JPH03223107A - Preparation of spherical silica - Google Patents

Preparation of spherical silica

Info

Publication number
JPH03223107A
JPH03223107A JP1781090A JP1781090A JPH03223107A JP H03223107 A JPH03223107 A JP H03223107A JP 1781090 A JP1781090 A JP 1781090A JP 1781090 A JP1781090 A JP 1781090A JP H03223107 A JPH03223107 A JP H03223107A
Authority
JP
Japan
Prior art keywords
acid
spherical silica
water
alkali metal
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1781090A
Other languages
Japanese (ja)
Inventor
Yasumasa Yamaguchi
山口 靖正
Koichi Orii
折居 晃一
Hachiro Arai
荒井 八郎
Masahiro Matsuura
松浦 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP1781090A priority Critical patent/JPH03223107A/en
Publication of JPH03223107A publication Critical patent/JPH03223107A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prepare highly pure spherical silica having a low impurity content in simplified processes by spraying an alkali metal silicate salt aqueous solution in a gaseous phase, capturing the produced fine particles in an acid-containing solution in a water-containing state, treating the prepared spherical silica gel with an acid-containing solution and subsequently washing the silica gel with water. CONSTITUTION:The aqueous solution of an alkali metal silicate salt such as the Na salt or K salt of silicic acid in a concentration of usually 20-60wt.% is sprayed in a gaseous phase comprising air, etc., by a centrifugal method, a two fluid nozzle method, etc. The pressure of the atmosphere to be sprayed therein is usually 0.1-100 atmospheres, especially 0.9-10 atmospheres, and the operation temperature is preferably 10-80 deg.C. The produced fine particles are captured in an acid-containing solution containing an inorganic acid or organic acid in the water-containing state. The prepared gelled silica particles are separated from the suspension solution by a method such as filtration, precipitation or centrifugation and washed with water to provide the objective highly pure spherical silica.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、球状シリカの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing spherical silica.

〔従来の技術〕[Conventional technology]

従来、噴霧乾燥処理を組み込んだ球状シリカの製造方法
としては: 1) 珪酸ソーダなどアルカリ金属珪酸塩の水溶液を噴
霧乾燥して得られた微細球状粒子を、酸水溶液で処理し
て微細球状シリカを得る方法。
Conventionally, methods for producing spherical silica incorporating spray drying include: 1) Fine spherical particles obtained by spray drying an aqueous solution of an alkali metal silicate such as sodium silicate are treated with an acid aqueous solution to produce fine spherical silica. How to get it.

(たとえば特開昭60−54914号、特開昭62−1
28916号、特開昭62−128917号各公報など
)。
(For example, JP-A-60-54914, JP-A-62-1
No. 28916, Japanese Unexamined Patent Publication No. 128917/1984, etc.).

2) シリカ粉末を水または有機媒体に分散させて得ら
れたスラリーを噴霧乾燥し、焼成して球状シリカ粉末を
得る方法。
2) A method in which a slurry obtained by dispersing silica powder in water or an organic medium is spray-dried and fired to obtain spherical silica powder.

(たとえば、特開昭61−251509号公報など)。(For example, JP-A-61-251509, etc.).

などが提案されている。etc. have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

球状シリカの製造法としての前記、従来の方法はそれぞ
れ次の問題点を有している。
The above-mentioned conventional methods for producing spherical silica each have the following problems.

1)の方法は、アルカリ金属珪酸塩の水溶液をいったん
乾燥させた後に、再び水系に戻して湿式で処理を行うも
のであり、エネルギーの無駄が大きい。また、この方法
では、得られた球状シリカ中の不純物含有率を低減させ
ることが困難であるという難点がある。
Method 1) involves drying the aqueous solution of alkali metal silicate and then returning it to the aqueous system for wet treatment, which wastes a lot of energy. Furthermore, this method has the disadvantage that it is difficult to reduce the impurity content in the obtained spherical silica.

2)の方法では、シリカ粉末を製造した後に噴霧乾燥す
るので製造工程が長くなり、エネルギーの消費が大きい
In method 2), the silica powder is spray-dried after being produced, which lengthens the production process and consumes a large amount of energy.

