JPH03225027A - Controller of internal combustion engine with swirl adjustment means - Google Patents

Controller of internal combustion engine with swirl adjustment means

Info

Publication number
JPH03225027A
JPH03225027A JP2018973A JP1897390A JPH03225027A JP H03225027 A JPH03225027 A JP H03225027A JP 2018973 A JP2018973 A JP 2018973A JP 1897390 A JP1897390 A JP 1897390A JP H03225027 A JPH03225027 A JP H03225027A
Authority
JP
Japan
Prior art keywords
swirl
correction coefficient
internal combustion
combustion engine
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018973A
Other languages
Japanese (ja)
Inventor
Takao Fukuma
隆雄 福間
Keisuke Tsukamoto
啓介 塚本
Toshio Takaoka
俊夫 高岡
Hirobumi Yamazaki
博文 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018973A priority Critical patent/JPH03225027A/en
Publication of JPH03225027A publication Critical patent/JPH03225027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve startability at a low temperature starting condition by calculating a compensation coefficient from a temperature of cooling water in consideration of a start time so as to perform switching of compensation, when an adjustment of swirl in air flow is compensated by means of respective compensation coefficients at the opening and closing time. CONSTITUTION:Intake valves 16a, 16b, and exhaust valves 18a, 18b ar provided in a cylinder bore 12. A swirl control valve 32 is arranged in an intake port 12b. When the swirl control valve 32 is closed, air is sucked only from an intake port 12a so as to form the swirl. The swirl control valve 32 is controlled by a negative pressure delay valve 42 and a solenoid 3 direction switching valve 44. The solenoid valve 44 is controlled by a control circuit 50 which receives input signals from an intake pressure sensor 52, crank angle sensors 54, 56, an air-fuel ratio sensor 58, a throttle sensor 59, and a cooling water temperature detector 62, so that the swirl may be generated so as to improve startability at a low temperature starting condition, even in the case when difference between the atmospheric pressure and an intake pressure is small and a swirl adjustment means in its is opening condition.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスワール調整手段付き内燃機関制御装置に関し
、更に詳細には内燃機関始動時、特に低温始動時の始動
性を改善したスワール調整手段付き内燃機関制御装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an internal combustion engine control device equipped with a swirl adjustment means, and more particularly to an internal combustion engine control device equipped with a swirl adjustment means that improves startability when starting an internal combustion engine, particularly when starting at a low temperature. The present invention relates to an internal combustion engine control device.

[従来の技術] 内燃機関に供給する空気と燃料の比、即ち空燃比を希薄
側に制御して燃費を向上させると同時に、内燃機関より
排出される窒素酸化物の量を低減させる希薄燃焼方法を
採用する内燃機関の制御装置に於いて、内燃機関の回転
数が低下した場合の燃焼の悪化を防止するために、回転
数低下時に気筒内にスワールを発生させるスワール調整
手段が、吸入口の直前に設置される。
[Prior Art] A lean combustion method that improves fuel efficiency by controlling the ratio of air and fuel supplied to an internal combustion engine, that is, the air-fuel ratio, to the lean side, and at the same time reduces the amount of nitrogen oxides emitted from the internal combustion engine. In a control device for an internal combustion engine that employs a installed immediately before.

このようなスワール調整手段付き内燃機関に於いては、
内燃機関を制御するための制御装置中に運転状態判別手
段を有し、この判断手段の出力によって、前記スワール
調整手段が制御されることが、一般的である。
In such an internal combustion engine with a swirl adjustment means,
Generally, a control device for controlling an internal combustion engine has an operating state determining means, and the swirl adjusting means is controlled by the output of this determining means.

一方内燃機関に供給される混合気の流量も、制御装置に
より制御されるが、吸入空気の質量流量を正確に評価す
ることが、燃費の維持及び排出窒素酸化物量の抑制だけ
でなく、ドライバビリティの向上にとって重要である。
On the other hand, the flow rate of the air-fuel mixture supplied to the internal combustion engine is also controlled by a control device, but accurate evaluation of the mass flow rate of intake air is important not only to maintain fuel efficiency and suppress the amount of nitrogen oxides emitted, but also to improve drivability. It is important for the improvement of

このために吸気温度及び吸気管圧力を計測し、これら計
測値に基づいて、吸入空気の体積流量の計測値を補正す
る方法、あるいは更に内燃機関の回転数を加味して補正
する方法が用いられている(例えば特開昭62−153
539号「内燃機関の燃料噴射量制御方法」)。
For this purpose, a method is used in which the intake air temperature and intake pipe pressure are measured, and based on these measured values, the measured value of the intake air volumetric flow rate is corrected, or a method is further corrected by taking into account the rotational speed of the internal combustion engine. (For example, Japanese Patent Application Laid-Open No. 62-153
No. 539 "Fuel injection amount control method for internal combustion engine").

しかし、前記スワール調整手段は気筒吸入口直前に設置
されるため、スワール調整手段が開時と閉時では内燃機
関の熱的状態が変化し、上記の補正のみでは不十分とな
り、燃費の悪化、排出窒素酸化物量の増加、ドライバビ
リティの悪化をもたらす事が知られており、この欠点を
解決するために、スワール調整手段が開である場合と、
閉である場合で上記補正値を切り替える制御装置が提案
されている(特開平1−159439 r内燃機関の制
御装置」)。
However, since the swirl adjustment means is installed just before the cylinder intake port, the thermal state of the internal combustion engine changes when the swirl adjustment means is opened and closed, and the above correction alone is insufficient, leading to worsening of fuel efficiency and It is known that this causes an increase in the amount of nitrogen oxides exhausted and a deterioration of drivability.In order to solve this problem, the swirl adjustment means is open and
A control device has been proposed that switches the correction value when the engine is closed (Japanese Patent Application Laid-Open No. 1-159439, “Control Device for Internal Combustion Engine”).

[発明が解決しようとする課題] しかしながら、内燃微開始動時は、スワールを発生させ
燃焼性を改善するために、スワール調整手段を閉とする
が、スワール調整手段は、その駆動源として吸気管圧力
と大気圧力の差圧を使用することが、一般的であり、内
燃微開始動時には吸気管圧力は、略略大気圧力に等しい
ため、運転状態判別手段からスワール調整手段に対し閉
制御信号が出力されていても、スワール調整手段は開状
態を維持しているためばかりでなく、運転状態判別手段
からは、スワール調整手段閉制御信号が出力されるため
、吸入空気の質量流量を算出するための補正係数として
、スワール調整手段閉時の補正係数が使用され、混合気
の空燃比は希薄側に制御され、始動性は一層悪化するこ
ととなり、特に大気温度が低い場合には始動時間が長く
なる。
[Problems to be Solved by the Invention] However, during internal combustion slight start operation, the swirl adjustment means is closed in order to generate swirl and improve combustion performance, but the swirl adjustment means uses the intake pipe as its driving source. It is common to use the differential pressure between pressure and atmospheric pressure, and since the intake pipe pressure is approximately equal to atmospheric pressure during internal combustion slight start operation, a closing control signal is output from the operating state determining means to the swirl adjusting means. Even if the swirl adjustment means is maintained in the open state, the swirl adjustment means close control signal is output from the operation state determination means, so that it is difficult to calculate the mass flow rate of intake air. The correction coefficient when the swirl adjustment means is closed is used as the correction coefficient, and the air-fuel ratio of the air-fuel mixture is controlled to the lean side, further deteriorating startability, and especially when the atmospheric temperature is low, the start-up time becomes longer. .

スワール調整手段の実際の開閉状態を検出する手段を追
設することも考えられるが、十分な信顛性を有する検出
手段の使用は、経済的でない。
Although it is conceivable to additionally provide means for detecting the actual open/closed state of the swirl adjusting means, it is not economical to use a detecting means with sufficient reliability.

本発明は、上記問題点を解決し、大気温度が低い場合で
あっても、優れた始動性を有するスワール調整手段付き
内燃機関制御装置を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an internal combustion engine control device with a swirl adjustment means that has excellent startability even when the atmospheric temperature is low.

[課題を解決するための手段] 本発明は、第1図に示すように、内燃機関の運転状態判
別手段Aと、運転状態判別手段Aの出力により制御され
る内燃機関の気筒に吸入される空気流にスワールを生ゼ
しめるためのスワール調整手段Bと、調整手段Bが開時
の補正係数算出手段Cと、調整手段Bが閉時の補正係数
算出手段りと、開時の補正係数算出手段Cと閉時の補正
係数算出手段りを切り替える補正係数切り替え手段Eと
、開時の補正係数又は該閉時の補正係数を使用して吸気
温度補正係数を算出する補正係数算出手段Fに加えて、
内燃機関の始動時判別手段Gと、内燃機関の冷却水温度
検出手段Hと、冷却水温度検出手段Hの出力が予め設定
されたしきい値以上であることを判定する温度判定手段
Iと、始動時判別手段Gの出力と温度判定手段Iの出力
とを2つの入力とする締環積演算手段Jと、論理積演算
手段Jの出力と運転状態判別手段Aの出力とを2つの入
力とする論理和演算手段Kから構成される装[作用] 上記構成を有する制御装置は、冷却水温度検出手段Hで
検出された冷却水温度信号を温度判定手段Iに導き、内
燃機関の冷却水の温度が予め設定された温度以下である
か否かを判定し、冷却水温度が規定値以下である低温始
動状態の場合には、運転状態判別手段Aからのスワール
調整手段Bに対する指令にかかわらず、調整手段開時補
正係数演算手段Cの出力に基づいて吸気温度係数算出手
段Fで吸気温度係数を算出する。
[Means for Solving the Problems] As shown in FIG. A swirl adjustment means B for creating a swirl in the air flow, a correction coefficient calculation means C when the adjustment means B is open, a correction coefficient calculation means C when the adjustment means B is closed, and a correction coefficient calculation means when the adjustment means B is open. In addition to the correction coefficient switching means E for switching between the means C and the correction coefficient calculation means when closed, and the correction coefficient calculation means F which calculates the intake air temperature correction coefficient using the correction coefficient when opened or the correction coefficient when closed. hand,
internal combustion engine starting determination means G; internal combustion engine cooling water temperature detection means H; temperature determination means I for determining that the output of the cooling water temperature detection means H is equal to or higher than a preset threshold; A ring tightening product calculating means J which has two inputs are the output of the start-time determining means G and the output of the temperature determining means I, and the output of the logical product calculating means J and the output of the operating state determining means A as two inputs. [Operation] The control device having the above configuration guides the cooling water temperature signal detected by the cooling water temperature detection means H to the temperature determination means I, and detects the cooling water of the internal combustion engine. It is determined whether the temperature is below a preset temperature or not, and in the case of a low temperature start state where the cooling water temperature is below a specified value, regardless of the command from the operating state determining means A to the swirl adjusting means B. The intake air temperature coefficient is calculated by the intake air temperature coefficient calculation means F based on the output of the adjusting means opening correction coefficient calculation means C.

一方低温始動状態でない場合及び始動が完了し定常運転
状態に移行した後は、運転状態判別手段Aからのスワー
ル調整手段Bに対する指令に従って補正値切り替え手段
Eを切り替えて、調整手段閉時補正係数算出手段Cある
いは調整手段閉時補正係数算出手段りの出力に基づいて
吸気温度係数算出手段Fで吸気温度係数を算出する。
On the other hand, when the low temperature starting state is not present, and after the starting is completed and the state shifts to a steady operating state, the correction value switching means E is switched in accordance with the command from the operating state determining means A to the swirl adjusting means B, and the correction coefficient when the adjusting means is closed is calculated. The intake air temperature coefficient is calculated by the intake air temperature coefficient calculation means F based on the output of the means C or the adjusting means closed correction coefficient calculation means.

[実施例] 第2図において、10はシリンダブロンク、12はシリ
ンダポア、12a、12bは吸気ポート、14a、14
bは排気ボートであり、16a、16bは吸気ポート1
2a、12bのための2つの吸気弁、18a、18bは
排気ボートのための2つの排気弁であり、いわゆる4バ
ルブ構成の内燃機関を示す。第1の吸気ポート12aは
ヘリ\カル型であり、吸気スワール形成に都合の良い形
状に構成されている。第2の吸気ポート12bはストレ
ート型である。吸気ポート12a、12bは吸気管20
、サージタンク22を介してスロットルボディ23に接
続される。各気筒の吸気ポート12a、12bに近接し
て吸気管20にインジェクタ26が設置される。排気ボ
ー)14a、14bは排気マニホルド28に接続される
。ディストリビュータは30で表される。
[Example] In FIG. 2, 10 is a cylinder bronze, 12 is a cylinder pore, 12a, 12b is an intake port, 14a, 14
b is an exhaust boat, 16a and 16b are intake ports 1
Two intake valves 2a, 12b and two exhaust valves 18a, 18b for the exhaust boat represent a so-called four-valve internal combustion engine. The first intake port 12a is a helical type, and is configured to have a shape convenient for forming an intake swirl. The second intake port 12b is of a straight type. The intake ports 12a and 12b are the intake pipes 20
, are connected to the throttle body 23 via the surge tank 22. An injector 26 is installed in the intake pipe 20 close to the intake ports 12a, 12b of each cylinder. The exhaust bows 14a, 14b are connected to an exhaust manifold 28. The distributor is represented by 30.

ストレート型の吸気ポート12bに、スワール調整手段
Bを構成する蝶型のスワール制御弁32が設置される。
A butterfly-shaped swirl control valve 32 constituting the swirl adjustment means B is installed in the straight-shaped intake port 12b.

スワール制御弁32が閉状態の時は、ヘリカル型の吸気
ポート12aのみから吸気されスワールが形成される。
When the swirl control valve 32 is in the closed state, air is taken in only from the helical intake port 12a and a swirl is formed.

スワール制御弁32が開状態の時には、2つの吸気ポー
ト12a、12bから吸気が行われ、スワールは解消す
る。
When the swirl control valve 32 is in the open state, air is taken in from the two intake ports 12a and 12b, and the swirl is eliminated.

各気筒のスワール制御弁32の弁軸にレバー34が取り
付けられ、このレバー34はロッド36を介して負圧ア
クチュエータ38に連結される。負圧アクチュエータ3
8はダイヤフラム40とスプリング41から構成される
。ダイヤフラムに負圧が印加されていないときは、スプ
リング41の力によりスワール制御弁32は開状態を保
持する。
A lever 34 is attached to the valve shaft of the swirl control valve 32 of each cylinder, and this lever 34 is connected to a negative pressure actuator 38 via a rod 36. Negative pressure actuator 3
8 is composed of a diaphragm 40 and a spring 41. When no negative pressure is applied to the diaphragm, the force of the spring 41 keeps the swirl control valve 32 open.

ダイヤフラム40に負圧が印加されると、ダイヤフラム
40はスプリング41に抗して吸引されスワール制御弁
32は吸気ポー1−12bを閉状態とする。ダイヤフラ
ム40は、負圧遅延弁42、電磁3方切替弁44、負圧
保持チエツク弁46を介してサージタンク22の負圧取
出ポート22aに接続される。負圧遅延弁42は、オリ
フィス42aと、チエツク弁42bとを並列配置して構
成され、アクチュエータ420大気圧開放速度を適当に
制御し、スワール制御弁32の開速度を調整する。又チ
エツク弁46はダイヤフラム4oに印加される負圧を保
持するためのものである。電磁3方切替弁44は3つの
ボート44a、44b、44cを具備しており、無励磁
状態においては、ボート44aと44bが連通状態にあ
り、ダイヤフラム40は負圧取出ポート22aに接続さ
れ、励磁状態においては、ボート44aと44cが連通
状態となり、アクチュエータ42はフィルタ48を介し
て大気に開放される。スワール制御弁32は、制御回路
500指令番こよって制御される電磁3方切替弁44に
よって駆動される。
When negative pressure is applied to the diaphragm 40, the diaphragm 40 is attracted against the spring 41, and the swirl control valve 32 closes the intake port 1-12b. The diaphragm 40 is connected to the negative pressure outlet port 22a of the surge tank 22 via a negative pressure delay valve 42, an electromagnetic three-way switching valve 44, and a negative pressure holding check valve 46. The negative pressure delay valve 42 is constructed by arranging an orifice 42a and a check valve 42b in parallel, and appropriately controls the atmospheric pressure release speed of the actuator 420 to adjust the opening speed of the swirl control valve 32. Also, the check valve 46 is for maintaining the negative pressure applied to the diaphragm 4o. The electromagnetic three-way switching valve 44 includes three boats 44a, 44b, and 44c. In the non-energized state, the boats 44a and 44b are in communication, and the diaphragm 40 is connected to the negative pressure outlet port 22a, and in the energized state, the boats 44a and 44b are in communication. In this state, the boats 44a and 44c are in communication, and the actuator 42 is exposed to the atmosphere via the filter 48. The swirl control valve 32 is driven by an electromagnetic three-way switching valve 44 that is controlled by a control circuit 500 command number.

制御回路50は、例えばマイクロコンピュータシステム
で構成され、電磁3方切替弁44を本発明に従って制御
する機能を有するである。
The control circuit 50 is composed of, for example, a microcomputer system, and has a function of controlling the electromagnetic three-way switching valve 44 according to the present invention.

吸気管圧力センサ52はサージタンク22に設置され吸
気管圧力PMに比例した電気信号を発生する。
The intake pipe pressure sensor 52 is installed in the surge tank 22 and generates an electrical signal proportional to the intake pipe pressure PM.

クランク角度センサ54.56はディストリビュータ3
0に取り付けられており、内燃機関回転数NE、及び内
燃機関サイクルの基準位W(例えば上死点)を検出する
ために使用される。
Crank angle sensor 54.56 is distributor 3
0, and is used to detect the internal combustion engine rotation speed NE and the reference position W (for example, top dead center) of the internal combustion engine cycle.

又排気の空燃比を検出するために空燃比センサ58が装
備され、スロットル弁24の開度を検出するためにスロ
ットルセンサ59が装備される。
Further, an air-fuel ratio sensor 58 is provided to detect the air-fuel ratio of the exhaust gas, and a throttle sensor 59 is provided to detect the opening degree of the throttle valve 24.

更に内燃機関を冷却する冷却水を循環させるためのウォ
ータジャケット60には冷却水の温度に比例した電気出
力を出力する温度検出器62が設置される。なお温度検
出器62は冷却水検出手段Hを構成する。
Furthermore, a temperature detector 62 that outputs an electrical output proportional to the temperature of the cooling water is installed in the water jacket 60 for circulating cooling water for cooling the internal combustion engine. Note that the temperature detector 62 constitutes a cooling water detection means H.

第3図は、本発明によるスワール制御弁32の制御方法
を説明するためのフローチャートである。
FIG. 3 is a flowchart for explaining a method of controlling the swirl control valve 32 according to the present invention.

又第4図は、体積流量を質量流量に換算する場合のベー
ス吸気温度補正係数を求めるためのグラフであって、縦
軸にベース吸気温度補正係数FTHAO1横軸に吸気温
度をとり、カーブ0はスワール制御弁32開状態の時に
使用しカーブCはスワール制御弁32閉状態の時に使用
する。
Fig. 4 is a graph for determining the base intake air temperature correction coefficient when converting the volumetric flow rate into the mass flow rate.The vertical axis is the base intake air temperature correction coefficient FTHAO1, the horizontal axis is the intake air temperature, and the curve 0 is Curve C is used when the swirl control valve 32 is open, and curve C is used when the swirl control valve 32 is closed.

内燃機関が始動されると、第3図に示すルーチンが起動
され、先ず始動フラグXの状態が判別される(ステップ
101)、内燃機関の始動のためにイグニッションスイ
ッチをオンとした時に始動フラグXはセット状態となる
ため、次に吸気管圧力PMの判定が行われる(ステップ
102)。ここでは大気圧PAと吸気管圧力PMとの差
圧が予め定められた圧力設定値ΔPS(例えば−220
mmHg )より小であるか否かが判定される。ここで
大気圧PAは始動直前の吸気管圧力を代用する等の公知
の手段で検出可能である。内燃機関の始動開始直後は吸
気管圧力は略略大気圧に等しく、大気圧PAと吸気管圧
力の差圧は設定値ΔPSより小であるため、スワール制
御弁を閉とするためのアクチュエータ38を駆動できな
い。なおステップ101及びステップ102は始動時判
別手段Gを構成する。次に内燃機関の冷却水の温度TH
Cが予め定められた温度設定値TSET (例えば0℃
)より高いか否かが判定される(ステップ103)。な
おステップ103は温度判定手段■を構成する。第3図
に示すフローチャートで、始動時判別手段Gと温度判定
手段Iが直列に接続されていることは、該2つの手段の
出力の論理積を計算することと等価であり、論理積演算
手段、1を構成する。
When the internal combustion engine is started, the routine shown in FIG. 3 is started, and first the state of the start flag X is determined (step 101). is set, so the intake pipe pressure PM is next determined (step 102). Here, the differential pressure between atmospheric pressure PA and intake pipe pressure PM is set to a predetermined pressure setting value ΔPS (for example, −220
mmHg). Here, the atmospheric pressure PA can be detected by known means, such as by substituting the intake pipe pressure immediately before starting. Immediately after starting the internal combustion engine, the intake pipe pressure is substantially equal to atmospheric pressure, and the differential pressure between the atmospheric pressure PA and the intake pipe pressure is smaller than the set value ΔPS, so the actuator 38 is driven to close the swirl control valve. Can not. Incidentally, step 101 and step 102 constitute a starting determination means G. Next, the internal combustion engine cooling water temperature TH
C is a predetermined temperature set value TSET (for example, 0℃
) is higher than that (step 103). Note that step 103 constitutes temperature determination means (2). In the flowchart shown in FIG. 3, the fact that the start-up determining means G and the temperature determining means I are connected in series is equivalent to calculating the logical product of the outputs of the two means, and the logical product calculating means , 1 constitutes.

よって内燃機関始動時、即ち始動フラグXがセット状態
で大気圧PAと吸気圧力PMの差圧が規定値以下である
ため始動時判別手段Gより信号が出力されている場合に
は、冷却水温度THCが設定値TSETより低い低温始
動状態ならば、運転状態判別手段Aの出力にかかわらず
、第4図のカーブOを使用して吸気温度THAからベー
ス吸気温度補正係数FTHAOを算出(ステップ106
)する、なおステップ106は調整手段開時補正値算出
手段Cを構成する。
Therefore, when the internal combustion engine is started, that is, when the start flag If the THC is lower than the set value TSET, the base intake air temperature correction coefficient FTHAO is calculated from the intake air temperature THA using the curve O in FIG. 4, regardless of the output of the operating state determining means A (step 106).
), and step 106 constitutes adjustment means opening correction value calculation means C.

又冷却水温度THCが設定値以上の高温始動状態ならば
、運転状態判別手段Aを構成する図示していない別のル
ーチンで、スワール制御弁32(SCVと称す)に対し
閉指令が出力されているか否かが判定される(ステップ
105 )。運転状態判別手段Aがスワール制御弁32
に閉指令を出力していないときは、同様にカーブ0を使
用してベース吸気温度補正係数FTHAOを算出(ステ
ップ106)する。
In addition, if the cooling water temperature THC is in a high-temperature starting state equal to or higher than the set value, a close command is output to the swirl control valve 32 (referred to as SCV) in another routine (not shown) constituting the operating state determining means A. It is determined whether or not there is one (step 105). The operating state determining means A is the swirl control valve 32
When the closing command is not outputted, the base intake air temperature correction coefficient FTHAO is similarly calculated using curve 0 (step 106).

運転状態判別手段Aがスワール制御弁32に閉指令を出
力している場合には、第4図のカーブCを使用してベー
ス吸気温度補正係数FTHAOを算出(ステップ107
)する。なおステップ107は調整手段閉時補正係数算
出手段りを構成する。
When the operating state determining means A outputs a close command to the swirl control valve 32, the base intake air temperature correction coefficient FTHAO is calculated using the curve C in FIG. 4 (step 107).
)do. Note that step 107 constitutes a correction coefficient calculating means when the adjustment means is closed.

第3図に示すフローチャートでステップ103及びステ
ップ105の一方が”N o ”である場合にステップ
106が実行されることとなるが、これは論理和演算手
段、K及び補正係数切り替え手段Eを構成する。
In the flowchart shown in FIG. 3, when one of step 103 and step 105 is "No", step 106 is executed, which constitutes the logical sum operation means, K, and correction coefficient switching means E. do.

その後、内燃機関回転数から内燃機関回転数補正係数K
THANEを算出(ステップ108)、吸気管圧力補正
係数KTHAPMを算出(ステップ109)L、以上算
出した補正係数に基づいて吸気温度補正係数を計算する
。なおこの内燃機関回転数補正係数KTHANEはエン
ジン回転数の影響による吸気温度の変化を補正する係数
であり、また吸気管圧力補正係数KTHAPMは吸気管
圧力の影響による吸気温度の変化を補正する係数である
。本実施例ではベース吸気温度補正係数FTHAOのみ
をスワール調整手段閉時と開時とで使い分けているが、
より精度の高い吸気温度補正を行うためにはこれら内燃
機関回転数補正係数KTHANE及び吸気管圧力補正係
数KTHAPMをもスワール調整手段閉時と開時とで使
い分けても良い。第5図は内燃機関回転数補正係数の1
例を示すグラフであり継軸に回転数補正係数KTHAN
E、横軸に回転数NEをとり、カーブOはスワール制御
弁32開状態のときに使用し、カーブCはスワール制御
弁32閉状態のときに使用する。
Then, from the internal combustion engine rotational speed, the internal combustion engine rotational speed correction coefficient K
THANE is calculated (step 108), an intake pipe pressure correction coefficient KTHAPM is calculated (step 109), and an intake air temperature correction coefficient is calculated based on the correction coefficients calculated above. The internal combustion engine speed correction coefficient KTHANE is a coefficient for correcting changes in intake air temperature due to the influence of engine speed, and the intake pipe pressure correction coefficient KTHAPM is a coefficient for correcting changes in intake air temperature due to the effect of intake pipe pressure. be. In this embodiment, only the base intake air temperature correction coefficient FTHAO is used depending on whether the swirl adjustment means is closed or opened.
In order to perform more accurate intake air temperature correction, the internal combustion engine rotational speed correction coefficient KTHANE and the intake pipe pressure correction coefficient KTHAPM may also be used depending on whether the swirl adjustment means is closed or opened. Figure 5 shows the internal combustion engine speed correction coefficient of 1.
This is a graph showing an example, and the rotation speed correction coefficient KTHAN is applied to the joint shaft.
E, the rotational speed NE is plotted on the horizontal axis, curve O is used when the swirl control valve 32 is open, and curve C is used when the swirl control valve 32 is closed.

そしてステップ10Bからステップ110は吸気温度補
正係数算出手段Fを構成する。
Steps 10B to 110 constitute intake air temperature correction coefficient calculation means F.

