery and manufacture of battery
CN118325317A (en) Preparation method and application of polyethylene oxide-based composite ionic gel electrolyte

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees