JP2662885B2 - Manufacturing method of electric double layer capacitor - Google Patents

Manufacturing method of electric double layer capacitor

Info

Publication number
JP2662885B2
JP2662885B2 JP63233552A JP23355288A JP2662885B2 JP 2662885 B2 JP2662885 B2 JP 2662885B2 JP 63233552 A JP63233552 A JP 63233552A JP 23355288 A JP23355288 A JP 23355288A JP 2662885 B2 JP2662885 B2 JP 2662885B2
Authority
JP
Japan
Prior art keywords
resin
activated carbon
polarizable electrode
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63233552A
Other languages
Japanese (ja)
Other versions
JPH0282507A (en
Inventor
良幸 青嶋
延幸 原田
博 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63233552A priority Critical patent/JP2662885B2/en
Publication of JPH0282507A publication Critical patent/JPH0282507A/en
Application granted granted Critical
Publication of JP2662885B2 publication Critical patent/JP2662885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE:To provide a long life electric double layer capacitor with its leakage current reduced for a long period of time by forming a polarizable electrode using activated carbon and/or conductive carbon coated with resin. CONSTITUTION:A 200cc toluene of 1% by weight concentration of acrylic resin is added to 100 pts by weight coconut shell activated carbon powder including 20% by weight acetylene black, and is mixed and stirred. Thereafter, the solvent is evaporated and dried, and the surface of the activated carbon and carbon powder is coated with resin. Then, tetra fluorine ethylene resin dispersion (40% of solids, and solvent water) is added to the activated carbon and the carbon powder both having been coated with resin, blended with a three rolls to prepare a 0.5mm thick sheet, on one surface of which an aluminum layer is formed by deposition to prepare a polarizable electrode material that is cut into a 10mm diameter and 0.5mm thickness. Then, the resulting material is dipped in a gamma-butyro lacton electrolytic solution of 1mol tetraethyl ammonium perchlorate in which solution a polarizable electrode material is then impregnated and coating resin is dissolved to prepare polarizable electrodes 2, 2'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気二重層コンデンサに係り、詳しくは分
極性電極を改善したものに関する。
Description: TECHNICAL FIELD The present invention relates to an electric double layer capacitor, and more particularly, to an improved electric double layer capacitor.

〔従来の技術〕[Conventional technology]

電気二重層コンデンサは、従来のコンデンサに比較し
て単位体積当たり数千倍にも及ぶ静電容量を持っている
ため、コンデンサと電池の両方の機能を有することかで
き、例えば後者よりの応用例としてバックアップ用電源
に用いられている。
Electric double-layer capacitors have capacitances several thousand times per unit volume compared to conventional capacitors, so they can have both functions of a capacitor and a battery. As a backup power supply.

電気二重層コンデンサは、例えば第1図に示すよう
に、非電子伝導性かつイオン透過性の多孔質セパレータ
(例えばポリプロピレンからなる多孔質セパレータ又は
ポリプロピレン繊維を用いた不織布からなる多孔質セパ
レータ等)1を介して1対の分極性電極2、2′を設け
る。これらの分極性電極2、2′は、例えば活性炭と導
電性カーボンとバインダー(例えば4フッ化エチレン樹
脂のディスパージョン)とを溶剤とともに混練してシー
トに成形後、溶剤を揮発させて乾燥させ、所定の大きさ
に打ち抜き、さらにアルミニウム等のメタル層からなる
電子伝導性かつイオン不透過性の導電性集電電極3、
3′を設けてから電解質溶液を含浸させることにより作
成される。次に上記多孔質セパレータと分極性電極から
なる構成体は、金属ケース4、金属キャップ5を絶縁性
ガスケット6を介してカシメた容器に収納されて電気二
重層コンデンサが作成される。
As shown in FIG. 1, for example, an electric double-layer capacitor is a non-electronically conductive and ion-permeable porous separator (for example, a porous separator made of polypropylene or a porous separator made of non-woven fabric using polypropylene fibers) 1. Are provided with a pair of polarizable electrodes 2, 2 '. These polarizable electrodes 2, 2 'are formed by kneading, for example, activated carbon, conductive carbon, and a binder (for example, a dispersion of tetrafluoroethylene resin) together with a solvent to form a sheet, and then evaporating the solvent and drying the sheet. A conductive current-collecting electrode 3, which is punched to a predetermined size, and further comprises an electron-conductive and ion-impermeable
It is made by impregnating the electrolyte solution after providing 3 '. Next, the structure including the porous separator and the polarizable electrode is housed in a container in which a metal case 4 and a metal cap 5 are crimped via an insulating gasket 6 to form an electric double layer capacitor.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記の従来の製造方法で作成した電気
二重層コンデンサは、高温負荷試験(70℃、2.8V電圧を
印可して1000時間保持)を行なうと、リーク電流値が大
きくなり、長期寿命試験での安定性に問題があった。
However, the electric double layer capacitor made by the above-mentioned conventional manufacturing method, when subjected to a high-temperature load test (70 ° C., applying a 2.8 V voltage and holding for 1000 hours), the leakage current value becomes large, and a long-term life test is performed. There was a problem with the stability of.

本発明の目的は、リーク電流値が長期にわたって小さ
く、寿命の長い電気二重層コンデンサを提供することに
ある。
An object of the present invention is to provide an electric double-layer capacitor having a small leakage current value over a long period of time and a long life.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記課題を解決するために、非電子伝導性
かつイオン透過性の多孔質セパレータと、該多孔質セパ
レータの少なくとも一方の側に設けられる分極性電極と
の構成体の両側に導電性集電電極を有し、上記分極性電
極が活性炭と導電性カーボンと電解液とバインダーを含
有する電気二重層コンデンサの製造方法において、上記
活性炭及び/又は導電性カーボンの表面に上記電解液に
溶解性又は膨潤性を有する樹脂を被覆する工程と、この
樹脂を被覆した活性炭及び/又は導電性カーボンを上記
電解液に溶解性を有しない樹脂からなる上記バインダー
とともに用いて上記分極性電極を作成する工程を有する
ことを特徴とする電気二重層コンデンサの製造方法を提
供するものである。この際、樹脂を被覆した活性炭及び
導電性カーボンと、バインダーと、溶剤とを混練しシー
ト状の成形体を形成してから電解液を含浸させることも
できる。また、電解液の含浸は加熱を併用することもで
きる。
In order to solve the above problems, the present invention provides a non-electronically conductive and ion-permeable porous separator, and a polarizable electrode provided on at least one side of the porous separator. In a method for manufacturing an electric double layer capacitor having a current collecting electrode, wherein the polarizable electrode contains activated carbon, conductive carbon, an electrolytic solution, and a binder, the polarizable electrode is dissolved in the electrolytic solution on the surface of the activated carbon and / or the conductive carbon. Forming a polarizable electrode using a step of coating a resin having a property or swelling property and using the activated carbon and / or the conductive carbon coated with the resin together with the binder made of a resin having no solubility in the electrolytic solution. An object of the present invention is to provide a method for manufacturing an electric double layer capacitor, which comprises a step. At this time, it is also possible to knead the activated carbon and conductive carbon coated with the resin, the binder, and the solvent to form a sheet-like molded body, and then impregnate the electrolyte. Heating can also be used for the impregnation of the electrolytic solution.

次に本発明を詳細に説明する。 Next, the present invention will be described in detail.

本発明における電気二重層コンデンサの分極性電極を
製造するには、まず活性炭及び/又は導電性カーボンを
電解液に溶解性又は膨潤性を有する樹脂により被覆する
工程を有する。
In order to manufacture the polarizable electrode of the electric double layer capacitor in the present invention, first, there is a step of coating activated carbon and / or conductive carbon with a resin having a solubility or swelling property in an electrolytic solution.

電解液に溶解性又は膨潤性を有する樹脂としては、電
解液によって異なる。電解液には非水系と水系がある。
前者の例としては、例えばプロピレンカーボネート、γ
−ブチロラクトン等のエステル類、アセトニトリル等の
ニトリル類、クロロホルム等のハロゲン化物類、アセト
ン等のケトン類、ジメチルホルムアミド等のアミド類、
ピリジン等のアミン類、テトラヒドロフラン等のエーテ
ル等、ブタノール等のアルコール類、ニトロメタン等の
ニトロ化合物、ジメチルスルホキシド等の硫黄化合物等
の溶媒にClO4 -、BF4 -、PF6 -、AsF6 -、AlCl4 -、CF3SO3 -
等のリチウム塩その他の金属塩、アルキルアンモニウム
塩、アルキルホスホニウム塩の1種又は2種以上を溶解
したものが挙げられる。
The resin having solubility or swelling property in the electrolytic solution differs depending on the electrolytic solution. Electrolytes include non-aqueous and aqueous systems.
Examples of the former include, for example, propylene carbonate, γ
Esters such as butyrolactone, nitriles such as acetonitrile, halides such as chloroform, ketones such as acetone, amides such as dimethylformamide,
In solvents such as amines such as pyridine, ethers such as tetrahydrofuran, alcohols such as butanol, nitro compounds such as nitromethane, and sulfur compounds such as dimethyl sulfoxide, ClO 4 , BF 4 , PF 6 , AsF 6 , AlCl 4 -, CF 3 SO 3 -
And a solution in which one or more of lithium salts and other metal salts, alkylammonium salts, and alkylphosphonium salts are dissolved.

これら非水系電解質溶液に溶解性又は膨潤性を有する
樹脂としては、例えばポリメチル(メタ)アクリレー
ト、ポリエチル(メタ)アクリレート、ポリ(メタ)ア
クリレート、ポリアクリルニトリル等のアクリルモノマ
ーの重合体からなるアクリル樹脂あるいはこれらのモノ
マーと他のモノマーの例えばスチレン−アクリルニトリ
ル共重合体等の樹脂、ポリ酢酸ビニル、ポリ塩化ビニル
等のビニル単独重合体樹脂、ポリ塩化ビニル酢酸ビニル
共重合体、塩化ビニリデン共重合体樹脂、アセタール樹
脂、ナイロン等のポリアミド樹脂、ポリウレタン樹脂、
ポリカーボネート樹脂、ポリエチレンオキサイド等のポ
リアルキレンオキサイド樹脂、フッ化ビニリデンと三フ
ッ化エチレンとの共重合体樹脂、エチルセルロース、酢
酸セルロース等のセルロース誘導体、ブチルゴム、天然
ゴム等のゴムが例示される。
Examples of the resin having solubility or swelling property in the non-aqueous electrolyte solution include, for example, an acrylic resin comprising a polymer of an acrylic monomer such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, poly (meth) acrylate, and polyacrylonitrile. Alternatively, these monomers and other monomers such as resins such as styrene-acrylonitrile copolymers, polyvinyl homopolymer resins such as polyvinyl acetate and polyvinyl chloride, polyvinyl chloride vinyl acetate copolymers, and vinylidene chloride copolymers Resin, acetal resin, polyamide resin such as nylon, polyurethane resin,
Examples thereof include polycarbonate resins, polyalkylene oxide resins such as polyethylene oxide, copolymer resins of vinylidene fluoride and ethylene trifluoride, cellulose derivatives such as ethyl cellulose and cellulose acetate, and rubbers such as butyl rubber and natural rubber.

また、水系電解液としては、例えば硫酸、硝酸、塩酸
等の酸の水溶液や、塩化ナトリウム等の電解質を水ある
いは水に溶解する有機溶剤と水との混合液に溶解させた
水性溶液等が使用できるが、一般には硫酸水溶液が使用
されている。
As the aqueous electrolyte, for example, an aqueous solution of an acid such as sulfuric acid, nitric acid, or hydrochloric acid, or an aqueous solution in which an electrolyte such as sodium chloride is dissolved in water or a mixed solution of water and an organic solvent that dissolves in water is used. Although a sulfuric acid aqueous solution is generally used.

また、上記水系電解液に溶解性又は膨潤性を有する樹
脂としては、例えばポリ酢酸ビニル、塩化ビニルと酢酸
ビニルの共重合体、ナイロン等のポリアミド樹脂、ポリ
エチレンオキサイド等のポリアルキレンオキサイド樹
脂、エチルセルロースや酢酸セルロース等のセルロース
誘導体、ポリビニルピロリドン、ポリグルタミン酸や高
吸収性を示すポリエチレンオキサイド変成物、澱粉のポ
リアクリル酸グラフト化物、アクリルモノマーと酢酸ビ
ニル共重合体等が挙げられる。
Examples of the resin having solubility or swelling property in the aqueous electrolyte include polyvinyl acetate, a copolymer of vinyl chloride and vinyl acetate, a polyamide resin such as nylon, a polyalkylene oxide resin such as polyethylene oxide, ethyl cellulose, and the like. Examples thereof include cellulose derivatives such as cellulose acetate, polyvinylpyrrolidone, polyglutamic acid, modified polyethylene oxide having high absorbency, polyacrylic acid grafted starch, and acrylic monomer and vinyl acetate copolymer.

なお、水系電解質溶液の溶媒に水と有機溶剤の混合液
を使用するときは、水に溶解する有機溶剤としてアルコ
ール等が使用できる。
When a mixed solution of water and an organic solvent is used as the solvent for the aqueous electrolyte solution, alcohol or the like can be used as the organic solvent soluble in water.

本発明で使用される活性炭としては、例えばレゾール
型フェノール樹脂又はノボラック型フェノール樹脂の如
き樹脂を炭化したあと、賦活して製造した球状その他の
形状のものが例示される。球状のものはその充填密度を
大きくでき、静電容量を大きくとれる点で好ましい。上
記レゾール型フェノール樹脂の縮重合度は各種のものが
使用できるが、これらに限らず他の樹脂で変性した変性
フェノール樹脂やその他の熱硬化性樹脂も使用できる。
Examples of the activated carbon used in the present invention include, for example, those obtained by carbonizing a resin such as a resol-type phenol resin or a novolak-type phenol resin and then activating the resin to produce a spherical or other shape. Spherical particles are preferred in that the packing density can be increased and the capacitance can be increased. Various degrees of polycondensation of the resole type phenol resin can be used, but not limited thereto, a modified phenol resin modified with another resin and other thermosetting resins can also be used.

活性炭には上記のほかに従来使用されているヤシガラ
活性炭等の天然材料から作られる活性炭、フェノール、
レーヨン、ポリアクリルニトリル等の人工高分子材料か
ら作られる活性炭のいずれも単独又は組合わせて使用で
き、その形状もファイバ(繊維)状、クロス状等無定形
のものも用いられる。
In addition to the above, activated carbon made from natural materials such as conventionally used coconut shell activated carbon, phenol,
Activated carbon made of artificial polymer materials such as rayon and polyacrylonitrile can be used alone or in combination, and the shape thereof may be an amorphous one such as fiber (fiber) or cloth.

また、本発明に用いられる導電性カーボンにはファー
ネス法によるアセチレンブラック、他のファーネス法あ
るいは衝撃法によるカーボンブラック、チャンネル法に
よるカーボンブラック等が例示される。
Examples of the conductive carbon used in the present invention include acetylene black by a furnace method, carbon black by another furnace method or an impact method, and carbon black by a channel method.

上記活性炭及び導電性カーボンに対する上記樹脂の被
覆量としては、活性炭と導電性カーボンの合計に対して
0.1〜20重量%の範囲が好ましく、より好ましくは1〜1
3重量%である。0.1重量%より少ないと、できあがった
電気二重層コンデンサの高温負荷試験におけるリーク電
流を小さくできる効果が少なく、20重量%より多過ぎる
と活性炭と導電性カーボン粒子同志の間隔が大きくなる
ため、分極性電極自体の抵抗が大きくなり、充電効率を
低下させる。
As the coating amount of the resin on the activated carbon and the conductive carbon, the total amount of the activated carbon and the conductive carbon
The range is preferably 0.1 to 20% by weight, more preferably 1 to 1% by weight.
3% by weight. If the amount is less than 0.1% by weight, the effect of reducing the leakage current in the high temperature load test of the completed electric double layer capacitor is small. The resistance of the electrode itself increases, which lowers the charging efficiency.

上記活性炭及び導電性カーボンに上記樹脂を被覆する
方法としては、上記樹脂の溶液、すなわち非水系電解液
に溶解性又は膨潤性を有する樹脂はトルエン等の非水系
溶媒に溶解した溶液、水系電解液に溶解性又は膨潤性を
有する樹脂は水又は水と溶解性を有する有機溶剤、例え
ば低級アルコールと水の混合液に溶解した溶液を調製
し、これらに活性炭及び/又は導電性カーボンを混合撹
拌した後、溶剤を揮発除去して調製する。活性炭と導電
性カーボンの両方に上記樹脂を被覆する場合には、活性
炭、導電性カーボンのいずれか一方を先にし、あるいは
同時に混合撹拌した後、溶剤を揮発除去して乾燥させて
も良く、活性炭、導電性カーボンのそれぞれを上記樹脂
溶液に混合撹拌した後両者を混合した後同様に乾燥させ
ても良い。
As a method of coating the activated carbon and the conductive carbon with the resin, a solution of the resin, that is, a resin having solubility or swelling property in a non-aqueous electrolyte is dissolved in a non-aqueous solvent such as toluene, and an aqueous electrolyte. A resin having solubility or swelling property in water or an organic solvent having water and solubility, for example, a solution prepared by dissolving in a mixture of lower alcohol and water was prepared, and activated carbon and / or conductive carbon were mixed and stirred therein. Thereafter, the solvent is removed by volatilization. In the case where both the activated carbon and the conductive carbon are coated with the above resin, either the activated carbon or the conductive carbon may be used first, or after mixing and stirring at the same time, the solvent may be removed by volatilization and dried. Alternatively, each of the conductive carbons may be mixed and stirred with the above resin solution, then mixed, and then dried similarly.

本発明において、分極性電極は使用状態で流動性を有
するものでも良いが、成形体として使用状態で固形を維
持するものでも良く、この後者の場合には集電電極を重
ねることにより容易に電気二重層コンデンサを製造する
ことができ、電解液の漏出防止のための封止手段を用い
なくても良い。
In the present invention, the polarizable electrode may be one having fluidity in a use state, but may be one that maintains a solid state in a use state as a molded body. In the latter case, the electrode can be easily formed by stacking a collecting electrode. A double-layer capacitor can be manufactured, and it is not necessary to use sealing means for preventing leakage of the electrolyte.

このような成形体の分極性電極を作成するには、上記
の樹脂を被覆した活性炭、導電性カーボン等をバインダ
ー及び溶剤と三本ロール等で混練し、シート状にする。
この場合のバインダーとしては、電解液に溶解性を有し
ない樹脂を使用するが、この樹脂としては例えば4弗化
エチレン(TFH)樹脂が挙げられ、これを水等に分散さ
せたディスパージョンを用いることによりバインダーと
溶剤を加えることができることとなる。
In order to form a polarizable electrode of such a molded body, activated carbon or conductive carbon coated with the above resin is kneaded with a binder and a solvent with a three-roll or the like to form a sheet.
As the binder in this case, a resin having no solubility in the electrolytic solution is used. As the resin, for example, ethylene tetrafluoride (TFH) resin is used, and a dispersion in which this is dispersed in water or the like is used. Thereby, a binder and a solvent can be added.

シート状の成形体は、活性炭、導電性カーボンを被覆
した樹脂の種類に応じて、上記非水系電解液又は水系電
解液が含浸される。この含浸と同時又はこの含浸後に上
記活性炭、導電性カーボンに被覆された樹脂は溶解又膨
潤される。この方法としては、常温でも良く、また電解
質溶液含浸時に加熱しても良く、この電解質溶液含浸後
加熱しても良く、両者を併用しても良い。このようにし
て分極性電極ができあがるが、これを一対作成し、多孔
質セパレータの両面に重ね、さらに集電電極をこれらの
両側の分極性電極に設け、ケースに収納することにより
電気二重層コンデンサができあがる。
The sheet-shaped molded body is impregnated with the above-mentioned non-aqueous electrolyte or aqueous electrolyte depending on the type of resin coated with activated carbon or conductive carbon. Simultaneously with or after the impregnation, the resin coated with the activated carbon and the conductive carbon is dissolved or swelled. As this method, room temperature may be used, heating may be performed during the impregnation of the electrolyte solution, heating may be performed after the impregnation of the electrolyte solution, or both may be used in combination. In this way, a polarizable electrode is completed.A pair of the polarizable electrodes is prepared, and the polarizable electrodes are formed on the both sides of the porous separator. Further, current collecting electrodes are provided on the polarizable electrodes on both sides of the porous separator, and are housed in a case. Is completed.

分極性電極が流動性を有する場合には、例えば導電性
物質をゴムに練り込んだ未加硫導電性シート板(集電電
極となるもの)を底板にして筒状の未加硫ゴムのガスケ
ットを載置し、その開放端から上端まで上記した如く樹
脂を被覆した活性炭、導電性カーボン等と電解液の混練
物であって、上記と同様に活性炭、導電性カーボンの被
覆樹脂を溶解させた流動物からなる分極性電極を充填す
る。この後多孔質セパレータを充填物側に当てがい、さ
らに上記と同様の分極性電極を充填したガスケットをそ
の充填物側を多孔質セパレータの反対側に当てがった状
態で加硫する。このようにして基本セルができあがる
が、これを封止容器に導電性接着剤で固定して収め、リ
ード線を接続できるようにすると電気二重層コンデンサ
ができあがる。
When the polarizable electrode has fluidity, for example, an unvulcanized conductive sheet plate in which a conductive substance is kneaded into rubber (which serves as a current collecting electrode) is used as a bottom plate to form a cylindrical unvulcanized rubber gasket. Activated carbon coated with a resin as described above from the open end to the upper end, a kneaded product of conductive carbon and an electrolytic solution, and the activated carbon and the conductive carbon coating resin were dissolved in the same manner as above. Fill a polarizable electrode consisting of a fluid. Thereafter, the porous separator is applied to the filler side, and a gasket filled with the same polarizable electrode as described above is vulcanized with the filler side applied to the opposite side of the porous separator. The basic cell is completed in this manner. When the basic cell is fixed in a sealed container with a conductive adhesive and connected to lead wires, an electric double layer capacitor is completed.

本発明に用いられる多孔質セパレータは、その材質と
してはセロハン、ポリプロピレンやポリエチレン等の高
分子材料や天然繊維が挙げられ、形状としては多数の微
小な貫通孔を有する微孔フィルム、ある程度の厚みをも
ち複雑な微細孔をもつスポンジ状フィルム、不織布ある
いはこれらを組合わせたものが例示される。これらにか
ぎらず電解質溶液との共存性のよいこと、活性炭が通過
しないこと、イオン透過性(あるいは気孔率)が大きい
こと、機械的強度が十分であることの諸性質を満足する
材料も使用することができる。コンデンサ特性の点から
は、漏れ電流の小さいことが必要なものには比較的気孔
率の小さいもの、直列等価抵抗の小さいことが必要なも
のには比較的気孔率の大きいものが好ましい。
The porous separator used in the present invention includes, as its material, cellophane, a polymer material such as polypropylene or polyethylene and natural fibers, and as a shape, a microporous film having a large number of minute through holes, a certain thickness. A sponge-like film having a complicated fine pore, a nonwoven fabric or a combination thereof is exemplified. In addition to these, a material that satisfies various properties such as good compatibility with the electrolyte solution, no passage of activated carbon, high ion permeability (or porosity), and sufficient mechanical strength is also used. be able to. From the viewpoint of the capacitor characteristics, those having a relatively small porosity are preferred for those requiring a small leakage current, and those having a relatively large porosity are preferred for those requiring a small series equivalent resistance.

また、本発明に用いられる導電性集電電極としては、
水性電解質液に安定な金属箔、導電性ゴム、不浸透処理
した可撓性グラファイト等が例示される。
Further, as the conductive current collecting electrode used in the present invention,
Examples thereof include metal foil, conductive rubber, and impregnated flexible graphite that are stable in an aqueous electrolyte solution.

本発明における電気二重層コンデンサには、多孔質セ
パレータの両側に分極性電極を有し、それぞれの分極性
電極に集電電極を有する構造のもののみならず、多孔質
セパレータの片側に分極性電極を有し、この分極性電極
と多孔質セパレータのそれぞれに集電電極を設けたもの
も含まれる。
The electric double layer capacitor according to the present invention has not only a structure having polarizable electrodes on both sides of a porous separator and a current collecting electrode on each polarizable electrode, but also a polarizable electrode on one side of the porous separator. And a polarizer and a porous separator each provided with a current collecting electrode.

〔実施例〕〔Example〕

次に本発明の実施例を第1図ないし第3図に基づいて
説明する。
Next, an embodiment of the present invention will be described with reference to FIGS.

実施例1 アセチレンブラック20重量%含むヤシガラ活性炭粉末
100重量部に対して、アクリル樹脂1重量%濃度のトル
エン溶液200ccを加え、混合撹拌する。この後、溶剤を
揮発させて乾燥させ、活性炭及びカーボン粉末表面に樹
脂を被覆する。
Example 1 coconut shell activated carbon powder containing 20% by weight of acetylene black
To 100 parts by weight, 200 cc of a toluene solution having a concentration of 1% by weight of an acrylic resin is added and mixed and stirred. Thereafter, the solvent is volatilized and dried, and the surface of the activated carbon and carbon powder is coated with a resin.

次にこの樹脂被覆処理をした活性炭、カーボンに4弗
化エチレン(TFE)樹脂ディスパージョン(固形分40
%、溶媒水)を加え三本ロールで混練し、厚さ0.5mmの
シートを作成した。このシートの片面にアルミニウム層
を蒸着により形成し、直径10mm、厚さ0.5mmに裁断した
分極性電極素材を作成した。ついで、これを1モルの過
塩素酸テトラエチルアンモニウムのγ−ブチロラクトン
電解質溶液に浸漬してこの電解質溶液を分極性電極素材
に含浸させ、かつ上記の被覆樹脂を溶解させた分極性電
極を作成する。この分極性電極を2つ作成し、ポリプロ
ピレン多孔性セパレータを介して対向させ、さらにステ
ンレスケースで封口して第1図のようなコインセルを作
製する。
Next, activated carbon and carbon treated with this resin are treated with a tetrafluoroethylene (TFE) resin dispersion (solid content: 40%).
%, Solvent water) and kneaded with three rolls to form a sheet having a thickness of 0.5 mm. An aluminum layer was formed on one side of this sheet by vapor deposition, and a polarizable electrode material cut to a diameter of 10 mm and a thickness of 0.5 mm was prepared. Next, this is immersed in 1 mol of tetraethylammonium perchlorate electrolyte solution of γ-butyrolactone to impregnate the electrolyte solution with the polarizable electrode material and to prepare a polarizable electrode in which the above-mentioned coating resin is dissolved. Two polarizable electrodes are formed, opposed to each other via a polypropylene porous separator, and further sealed with a stainless steel case to produce a coin cell as shown in FIG.

このコイルセルについて、その製造当初のものと70℃
で2.4V電圧を1000時間印加した(高温負荷試験)後のも
のについて、リーク電流とその静電容量を測定した。す
なわち、リーク電流については、第2図に示すようにサ
ンプルのコインセル11を接続してから2.4Vの定格電圧を
印加して充電し、30分後に電圧計12によりVRを測定して
固定抵抗13の抵抗値Rより次の式によりリーク電流を測
定する。
This coil cell is 70 ℃
After applying a 2.4 V voltage for 1000 hours (high-temperature load test), the leakage current and its capacitance were measured. That is, for the leakage current, by applying a rated voltage of 2.4V Connect the coin cell 11 of the sample as shown in FIG. 2 charges, fixed resistor by measuring the V R by the voltmeter 12 after 30 minutes The leak current is measured from the resistance value R of 13 by the following equation.

また、静電容量は、第3図に示すようにコインセル11
を供試料端子14、15に接続し、スイッチを16側に接続し
て20mAで定電流充電し、2.4Vに達した後から定電圧充電
させ、30分間充電させる。その後スイッチを17側に切り
換え、第4図に示すように5mAで定電流放電し、電圧計1
8で1.5Vになった時刻T1と1.0Vになった時刻T2とを測定
する。これらの測定値から次式により静電容量を求め
る。
In addition, as shown in FIG.
Is connected to the sample terminals 14 and 15, the switch is connected to the 16 side, and the battery is charged at a constant current of 20 mA. After that, the switch was switched to the 17 side, and a constant current discharge was performed at 5 mA as shown in FIG.
8 to measure the time T 2, which becomes the time T 1 and 1.0V became 1.5V at. From these measured values, the capacitance is obtained by the following equation.

ただし、C:静電容量(Farad) i:電流(Amp) T1、T2:時刻(分) 上記の測定した結果を表に示す。なお、静電容量につ
いては高温負荷試験後の値のその試験前の値に対する変
化率(%)で示した。
Here, C: capacitance (Farad) i: current (Amp) T 1 , T 2 : time (minute) The results of the above measurement are shown in the table. The capacitance was shown as a rate of change (%) of the value after the high-temperature load test with respect to the value before the test.

実施例2〜9 活性炭の種類、被覆樹脂の種類、樹脂被覆時の樹脂濃
度、電解質溶液組成を表の各実施例の欄に記載したもの
に代えた以外は実施例1と同様にして実施例2〜9のそ
れぞれのコインセルを作製し、これらについても実施例
1と同様に測定した結果を表に示す。
Examples 2 to 9 Examples were performed in the same manner as in Example 1 except that the type of activated carbon, the type of coating resin, the resin concentration at the time of resin coating, and the composition of the electrolyte solution were changed to those described in the column of each example in the table. Each of the coin cells 2 to 9 was produced, and the results of measurement of these coin cells in the same manner as in Example 1 are shown in the table.

ただし、実施例5については実施例1においてアセチ
レンブラックを使用しなかった以外は同様にしてコイン
セルを作成した。
However, a coin cell was prepared in the same manner as in Example 5 except that acetylene black was not used in Example 1.

比較例1、2 実施例1において、活性炭、カーボンに樹脂を被覆す
る工程を用いなかった以外は同様にしてコインセルを作
製し、実施例1と同様に測定した結果を表に示す。
Comparative Examples 1 and 2 A coin cell was produced in the same manner as in Example 1 except that the step of coating the activated carbon and carbon with a resin was not used, and the results of measurement in the same manner as in Example 1 are shown in the table.

上記結果から、実施例のものはいずれも高温負荷試験
後のリーク電流値が比較例のものに比べ著しく小さいこ
とがわかる。これは、活性炭、導電性カーボンの表面の
被覆樹脂に電解液が固定化するため充電効率が向上し、
リーク電流値を小さくできると考えることもできるが、
これに限られるものではない。
From the above results, it can be seen that the leak current value of each of the examples after the high temperature load test is significantly smaller than that of the comparative example. This is because the electrolytic solution is fixed to the coating resin on the surface of activated carbon and conductive carbon, so that the charging efficiency is improved,
Although it can be considered that the leakage current value can be reduced,
However, it is not limited to this.

〔発明の効果〕〔The invention's effect〕

本発明によれば、活性炭、導電性カーボン表面を樹脂
で被覆した後に電解液で溶解させるようにするとともに
電解液に溶解性を有しない樹脂をバインダーにした分極
性電極を用いたので、電気二重層コンデンサのリーク電
流を小さくすることができ、高温安定性を向上して寿命
を長くすることができる。
According to the present invention, the activated carbon and the conductive carbon are coated with a resin and then dissolved in an electrolytic solution, and a polarizable electrode using a resin having no solubility in the electrolytic solution as a binder is used. The leakage current of the multilayer capacitor can be reduced, the high temperature stability can be improved, and the life can be prolonged.

【図面の簡単な説明】[Brief description of the drawings]

第1図は電気二重層コンデンサの断面図、第2図はその
リーク電流測定回路図、第3図は静電容量測定回路図、
第4図はその動作説明図である。 図中、1は多孔質セパレータ、2、2′は分極性電極、
3、3′は集電電極、4は金属ケース、5は金属キャッ
プ、6は絶縁材である。
FIG. 1 is a cross-sectional view of an electric double layer capacitor, FIG. 2 is a leak current measurement circuit diagram, FIG. 3 is a capacitance measurement circuit diagram,
FIG. 4 is an explanatory diagram of the operation. In the figure, 1 is a porous separator, 2 and 2 'are polarizable electrodes,
Reference numerals 3, 3 'denote current collecting electrodes, 4 denotes a metal case, 5 denotes a metal cap, and 6 denotes an insulating material.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非電子伝導性かつイオン透過性の多孔質セ
パレータと、該多孔質セパレータの少なくとも一方の側
に設けられる分極性電極との構成体の両側に導電性集電
電極を有し、上記分極性電極が活性炭と導電性カーボン
と電解液とバインダーを含有する電気二重層コンデンサ
の製造方法において、上記活性炭及び/又は導電性カー
ボンの表面に上記電解液に溶解性又は膨潤性を有する樹
脂を被覆する工程と、この樹脂を被覆した活性炭及び/
又は導電性カーボンを上記電解液に溶解性を有しない樹
脂からなる上記バインダーとともに用いて上記分極性電
極を作成する工程を有することを特徴とする電気二重層
コンデンサの製造方法。
1. A conductive current collecting electrode on both sides of a structure of a non-electron conductive and ion permeable porous separator and a polarizable electrode provided on at least one side of the porous separator, In the method for producing an electric double layer capacitor, wherein the polarizable electrode contains activated carbon, conductive carbon, an electrolytic solution and a binder, a resin having a solubility or swelling property in the electrolytic solution on the surface of the activated carbon and / or the conductive carbon And activated carbon coated with the resin and / or
A method for producing an electric double layer capacitor, comprising a step of using the conductive carbon together with the binder made of a resin having no solubility in the electrolytic solution to produce the polarizable electrode.
【請求項2】分極性電極を作成する工程が上記樹脂を被
覆した活性炭及び導電性カーボンと、上記バインダー
と、溶剤とを混練してシート状の成形体とする工程と、
このシート状の成形体に電解液を含浸させる工程を有す
ることを特徴とする請求項1記載の電気二重層コンデン
サの製造方法。
2. A step of forming a polarizable electrode, the step of kneading activated carbon and conductive carbon coated with the resin, the binder, and a solvent to form a sheet-shaped molded body;
2. The method for producing an electric double layer capacitor according to claim 1, further comprising a step of impregnating the sheet-like molded body with an electrolytic solution.
【請求項3】分極性電極作成時又は作成後活性炭及び/
又は導電性カーボンに被覆した樹脂を電解液に加熱溶解
又は加熱膨潤させることを特徴とする請求項1又は2記
載の電気二重層コンデンサの製造方法。
3. Activated carbon and / or at the time of or after preparation of a polarizable electrode.
3. The method for producing an electric double layer capacitor according to claim 1, wherein the resin coated with the conductive carbon is dissolved or heated and swelled in an electrolytic solution.
JP63233552A 1988-09-20 1988-09-20 Manufacturing method of electric double layer capacitor Expired - Lifetime JP2662885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233552A JP2662885B2 (en) 1988-09-20 1988-09-20 Manufacturing method of electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233552A JP2662885B2 (en) 1988-09-20 1988-09-20 Manufacturing method of electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH0282507A JPH0282507A (en) 1990-03-23
JP2662885B2 true JP2662885B2 (en) 1997-10-15

Family

ID=16956852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233552A Expired - Lifetime JP2662885B2 (en) 1988-09-20 1988-09-20 Manufacturing method of electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2662885B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113674997B (en) * 2021-08-03 2023-01-06 益阳市万京源电子有限公司 Electrolyte of long-life liquid capacitor and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545216B2 (en) * 1986-12-16 1996-10-16 太陽誘電株式会社 Electric double layer capacitor
JP2516756B2 (en) * 1987-02-03 1996-07-24 太陽誘電株式会社 Electric double layer capacitor

Also Published As

Publication number Publication date
JPH0282507A (en) 1990-03-23

Similar Documents

Publication Publication Date Title
JP2004520703A (en) Electrochemical double layer capacitor with carbon powder electrode
JPH11307403A (en) Electrode for electric double layer capacitor and electric double layer capacitor with the electrode
US5909356A (en) Solid state electric double layer capacitor
JP2003157849A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2662885B2 (en) Manufacturing method of electric double layer capacitor
JP2993965B2 (en) Electric double layer capacitor
JP2516756B2 (en) Electric double layer capacitor
JP2545216B2 (en) Electric double layer capacitor
JPH11242951A (en) Separator, its manufacture and electrochemical device using the same
JP3084793B2 (en) Solid electrode composition
JP3269146B2 (en) Ion conductive polymer electrolyte
CN103779088A (en) Polymer electrolyte, method for preparing same, super capacitor and application thereof
KR20180110335A (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP4668377B2 (en) Electric double layer capacitor
JP3008399B2 (en) Electric double layer capacitor
WO2017149044A1 (en) A method for manufacture of electrochemical system of supercapacitor of flexible ultra-thin structure
JPH021104A (en) Electric double layer capacitor
JPS63232308A (en) Electric double-layer capacitor
JPH01304719A (en) Electric double layer capacitor
JP4318337B2 (en) Electrode for non-aqueous electrochemical device and method for producing the same
CN103779087A (en) Polymer electrolyte, method for preparing same, super capacitor and application thereof
KR102639923B1 (en) Manufacturing method of nitrogen doped electrode active material with reduced chemical amount by using surface modifier, and supercapacitor using the same and method of manufacturing thereof
CN103779090A (en) Polymer dielectric, preparation method for the same, super capacitor and application thereof
JPS63232309A (en) Electric double-layer capacitor
JPH11233383A (en) Solid-state electrical double layer capacitor