本発明の目的は、不純物含有率の低い高純度の球状シリ
カを簡略化された工程で製造する方法を提供することに
ある。
An object of the present invention is to provide a method for producing highly pure spherical silica with a low impurity content through a simplified process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らの研究によると、前記1)の方法において噴
霧乾燥して得られた微細粒子の水分含有率が小さくなる
ほど、酸水溶液で処理して得られたノリ力中の不純物含
有率を低減させることが困難となること、そして、前記
1)の方法において噴霧して得られた微細粒子の水分含
有率が大きい状態では、生成した粒子が相互に、あるい
は装置内部に付着してしまい、本発明が目的とする球状
シリカを得ることができないことを知った。
According to the research conducted by the present inventors, the lower the water content of the fine particles obtained by spray drying in the method 1) above, the lower the impurity content in the glue obtained by treating with an acid aqueous solution. In addition, if the fine particles obtained by spraying in method 1) have a high moisture content, the generated particles may adhere to each other or inside the device, causing the problem. It was learned that it was not possible to obtain the spherical silica that was the object of the invention.

本発明者らは従来法の問題点を改善するために研究を行
い、アルカリ金属珪酸塩水溶液を気相中に噴霧して生成
した微粒子を水分を含有する状態で酸含有液で捕集し、
得られた球状のシリカゲルを酸含有液で処理した後、水
洗することにより前記課題を解決できるという知見を得
て本発明を完成した。
The present inventors conducted research to improve the problems of the conventional method, and collected fine particles generated by spraying an aqueous alkali metal silicate solution into the gas phase with an acid-containing liquid in a state containing water.
The present invention was completed based on the knowledge that the above problem can be solved by treating the obtained spherical silica gel with an acid-containing liquid and then washing it with water.

本発明は、「アルカリ金属珪酸塩水溶液を気相中に噴霧
して生成した微粒子を水分を含有する状態で酸含有液で
捕集し、ついで得られた球状のシリカゲルを酸含有液で
処理した後、水洗することを特徴とする球状シリカの製
造方法」を要旨とする。
The present invention is based on the following method: ``fine particles generated by spraying an aqueous alkali metal silicate solution into a gas phase are collected in a water-containing state with an acid-containing liquid, and then the obtained spherical silica gel is treated with the acid-containing liquid. ``A method for producing spherical silica, which is characterized by washing with water after washing.''

以下、本発明について説明する。The present invention will be explained below.

本発明において、“球状”とは、一つの粒子における最
大直径に対する最小直径の比が1〜0.5の範囲である
ものをいう。
In the present invention, "spherical" refers to a particle in which the ratio of the minimum diameter to the maximum diameter is in the range of 1 to 0.5.

本発明の方法において、原料として用いられるアルカリ
金属珪酸塩水溶液は、一般式;MtO・n SiO□(
ただし、Mはアルカリ金属元素、nは5iOiのモル数
で0.5〜5を示す)で表されるアルカリ金属珪酸塩の
水溶液で、珪酸のナトリウム塩、カリウム塩、リチウム
塩などの水溶液を用いることができる。
In the method of the present invention, the aqueous alkali metal silicate solution used as a raw material has the general formula; MtO・n SiO□(
(where M is an alkali metal element, n is the number of moles of 5iOi and is 0.5 to 5), and an aqueous solution of a sodium salt, potassium salt, or lithium salt of silicic acid is used. be able to.

本発明の方法において、原料として用いられるアルカリ
金属珪酸塩水溶液中のアルカリ金属珪酸塩濃度は、通常
20〜60重量%の範囲であり、好ましくは30〜55
重量%の範囲である。アルカリ金属珪酸塩濃度が低い場
合、には、噴霧されて生成したアルカリ金属珪酸塩水溶
液の液滴が凝固するのに長時間を要し、一方、アルカリ
金属珪酸塩濃度が高い場合には、アルカリ金属珪酸塩水
溶液の粘度が高まって噴霧処理が困難になる。
In the method of the present invention, the alkali metal silicate concentration in the aqueous alkali metal silicate solution used as a raw material is usually in the range of 20 to 60% by weight, preferably 30 to 55% by weight.
% by weight. When the alkali metal silicate concentration is low, it takes a long time for the aqueous alkali metal silicate solution droplets formed by spraying to solidify, whereas when the alkali metal silicate concentration is high, the alkali The viscosity of the aqueous metal silicate solution increases, making spraying difficult.

本発明の方法において噴霧処理するアルカリ金属珪酸塩
水溶液の粘度は、200ボイズ以下、好ましくはlOポ
イズ以下である。粘度が高過ぎると、噴霧処理が困難に
なり、また、球状の粒子が得られ難くなる。
The viscosity of the aqueous alkali metal silicate solution sprayed in the method of the present invention is 200 poise or less, preferably 10 poise or less. If the viscosity is too high, spraying becomes difficult and it becomes difficult to obtain spherical particles.