又、大気圧PAと吸気管圧力PMの差圧が設定値ΔPS
より大きい場合(ステップl02)は、内燃機関の始動
は完了し、定常運転状態に移行したものと見なして始動
フラグXをリセット状態とする(ステップ104)。以
後内燃機関の運転中は、始動フラグXがセント状態では
ない(ステ。
Also, the differential pressure between atmospheric pressure PA and intake pipe pressure PM is the set value ΔPS.
If it is larger (step 102), it is assumed that the internal combustion engine has completed starting and entered a steady operating state, and the start flag X is reset (step 104). Thereafter, while the internal combustion engine is operating, the start flag X will not be in the cent state (step).

ブ101)ため、運転状態判別手段Aにおけるスワール
制御弁32の制御方法の決定に従ってヘース吸気温度補
正係数のカーブが選択される(ステップ105)。
101), a curve of the Haese intake air temperature correction coefficient is selected in accordance with the determination of the control method for the swirl control valve 32 in the operating state determining means A (step 105).

即ち調整手段開時補正係数算出手段Cの出力を使用して
質量流量を計算した時は、空燃比は濃厚側に設定され、
調整手段閉時補正係数算出手段りを使用して、質量流量
を計算した時は、空燃比は希薄側に設定される。
That is, when the mass flow rate is calculated using the output of the adjusting means opening correction coefficient calculating means C, the air-fuel ratio is set to the rich side,
When the mass flow rate is calculated using the adjustment means closed correction coefficient calculation means, the air-fuel ratio is set to the lean side.

[発明の効果] 以上述べたように、本発明によればスワールを発生させ
て燃焼性を改善するために、運転状態判別手段がスワー
ル調整手段に閉指令を出力しているにもかかわらず、大
気圧と吸気圧力の差圧が規定値以上無いために、実際は
スワール調整手段が開状態にある場合であっても、内燃
機関の始動性特に低温始動状態における始動性を改善す
ることが、スワール調整手段の実際の開閉状態を検出す
る手段を追設することなく可能となる。
[Effects of the Invention] As described above, according to the present invention, in order to generate swirl and improve combustibility, even though the operating state determining means outputs a close command to the swirl adjusting means, Even if the swirl adjustment means is actually in the open state because the differential pressure between atmospheric pressure and intake pressure is not higher than the specified value, swirl This is possible without additionally installing means for detecting the actual open/closed state of the adjustment means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な構成を示す図、第2図は本発
明を寞施するための内燃機関の構成を示す図、 第3図は本発明の詳細な説明するためのフローチャート
、 第4図は実施例における補正係数を求めるためのグラフ
、 第5図は実施例におけるもう1つの補正係数を求めるた
めのグラフである。 図において 12a、12b・・・吸気ボート、 14a、14 b ・・・排気ポート、16a、16b
−吸気弁、 18a、18 b ・・・排気弁、 32・・・スワール制御弁、 38・・・アクチュエータ、 44・・・電磁3方切替弁、 46・・・チエツク弁、 50・・・制御回路、 62・・・冷却水温度検出器。 第 図 吸気温度THA エンジン回転NE
FIG. 1 is a diagram showing the basic configuration of the present invention, FIG. 2 is a diagram showing the configuration of an internal combustion engine for implementing the present invention, and FIG. 3 is a flowchart for explaining the present invention in detail. FIG. 4 is a graph for determining a correction coefficient in the embodiment, and FIG. 5 is a graph for determining another correction coefficient in the embodiment. In the figure, 12a, 12b...intake boat, 14a, 14b...exhaust port, 16a, 16b
- Intake valve, 18a, 18b... Exhaust valve, 32... Swirl control valve, 38... Actuator, 44... Solenoid three-way switching valve, 46... Check valve, 50... Control Circuit, 62...Cooling water temperature detector. Diagram Intake air temperature THA Engine speed NE

Claims (1)

