JPH03224500A - Production of xylose - Google Patents

Production of xylose

Info

Publication number
JPH03224500A
JPH03224500A JP1896290A JP1896290A JPH03224500A JP H03224500 A JPH03224500 A JP H03224500A JP 1896290 A JP1896290 A JP 1896290A JP 1896290 A JP1896290 A JP 1896290A JP H03224500 A JPH03224500 A JP H03224500A
Authority
JP
Japan
Prior art keywords
xylose
core layer
sulfuric acid
raw material
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1896290A
Other languages
Japanese (ja)
Other versions
JP2979125B2 (en
Inventor
Noboru Yamazaki
登 山嵜
Hyoe Hatakeyama
兵衛 畠山
Shinya Ichikawa
市川 伸哉
Katsuji Matsuda
松田 勝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Harima Chemical Inc filed Critical Agency of Industrial Science and Technology
Priority to JP2018962A priority Critical patent/JP2979125B2/en
Publication of JPH03224500A publication Critical patent/JPH03224500A/en
Application granted granted Critical
Publication of JP2979125B2 publication Critical patent/JP2979125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To efficiently obtain the subject xylose of high purity at an industrially low cost by carrying out acid hydrolysis of the core layer of a babassupalm in a specified condition. CONSTITUTION:The core layer of a babassupalm is hydrolyzed in 0.1-3 N mineral acid at 100-130 deg.C, preferably 120 deg.C and at the ordinary pressure or an applied pressure, and the resultant liquid layer is subsequently subjected to the active carbon treatment, the ion-exchange resin treatment, etc., thus carrying out separation and purification of the objective compound. In addition, before the above-mentioned hydrolysis, impurities are preferably removed by boiling the raw material in water or a dilute acid of <=0.1N.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はババスヤシ殻の核層を原料として用い特定の加
水分解条件を適用することにより、高純度のキシロース
を工業的に安価か′つ効率良く製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses the core layer of Babassu coconut shell as a raw material and applies specific hydrolysis conditions to produce high-purity xylose industrially at low cost and efficiently. Concerning how to manufacture well.

[従来の技術] 従来、キシロースはキシランの他にセルロース及び各種
のヘミセルロースを多量に含有する天然の植物原料(例
えば、からす麦、トウモロコシ又は綿実膜など単子葉植
物、及びブナ、ポプラ、カバなどの落葉樹のような双子
葉植物)やバルブ及び紙工業の廃棄有機原料(亜硫酸バ
ルブ、クラフトバルブ、セミケミカルバルブなどの廃棄
物)を出発原料として、鉱酸、有機酸又は酵素剤による
加水分解により得る方法が試みられきた。またこれら加
水分解物には多種類の糖類なと不純物を含むので、その
精製については酵母による不純物の発酵除去等の方法が
用いられてきた。
[Prior Art] Conventionally, xylose has been produced from natural plant materials containing large amounts of cellulose and various hemicelluloses in addition to xylan (for example, monocotyledonous plants such as oat, corn, or cottonseed, and beech, poplar, and birch). Hydrolysis using mineral acids, organic acids, or enzymatic agents as starting materials from dicotyledonous plants such as deciduous trees (e.g., deciduous trees, etc.) and waste organic raw materials from the valve and paper industry (wastes such as sulfite valves, kraft valves, semi-chemical valves, etc.) Attempts have been made to obtain this method. Furthermore, since these hydrolysates contain many types of saccharides and other impurities, methods such as fermentation removal of impurities using yeast have been used to purify them.

[発明が解決しようとする課題] 一般にこれらの出発原料は各種の多糖類から構成されて
いるため、得られた加水分解糖液中には目的とするキシ
ロースの他にアラビノースなどの五炭糖やグルコース、
マンノース、ガラクトースなどの六炭糖及び酢酸等が生
じる。
[Problems to be Solved by the Invention] Generally, these starting materials are composed of various polysaccharides, so in addition to the target xylose, the obtained hydrolyzed sugar solution also contains pentose sugars such as arabinose and glucose,
Hexoses such as mannose and galactose and acetic acid are produced.