アルカリ金属珪酸塩水溶液を噴霧する方式としては、遠
心式、  2fL体ノズル式、加圧ノズル式。
Methods for spraying aqueous alkali metal silicate solutions include centrifugal, 2fL nozzle, and pressure nozzle.

超音波式などの各種の機構を用いることができ、好まし
くは遠心式または2流体ノズル方式が用いられる。
Various mechanisms such as an ultrasonic type can be used, and preferably a centrifugal type or a two-fluid nozzle type is used.

本発明の方法において噴霧して得られるアルカリ金属珪
酸塩水溶液の液滴および酸含有液によって捕集されて生
成するシリカの球状ゲル化物の粒径は、約1μm −1
m程度である。これにより、粒径1〜600μmの範囲
の球状シリカを得ることができる。
In the method of the present invention, the particle size of the spherical gel of silica that is collected by the droplets of the aqueous alkali metal silicate solution obtained by spraying and the acid-containing liquid is approximately 1 μm −1
It is about m. Thereby, spherical silica having a particle size in the range of 1 to 600 μm can be obtained.

本発明の方法において、アルカリ金属珪酸塩水溶液を噴
霧する気相の構成成分としては特に制限はないが、実用
的には空気が用いられる* A r + He +窒素
などの不活性ガス雰囲気、水蒸気雰囲気、また炭酸ガス
雰囲気などとすることもできる。
In the method of the present invention, there are no particular restrictions on the constituents of the gas phase in which the aqueous alkali metal silicate solution is sprayed, but air is practically used.* A r + He + inert gas atmosphere such as nitrogen, water vapor The atmosphere may also be a carbon dioxide gas atmosphere.

本発明の方法において、アルカリ金属珪酸塩水溶液を噴
霧する雰囲気の圧力は、通常0.1〜100気圧の範囲
であり、好ましくは0.9〜10気圧の範囲である。ま
た、操作温度はアルカリ金属珪酸塩水溶液が前記粘度の
液状を保つ範囲とし、好ましくは10〜80″Cの範囲
とする。
In the method of the present invention, the pressure of the atmosphere in which the aqueous alkali metal silicate solution is sprayed is usually in the range of 0.1 to 100 atm, preferably in the range of 0.9 to 10 atm. Further, the operating temperature is set within a range in which the aqueous alkali metal silicate solution maintains a liquid state with the above-mentioned viscosity, preferably within a range of 10 to 80''C.

本発明の方法においてアルカリ金属珪酸塩水溶液を気相
中に噴霧して生成した微粒子を捕集するのに用いられる
酸含有液としては、硫酸、塩酸。
In the method of the present invention, the acid-containing liquid used to collect fine particles generated by spraying an aqueous alkali metal silicate solution into the gas phase includes sulfuric acid and hydrochloric acid.

硝酸などの無機酸、酢酸、蓚酸などの有機酸の水溶液が
挙げられ、炭酸水を用いることもできる。
Examples include aqueous solutions of inorganic acids such as nitric acid, and organic acids such as acetic acid and oxalic acid, and carbonated water can also be used.

酸含有液の酸濃度は、0.1〜4規定、好ましくは0.
5〜3規定、更に好ましくは1〜2規定の範囲である。
The acid concentration of the acid-containing liquid is 0.1 to 4 normal, preferably 0.1 to 4 normal.
It is in the range of 5 to 3 normal, more preferably 1 to 2 normal.

酸含有液の酸濃度が高いと、得られるシリカ中の不純物
の抽出除去が困難となり、一方、酸濃度が低いと珪酸分
の溶解損失が大きくなる。
If the acid concentration of the acid-containing liquid is high, it will be difficult to extract and remove impurities from the obtained silica, while if the acid concentration is low, the dissolution loss of the silicic acid component will be large.

本発明の方法において、酸含有液に捕集されるアルカリ
金属珪酸塩水溶液の噴霧生成物の水分含有率は、40重
量%を超え、更には44重量%以上であることが好まし
い。
In the method of the invention, the water content of the spray product of the aqueous alkali metal silicate solution collected in the acid-containing liquid is preferably greater than 40% by weight, and more preferably greater than 44% by weight.