【特許請求の範囲】 1、内燃機関の運転状態判別手段(A)と、該運転状態
判別手段(A)の出力により制御される該内燃機関の気
筒に吸入される空気流にスワールを生ぜしめるためのス
ワール調整手段(B)と、 該調整手段(B)が開時の補正係数算出手段(C)と、 該調整手段(B)が閉時の補正係数算出手段(D)と、 該開時の補正係数算出手段(C)と該閉時の補正係数算
出手段(D)を切り替える補正係数切り替え手段(E)
と、 該開時の補正係数算出手段(C)の出力又は該閉時の補
正係数算出手段(D)の出力を使用して燃料噴射量の吸
気温度補正係数算出手段(F)を有するスワール調整手
段付き内燃機関制御装置であって、 該内燃機関の始動時判別手段(G)と、 該内燃機関の冷却水温度検出手段(H)と、該冷却水温
度検出手段(H)の出力が、予め設定されたしきい値以
上であることを判定する温度判定手段(I)と、 該始動時判別手段(G)の出力と該温度判定手段(I)
の出力とを2つの入力とする論理積演算手段(J)と、 該論理積演算手段(J)の出力と前記運転状態判別手段
(A)の出力とを2つの入力とする論理和演算手段(K
)を有し、 該論理和演算手段(K)の出力により前記補正係数切り
替え手段(E)を切り替えるスワール調整手段付き内燃
機関制御装置。
[Claims] 1. A means for determining the operating state of an internal combustion engine (A), and generating a swirl in the air flow taken into the cylinder of the internal combustion engine controlled by the output of the operating state determining means (A). a swirl adjustment means (B) for the adjustment, a correction coefficient calculation means (C) when the adjustment means (B) is open, a correction coefficient calculation means (D) when the adjustment means (B) is closed, and a correction coefficient calculation means (D) when the adjustment means (B) is closed; Correction coefficient switching means (E) for switching between the correction coefficient calculation means (C) at the time of closing and the correction coefficient calculation means (D) at the time of closing.
and a swirl adjustment having an intake air temperature correction coefficient calculation means (F) for the fuel injection amount using the output of the correction coefficient calculation means (C) when the opening is performed or the output of the correction coefficient calculation means (D) when the closed time is used. An internal combustion engine control device with means, comprising: a start determination means (G) for the internal combustion engine; a cooling water temperature detection means (H) for the internal combustion engine; and an output of the cooling water temperature detection means (H). Temperature determination means (I) that determines whether the temperature is above a preset threshold; and the output of the start-up determination means (G) and the temperature determination means (I).
a logical product calculating means (J) having two inputs of the output of the logical product calculating means (J); and a logical sum calculating means having two inputs of the output of the logical product calculating means (J) and the output of the driving state determining means (A). (K
), and switches the correction coefficient switching means (E) according to the output of the logical sum operation means (K).
JP2018973A 1990-01-31 1990-01-31 Controller of internal combustion engine with swirl adjustment means Pending JPH03225027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018973A JPH03225027A (en) 1990-01-31 1990-01-31 Controller of internal combustion engine with swirl adjustment means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018973A JPH03225027A (en) 1990-01-31 1990-01-31 Controller of internal combustion engine with swirl adjustment means

Publications (1)

Publication Number Publication Date
JPH03225027A true JPH03225027A (en) 1991-10-04

Family

ID=11986582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018973A Pending JPH03225027A (en) 1990-01-31 1990-01-31 Controller of internal combustion engine with swirl adjustment means

Country Status (1)

Country Link
JP (1) JPH03225027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278132A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Control unit for air current control valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278132A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Control unit for air current control valve
JP4654960B2 (en) * 2006-04-04 2011-03-23 トヨタ自動車株式会社 Airflow control valve control device

Similar Documents

Publication Publication Date Title
JP3807174B2 (en) Engine control device
JP3926522B2 (en) Intake control device for turbocharged engine
EP1452708A2 (en) Apparatus for controlling internal combustion engine
JP2001050090A (en) Intake air volume calculation system for variable valve timing engine
WO2012108287A1 (en) Control device for internal combustion engine equipped with supercharger
JP2005133678A (en) Injection quantity controller of diesel engine
JP2001280202A (en) Exhaust gas recirculation system
WO2009107378A1 (en) Controller for internal-combustion engine
JP2019060311A (en) Control device for internal combustion engine, and control method for internal combustion engine
JPH03225027A (en) Controller of internal combustion engine with swirl adjustment means
JPH03225044A (en) Control device for internal combustion engine
JP3907262B2 (en) Evaporative fuel purge system for engine
JPH09324672A (en) Fuel injection timing control device of lean-burn engine
JP3757738B2 (en) Ignition timing control device for internal combustion engine
JP2004100575A (en) Control unit of internal combustion engine
JPH03225045A (en) Air-fuel ratio control device for internal combustion engine
JPH0563609B2 (en)
JPH04101031A (en) Fuel feeder of internal combustion engine
JPS5872631A (en) Air-fuel ratio control method of engine
JP3453819B2 (en) Engine air-fuel ratio control device
JP2004225654A (en) Inside egr amount estimating device for internal combustion engine
JP2000080936A (en) Cylinder suction air quantity detector for variable valve system engine
JPH0385362A (en) Exhaust gas circulation controller of diesel engine
JP3470468B2 (en) Control unit for diesel engine
JPS61192811A (en) Suctiom apparatus for engine