従って、この混合物から各成分を分離してキシロースを
高純度で回収することは極めて困難てあリ、そのため多
くの費用と時間を要した。
Therefore, it is extremely difficult to separate each component from this mixture and recover xylose with high purity, which requires a lot of cost and time.

一方、上述のような他の不純物の混入のないキシロース
の製造法としてババスヤシ殻の外皮層又は核層を原料と
し、酵素剤を用いる方法(特公昭56−50960)が
ある。しかし、この方法によると脱)ノグニンやキシラ
ンのアルカリ抽出等の前処理工程とともに酵素加水分解
液を中性成分であるキシロース及びウロン酸を含む酸性
成分であるポリアニオン性物質に分離する後処理があり
、キシロースのみを得るためにはプロセスが複雑で、ま
た費用と時間かかかるという問題点があった。
On the other hand, as a method for producing xylose without contamination with other impurities as mentioned above, there is a method using the outer skin layer or core layer of the Babassu coconut shell as a raw material and using an enzyme agent (Japanese Patent Publication No. 56-50960). However, this method requires pretreatment steps such as de)nognonin and alkaline extraction of xylan, as well as post-treatment to separate the enzymatic hydrolyzate into xylose, a neutral component, and polyanionic substances, which are acidic components, including uronic acid. However, there were problems in that the process to obtain only xylose was complicated, and it was expensive and time consuming.

また−船釣に天然物を原料とすることは原料供給の安定
性が問題となるものであり、例えば綿実殻を原料とした
場合(特公昭43−122371綿実油の利用価値の減
少に伴い将来的に原料の安定な供給に問題かある。なお
、原料とする植物においては、キシランの存在状態は、
その起源によって異なるもので、熱や薬品に対する挙動
についてもキシラン自体の分子量、リグニン質・セルロ
ース質との結合状態により各々異なっている。
In addition, using natural products as raw materials for boat fishing poses problems regarding the stability of raw material supply. For example, if cottonseed husks are used as raw materials (Japanese Patent Publication No. 43-122371), due to the decrease in the utility value of cottonseed oil, there will be problems in the future. However, there is a problem with the stable supply of raw materials.In addition, in the plants used as raw materials, the state of existence of xylan is as follows.
They differ depending on their origin, and their behavior towards heat and chemicals also differs depending on the molecular weight of the xylan itself and the state of bonding with lignin and cellulose.

キシロースの製造原料として、ババスヤシ殻の核層は特
公昭56−50960に述べられているように他の原料
に比ベキシラン含量に冨み、また原木はブラジルなど南
米に大量に自生しているため原料供給安定性に優れてい
る。しかしながら、キシロースのみを製造する観点から
は先に述べた特許の製造方法ではプロセスが複雑であり
コスト面から必ずしも有利ではなかった。
As a raw material for the production of xylose, the core layer of the Babasu coconut shell is rich in bexilan content compared to other raw materials, as stated in Japanese Patent Publication No. 56-50960, and the raw wood grows naturally in large quantities in South America such as Brazil, so it is used as a raw material. Excellent supply stability. However, from the viewpoint of producing only xylose, the above-mentioned patented production method requires a complicated process and is not necessarily advantageous in terms of cost.

そこで本発明では原料としてババスヤシ殻の核層を用い
、高純度のキシロースを工業的に安価で簡便に製造する
ことを目的とした。
Therefore, the present invention aims to produce high-purity xylose industrially at low cost and simply by using the core layer of Babassu coconut shell as a raw material.

なおこの発明で言うババスヤシとは、ヤシ科植物に分類
されBabassupalm、Orbignya ma
rtianaBarb−Rodr等の名称があり、核層
はその種子を包むEnclcarpoと呼ばれる部分を
指す。
In addition, the Babassupalm referred to in this invention refers to Babassupalm, Orbignya palm, which is classified as a plant of the palm family.
There are names such as rtianaBarb-Rodr, and the nuclear layer refers to the part called Enclcarpo that envelops the seed.

[課題を解決するための手段] 本発明においては、原料供給性に優れているババスヤシ
殻の核層な用い、その加水分解の条件として0.1〜3
. 0Nの鉱酸を用い、100130°C好ましくは1
20°C前後、常圧又は加圧下で煮熟する。このことに
よってグルコース、アラビノース及び少糖類の生成を抑
えかつ高純度のキシロースを製造することができる。
[Means for Solving the Problems] In the present invention, the core layer of Babassu coconut shell, which has excellent raw material supplyability, is used, and the hydrolysis conditions are 0.1 to 3.
.. using 0N mineral acid at 100130°C, preferably 1
Boil at around 20°C under normal pressure or pressure. This makes it possible to suppress the production of glucose, arabinose and oligosaccharides and to produce highly pure xylose.

更にババスヤシ殻の核層な原料とするについて、水又は
0.1N以下の希酸を加え煮熟し液に溶解した不純物を
流し去る前処理工程の後に、上記の加水分解を行うと、
さらに高純度のキシロースが得られることを見い出した
Furthermore, in order to use Babasu coconut shell as a raw material for the core layer, if the above hydrolysis is performed after a pretreatment step of adding water or a dilute acid of 0.1N or less and boiling it to wash away impurities dissolved in the liquid,
It was also discovered that highly purified xylose could be obtained.

また得られた加水分解液からキシロースの分離精製は活
性炭処理、イオン交換樹脂処理及び結晶化等で達成され
る。
Separation and purification of xylose from the obtained hydrolyzate is achieved by treatment with activated carbon, treatment with an ion exchange resin, crystallization, etc.

以下に実施例等により具体的に述べる。This will be described in detail below using examples and the like.

[実験例1コ 硫酸処理によるキシロース含有液製造(1)ババスヤシ
殻の核層部を取り出し、ウィレーミルにより粒径0,5
〜2.0mm程度に粉砕処理を行ってパウダーを得た。
[Experimental Example 1 Production of xylose-containing liquid by co-sulfuric acid treatment (1) The core layer of the Babassu coconut shell was taken out and reduced to a particle size of 0.5 using a Willey mill.
A powder was obtained by pulverizing the powder to about 2.0 mm.

このパウダー(乾燥物)各8、OOg(10系列)を試
料とし栓付三角フラスコ中の0〜50%(v/v)(約
O〜18N)の硫酸100m1に加え、120℃加圧1
気圧60分のオートクレーブ中でキシロースの溶出を試
みた。各系列の酸濃度は第1表に示した。
A sample of 8 and 00 g (10 series) of this powder (dry product) was added to 100 ml of 0-50% (v/v) (approximately O-18 N) sulfuric acid in an Erlenmeyer flask with a stopper, and the mixture was heated at 120°C for 1 hour.
An attempt was made to elute xylose in an autoclave at atmospheric pressure for 60 minutes. The acid concentration of each series is shown in Table 1.

加熱処理後加水分解物はガラス繊維濾紙にて濾過し、固
形物と濾液に分離した。固形物は洗浄液が中性になるま
で水洗した後に105℃で5時間乾燥し秤量した。濾液
は水酸化バリウムでpH6,56,9に中和し、生じた
硫酸バリウムを濾過により除去し濾液を濃縮、凍結乾燥
を行い秤量した。ババスヤシ殻核層パウダーの各硫酸濃
度による溶出物と固形物の物質収支を第2表に示した。
After the heat treatment, the hydrolyzate was filtered using glass fiber filter paper to separate solid matter and filtrate. The solid matter was washed with water until the washing solution became neutral, dried at 105° C. for 5 hours, and weighed. The filtrate was neutralized with barium hydroxide to pH 6,56,9, the resulting barium sulfate was removed by filtration, the filtrate was concentrated, freeze-dried, and weighed. Table 2 shows the mass balance of eluates and solids for each sulfuric acid concentration of the Babassu coconut shell core layer powder.

原料に対する溶出物の収率は実験系D−F(硫酸濃度1
.0〜5.0%(V/V)で40%以上という最も効率
が良い結果となった。
The yield of eluate relative to the raw material was determined using experimental system D-F (sulfuric acid concentration 1
.. The best efficiency of 40% or more was obtained at 0 to 5.0% (V/V).

溶出物の糖組成を調べるためにシリカゲルTLCプレー
ト(MERCK Art、 5554)で展開した結果
、驚くべきことに実験系C−E(硫酸濃度0.5〜2.
0%(V/V)の硫酸濃度で処理した物が唯一キシロー
スのみが生成していることが判明した(第1図)。また
実験系0−B(硫酸濃度O〜0.2%(V/V)ではバ
バスヤシ殻核層中に含まれる他のヘミセルロース由来の
アラビノース化の夾雑物が多く含まれ、実験系F〜工 
(硫酸濃度5.0〜50.0%(V / V )ではセ
ルロース由来のグルコースの生成が伴うようになり、純
度の高いキシロースを得られるのはこの間の硫酸濃度で
のみ成立することが示された。
In order to investigate the sugar composition of the eluate, it was developed on a silica gel TLC plate (MERCK Art, 5554), and surprisingly, experimental system C-E (sulfuric acid concentration 0.5-2.
It was found that only xylose was produced in the sample treated with 0% (V/V) sulfuric acid concentration (Figure 1). In addition, in experimental system 0-B (sulfuric acid concentration O ~ 0.2% (V/V)), a large amount of arabinose impurities derived from other hemicelluloses contained in the Babassu coconut shell core layer were contained, and in experimental system F~
(It has been shown that at sulfuric acid concentrations of 5.0 to 50.0% (V/V), glucose derived from cellulose is produced, and that highly pure xylose can only be obtained at sulfuric acid concentrations between this range. Ta.

次に各溶出物の全糖量をオルシノール硫酸法で還元糖量
をネルソンーソモギ法で定量した結果を第3表に示した
。全糖量の比率は実験系A−F(硫酸濃度0.1〜5.
0%(v/v))で60%前後の値か得られ、還元糖量
は実験系C−F(硫酸濃度0.5〜5.0%(v/v)
)で55%前後の値か得られた。また全糖量/還元糖量
の値で溶出物に含まれる糖の重合度を換算すると、実験
系C−G(硫酸濃度1.0〜10.0%(v/v))で
ほぼ1となり、溶出糖のほとんど全部が単糖まで分解し
ていることがわかる。またここで実験系H1■(硫酸濃
度20.0〜50.0%(v/v))では糖の過分解反
応が進行していることが明らかとなった。
Next, the total sugar content of each eluate was determined by the orcinol sulfuric acid method, and the reducing sugar content was determined by the Nelson-Somogi method, and the results are shown in Table 3. The ratio of total sugar amount is experimental system A-F (sulfuric acid concentration 0.1-5.
0% (v/v)), a value of around 60% was obtained, and the amount of reducing sugar was determined by the experimental system C-F (sulfuric acid concentration 0.5-5.0% (v/v)).
), a value of around 55% was obtained. In addition, when converting the degree of polymerization of sugars contained in the eluate using the value of total sugar amount/reducing sugar amount, it is approximately 1 in experimental system C-G (sulfuric acid concentration 1.0 to 10.0% (v/v)). , it can be seen that almost all of the eluted sugars have been broken down to monosaccharides. Furthermore, it was revealed that in the experimental system H1 (sulfuric acid concentration 20.0 to 50.0% (v/v)), the excessive decomposition reaction of sugar was progressing.

溶出物中の糖分の対原料収率では、実験系D〜F(硫酸
濃度1.0〜5.0%(V/V))で23%以上となっ
た(第4表)。
The yield of sugar in the eluate relative to the raw material was 23% or more in experimental systems D to F (sulfuric acid concentration 1.0 to 5.0% (V/V)) (Table 4).

以上、溶出物の糖分の対原料収率、キシロースの純度、
糖含量、加水分制度のすべての実験結果を考慮した結果
、実験系り、 E (硫酸濃度1.0.2.0%(V/
V) )で処理して得た溶出物が夾雑糖類を含まず、ま
た高い収率でキシロースか得られることが明らかとなっ
た。
Above, the yield of sugar content in the eluate relative to the raw material, the purity of xylose,
As a result of considering all the experimental results regarding sugar content and hydrolysis system, the experimental system was as follows: E (sulfuric acid concentration 1.0.2.0% (V/
It was revealed that the eluate obtained by the treatment in (V)) did not contain any contaminant sugars and that xylose could be obtained in high yield.

第   1   表 第 表 (重量は乾物換算値) 第 表 \ 第 表 [実験例2]キシロースシロツプのmM実験例1の実験
系り、Eの濾液部分の凍結乾燥物(以下各県の濾液部分
の凍結乾燥物も単に溶出物と表現する。) 1.OOg
を水10m1に溶かし、ヤシ殻活性炭(和光純薬)50
mgを加え4’ O’Cで60分間処理した。活性炭を
濾過して除去し、処理液を10m1に調整した。この5
.00m1を強酸性イオン交換樹脂GC120()l”
)型1〜1.5ml及び強塩基性イオン交換樹脂lR4
10C0)l−)型1〜1.5m1Oカラムに通過し精
製を行った。
Table 1 Table 1 (Weight is calculated as dry weight) Table \ Table [Experiment Example 2] Xylose syrup in mM Experimental system of Experiment Example 1 The lyophilized product of a portion is also simply expressed as the eluate.) 1. OOg
Dissolve in 10ml of water, add 50ml of coconut shell activated carbon (Wako Pure Chemical Industries)
mg was added and treated at 4'O'C for 60 minutes. Activated carbon was removed by filtration, and the volume of the treated solution was adjusted to 10 ml. This 5
.. 00ml of strongly acidic ion exchange resin GC120()l”
) Type 1-1.5ml and strongly basic ion exchange resin lR4
Purification was performed by passing through a 10C0)l-) type 1-1.5mlO column.

各精製段階のシロップの糖純度をオルシノール硫酸法で
検定した結果、最終処理物は実験系りで92.8%、E
で90.2%となり(第5表)、またこれをHPLCで
糖組成を調べた結果、各々唯一キシロースのピークのみ
が検出された。
As a result of testing the sugar purity of the syrup at each purification stage using the orcinol sulfuric acid method, the final treated product was 92.8% in the experimental system.
90.2% (Table 5), and when the sugar composition was examined by HPLC, only a xylose peak was detected in each case.

結果は第2図に示した。なおHPLCの条件は移動相ニ
アセトニトリル:水=80:20流速 : 0.5ml
/min カラム: TO3OHAm1de 80 (4,6mm
IDx 25cm)温度二80°C 検出器: TO5O)I R1−8012装 置: T
O5OH5C−8010 試料注入量:20μI (アセトニトリル:試料水溶液=80:20)また各精
製段階の糖分の対原料収率を第4表に示した。最終処理
物のキシロースの対原料収率は約21%となった。
The results are shown in Figure 2. Note that the HPLC conditions are mobile phase: niacetonitrile:water = 80:20 flow rate: 0.5ml
/min Column: TO3OHAm1de 80 (4.6mm
IDx 25cm) Temperature 280°C Detector: TO5O) I R1-8012 Device: T
O5OH5C-8010 Sample injection amount: 20 μI (acetonitrile: sample aqueous solution = 80:20) Table 4 also shows the yield of sugar to raw material in each purification step. The yield of xylose based on the raw material in the final treated product was approximately 21%.

第  5  表 [実験例3]前処理を含むキシロース含有液の製造(2
) ババスヤシ核層パウダー(乾燥物)各8.OOg(3系
列0−2、A−2、B−2)を試料とし、栓付三角フラ
スコ中のO〜0,2%(v / v ) (約0〜0.
072N)の水又は希硫酸液100m1に加え、120
℃加圧1気圧60分のオートクレーブ中で前処理し、溶
出物を濾過除去して得られた固形物の各4.00g(乾
燥物換算)を以下のキシロース含有液の製造原料として
用いた。各実験系の前処理における硫酸濃度は、第1表
に示した同じアルファベット記号の実験系に準する。す
なわち○−2実験系では水を用い、A−2実験系では0
.1%の、B−2実験系では0.2%の希硫酸を用いた
Table 5 [Experimental Example 3] Production of xylose-containing liquid including pretreatment (2
) Babassu coconut core layer powder (dried) 8. OOg (3 series 0-2, A-2, B-2) was used as a sample, and O~0.2% (v/v) (approximately 0~0.0.
In addition to 100 ml of water or dilute sulfuric acid solution of 120
Pretreatment was carried out in an autoclave under pressure of 1 atm at 0.degree. C. for 60 minutes, and the eluate was removed by filtration. 4.00 g (in terms of dry matter) of each of the solids obtained was used as a raw material for producing the following xylose-containing liquid. The sulfuric acid concentration in the pretreatment of each experimental system is based on the experimental systems shown in Table 1 with the same alphabetical symbol. In other words, water was used in the ○-2 experimental system, and 0 was used in the A-2 experimental system.
.. 1% and 0.2% dilute sulfuric acid was used in the B-2 experimental system.

各前処理条件で処理した固形物4.00g (乾燥物換
算)を栓付三角フラスコ中の1%(v/v)硫酸50m
1中に加え、120℃、加圧1気圧、60分間のオート
クレーブ中でキシロースの溶出を試みた。溶出物と固形
物の物質収支を求めた結果を第6表に示した。
4.00 g (dry weight) of the solids treated under each pretreatment condition was placed in a stoppered Erlenmeyer flask with 50 m of 1% (v/v) sulfuric acid.
1, and an attempt was made to elute xylose in an autoclave at 120° C. and a pressure of 1 atm for 60 minutes. Table 6 shows the results of determining the mass balance of eluate and solid matter.

溶出物の糖組成をTLCで調べた結果、唯一キシロース
のみが生成していることが示された(第3図)。
Examination of the sugar composition of the eluate by TLC revealed that only xylose was produced (Figure 3).

また全糖量及び還元糖量を実験例1と同様に測定した結
果、全糖量の比率は第7表に示した通り実験系0−2.
A−2で80%前後となり、実験例1で得られた前処理
を行わなかった実験系A〜Fに比べ20%程度向上した
。実験系B−2の前処理時の硫酸濃度(0,2%(V/
V)’)では、前処理段階でのキシロースのロスが多く
、かつ純度の向上が認められなかった。
In addition, as a result of measuring the total sugar amount and reducing sugar amount in the same manner as in Experimental Example 1, the ratio of total sugar amount was as shown in Table 7 for experimental system 0-2.
In A-2, it was around 80%, which was an improvement of around 20% compared to experimental systems A to F obtained in Experimental Example 1 in which no pretreatment was performed. Sulfuric acid concentration (0.2% (V/
In V)'), there was a large loss of xylose in the pretreatment step, and no improvement in purity was observed.

この結果は、前処理がこの後の精製に用いる活性炭及び
イオン交換樹脂の消耗を低減する効果があることを示し
、また適切な条件の前処理では全糖量/還元糖量の値も
ほぼ1となり、生成糖のほとんど全部が単糖であること
を示している。
This result shows that pretreatment has the effect of reducing the consumption of activated carbon and ion exchange resin used in subsequent purification, and that with appropriate pretreatment conditions, the value of total sugar content/reducing sugar content is approximately 1. This shows that almost all of the produced sugars are monosaccharides.

糖分の対原料収率は第4表に示したように実験系○−2
で約24%と最も高く、前処理は水又は0.1%(V/
V)程度の硫酸を用いたものが良いことが明らかである
As shown in Table 4, the sugar yield relative to the raw material was determined for experimental system ○-2.
is the highest at approximately 24%, and the pretreatment is with water or 0.1% (V/
It is clear that a method using sulfuric acid of grade V) is better.

第   6   表 第 表 [実験例4]キシロース製造(3) これまでの実験例をもとにキシロース製造のスケールア
ップを試みた。パウダー300.0g(乾燥物換算)に
水道水を加え、全量1500mlとし、2L容ポリプロ
ピレン容器中で 120℃、加圧(ゲージ圧1気圧)、
60分間処理した。濾過により289.8 g (乾燥
物換算)の残渣を得て、これに1%(V/V)硫酸(約
0.36N)を加え全量1500mlとし、同様に12
0℃で加圧60分間処理した。濾過して残渣を除去し、
濾液に消石灰を加え中和し生じた硫酸カルシウムを濾過
除去した。濾液を濃縮し、再び濾過により沈殿物を除き
、活性炭、イオン交換樹脂処理を実験例2で述べた方法
に準じて行ってシロップを得、またこの一部をHPLC
で糖組成の分析を行った。結果を第4図に示した。残る
シロップは濃縮、乾燥して糖純度91.2%の固形分8
1.4gを得た。糖分の対原料収率な算出すると24.
7%となった。
Table 6 [Experimental Example 4] Xylose Production (3) Based on the previous experimental examples, an attempt was made to scale up xylose production. Add tap water to 300.0 g of powder (dry equivalent) to make a total volume of 1500 ml, and place in a 2 L polypropylene container at 120°C and pressurized (1 atm gauge pressure).
Processed for 60 minutes. A residue of 289.8 g (in terms of dry matter) was obtained by filtration, and 1% (V/V) sulfuric acid (approximately 0.36 N) was added to the residue to make a total volume of 1500 ml.
It was treated under pressure at 0°C for 60 minutes. Filter to remove residue;
Slaked lime was added to the filtrate to neutralize it, and the resulting calcium sulfate was removed by filtration. The filtrate was concentrated, the precipitate was removed by filtration again, and treated with activated carbon and ion exchange resin according to the method described in Experimental Example 2 to obtain syrup, and a portion of this was subjected to HPLC analysis.
The sugar composition was analyzed. The results are shown in Figure 4. The remaining syrup is concentrated and dried to a solid content of 8 with a sugar purity of 91.2%.
1.4g was obtained. Calculating the yield of sugar to raw materials is 24.
It was 7%.

[発明の効果] 従来植物原料からキシロースを製造する場合夾雑糖類の
生成及び高温処理(130℃以上)による酢酸の発生が
問題とされていた。本発明者等は酢酸の副生を100〜
130°Cという低い温度に設定することで回避し、ま
たババスヤシ殻核屡を原料とし硫酸処理条件の選択だけ
で高純度のキシロースが製造出来ることを発見した。バ
バスヤシは南米に多量に自生し、また特に核層部はその
58%をも占める一方用途に乏しく、未利用資源でもあ
り原料としての供給安定性に優れているものである。ま
た本性のプロセスの簡潔さは高純度のキシロースを低コ
ストで製造することを可能とし、工業的にも極めて有用
である。
[Effects of the Invention] Conventionally, when producing xylose from plant materials, there were problems with the formation of contaminant sugars and the generation of acetic acid due to high temperature treatment (130° C. or higher). The present inventors have determined that the by-product of acetic acid is 100~
They discovered that this can be avoided by setting the temperature as low as 130°C, and that high-purity xylose can be produced by simply selecting the sulfuric acid treatment conditions using Babassu coconut shell kernels as a raw material. Babasu palm grows naturally in large quantities in South America, and the core layer in particular accounts for 58% of the palm, but it is of little use and is an untapped resource with excellent supply stability as a raw material. Moreover, the simplicity of the inherent process makes it possible to produce high purity xylose at low cost, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はババスヤシ殻の核層を各濃度の硫酸で処理して
得た溶出物のTLCによる糖組成を示す。 第2図(A)、(B)及び(C)はキシロース標準試料
、実験系り及びEの活性炭・イオン交換樹脂による精製
物の)IPLCによる糖組成を示す。 第3図は前処理を行った後に1%(V/V)硫酸処理に
よって得た溶出物のTLCによる糖組成を示す。 第4図(A)、(B)はキシロースの標準試料及び実験
例4の方法で得たシロップのHPLCによる糖組成を示
す。 展開溶媒: 酢酸エチル;ピリツノ: Qt酸: 水=5 : 5 
; l :発色剤 : アニリノ−フタル酸発色剤 σ、Uロ メ ヌ ン 第 図 展開溶媒: 酢酸エチル ピリジン;酢酸;水=:5 ;!i :1 ; 第 図 第4図
FIG. 1 shows the sugar composition of the eluate obtained by treating the core layer of Babasu coconut shell with sulfuric acid at various concentrations, determined by TLC. Figures 2 (A), (B), and (C) show the sugar compositions determined by IPLC of the xylose standard sample, the experimental sample, and the purified product using activated carbon and ion exchange resin of E. FIG. 3 shows the sugar composition by TLC of the eluate obtained by treatment with 1% (V/V) sulfuric acid after pretreatment. FIGS. 4(A) and 4(B) show the sugar compositions of the xylose standard sample and the syrup obtained by the method of Experimental Example 4 by HPLC. Developing solvent: ethyl acetate; pyrite: Qt acid: water = 5: 5
; l: Color former: Anilino-phthalic acid color former σ, Uromenun diagram Developing solvent: Ethylpyridine acetate; Acetic acid; Water =: 5 ;! i:1; Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)ババスヤシ殻の核層を0.1〜3.0Nの鉱酸中
100130℃、常圧又は加圧下の条件で処理して液相
を得、この液相に含まれるキシロースを分離し精製する
ことを特徴とする高純度のキシロースの製造方法。
(1) A liquid phase is obtained by treating the core layer of Babasu coconut shell in 0.1-3.0N mineral acid at 100,130°C under normal pressure or under pressure, and the xylose contained in this liquid phase is separated and purified. A method for producing high-purity xylose, characterized by:
(2)ババスヤシ殻の核層が水又は0.1N以下の希酸
液に溶解する不純物を分離する前処理を施されたもので
あることを特徴とする特許請求の範囲第1項に記載の方
法。
(2) The core layer of the Babassu coconut shell is pretreated to separate impurities that dissolve in water or a dilute acid solution of 0.1N or less. Method.
JP2018962A 1990-01-31 1990-01-31 Xylose production method Expired - Lifetime JP2979125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018962A JP2979125B2 (en) 1990-01-31 1990-01-31 Xylose production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018962A JP2979125B2 (en) 1990-01-31 1990-01-31 Xylose production method

Publications (2)

Publication Number Publication Date
JPH03224500A true JPH03224500A (en) 1991-10-03
JP2979125B2 JP2979125B2 (en) 1999-11-15

Family

ID=11986275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018962A Expired - Lifetime JP2979125B2 (en) 1990-01-31 1990-01-31 Xylose production method

Country Status (1)

Country Link
JP (1) JP2979125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475467A (en) * 2017-09-14 2017-12-15 齐鲁工业大学 A kind of highly effective extraction method of poplar xylose
NL2031203B1 (en) * 2022-03-09 2023-09-18 Univ Qilu Technology Method for preparing reducing sugar by hydrolyzing coconut shell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475467A (en) * 2017-09-14 2017-12-15 齐鲁工业大学 A kind of highly effective extraction method of poplar xylose
NL2031203B1 (en) * 2022-03-09 2023-09-18 Univ Qilu Technology Method for preparing reducing sugar by hydrolyzing coconut shell

Also Published As

Publication number Publication date
JP2979125B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
Dominguez et al. Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast
AU2005232782B2 (en) Recovery of inorganic salt during processing of lignocellulosic feedstocks
US7670813B2 (en) Inorganic salt recovery during processing of lignocellulosic feedstocks
JP5520822B2 (en) Biomass component separation process
US4181796A (en) Process for obtaining xylan and fibrin from vegetable raw material containing xylan
CZ292059B6 (en) Method of producing sugars from materials containing cellulose and hemicellulose
US11286272B2 (en) Production method for acidic xylooligosaccharide, and acidic xylooligosaccharide
CN110616237A (en) Method for preparing xylo-oligosaccharide from steam-exploded plant fiber raw material
CN111004827A (en) Preparation method of xylo-oligosaccharide
CN111655663B (en) Method for producing polyphenol composition from bagasse
CA2565433C (en) Inorganic salt recovery during processing of lignocellulosic feedstocks
EP3201362B1 (en) A pretreatment process of lignocellulosic biomass
JPH03224500A (en) Production of xylose
JP4898135B2 (en) Cellobiose purification method and production method
JPS61285999A (en) Production of xylose and xylooligosaccharide
CA1193252A (en) Solubilisation and hydrolysis of cellulose
JPH0785720B2 (en) High efficiency organosolv saccharification method
Vázquez et al. Production and refining of soluble products from Eucalyptus globulus glucuronoxylan
CN117247416A (en) Impurity removal and purification method for sucralose mother liquor
CN110982946A (en) Method for preparing xylose and arabinose by taking corncobs as raw materials
AU2006233172A1 (en) Inorganic salt recovery during processing of lignocellulosic feedstocks

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term