水分含有率は、噴霧生成物を温度180’Cで6時間乾
燥処理したときの減量の、噴霧生成物(乾燥物)に対す
る重量百分率で示される。
The moisture content is expressed as the percentage weight loss of the sprayed product (dry product) when the sprayed product is dried at a temperature of 180'C for 6 hours.

アルカリ金属珪酸塩水溶液を気相中に噴霧して生成した
微粒子は、沈降式、衝突式、を気弐など微粒子を捕集す
る方法を用いて捕集することができる。本発明の方法に
おいて捕集装置としてはサイクロンスクラバー、ヘンチ
ュリースクラハ濡壁塔、湿式コ、トレルなどの通常の捕
集装置を用いることができる。
Fine particles generated by spraying an aqueous alkali metal silicate solution into a gas phase can be collected using a method for collecting fine particles, such as a sedimentation type, a collision type, or an aerosol. In the method of the present invention, a conventional collection device such as a cyclone scrubber, a Hentury Scrach wet wall tower, a wet scrubber, or a trel can be used.

捕集の過程でアルカリ金属珪酸塩水溶液の液滴のゲル化
が進み、シリカ粒子を含む懸濁液が得られる。得られた
懸濁液から濾過、沈降3遠心分離など通常の固液分離操
作によって、シリカ粒子を取得することができる。
During the collection process, gelation of the droplets of the aqueous alkali metal silicate solution progresses, and a suspension containing silica particles is obtained. Silica particles can be obtained from the resulting suspension by ordinary solid-liquid separation operations such as filtration, sedimentation, and centrifugation.

本発明の方法は、球状シリカ中の不純物含有率で限定さ
れないが、目的とする球状ソリ力の用途に応じて不純物
含有率の低い高純度球状シリカを得ることができる。
Although the method of the present invention is not limited by the impurity content in the spherical silica, it is possible to obtain high purity spherical silica with a low impurity content depending on the intended use of the spherical warping force.

特に、高密度集積回路電子部品の封止材用充填材として
用いられる球状シリカの場合には;■ Na、  Kな
どのアルカリ金属元素、Mg、 Caなとのアルカリ土
類金属元素およびハロゲン類元素の含有率が各々1 p
pm以下であり、がっ、■ UThなとの放射性元素の
含有率が各々1 ppb以下であるものであることが好
ましい。
In particular, in the case of spherical silica used as a filler for encapsulants in high-density integrated circuit electronic components; ■ Alkali metal elements such as Na and K, alkaline earth metal elements such as Mg and Ca, and halogen elements. The content of each is 1 p
pm or less, and the content of radioactive elements such as UTh and UTh is preferably 1 ppb or less.

このような不純物含有率の低い高純度球状シリカは、前
記のようにして得られたシリカ粒子を酸含有液で処理し
た後、水洗して不純物を抽出除去することによって得る
ことができる。
Such high-purity spherical silica with a low impurity content can be obtained by treating the silica particles obtained as described above with an acid-containing liquid and then washing with water to extract and remove impurities.

この不純物を抽出除去する処理において用いられる酸含
有液としては、硫酸、塩酸、硝酸、炭酸などの無機酸、
酢酸、蓚酸などの有機酸の水溶液が挙げられる。酸含有
液の酸濃度は、01〜4規定、好ましくは0.5〜3規
定、更に好ましくは1〜2規定の範囲である。
Acid-containing liquids used in the process to extract and remove impurities include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and carbonic acid;
Examples include aqueous solutions of organic acids such as acetic acid and oxalic acid. The acid concentration of the acid-containing liquid is in the range of 01-4N, preferably 0.5-3N, more preferably 1-2N.

不純物を抽出除去する際の処理温度は、20°C以上、
好ましくは50°C以上に保持するのがよい。
The processing temperature when extracting and removing impurities is 20°C or higher,
Preferably, the temperature is maintained at 50°C or higher.

酸含有液には必要により、キレート剤および/または過
酸化水素などの過酸化物を添加したり、これらを含む水
溶液による洗浄処理を組み合わせることができる。また
、キレート剤および/または過酸化水素などの過酸化物
をアルカリ金属珪酸塩水溶液に予め添加しておくことも
できる。
If necessary, a chelating agent and/or a peroxide such as hydrogen peroxide may be added to the acid-containing liquid, or a cleaning treatment using an aqueous solution containing these may be combined. Furthermore, a chelating agent and/or a peroxide such as hydrogen peroxide may be added in advance to the aqueous alkali metal silicate solution.

上記方法によって、前記の、更にはAI、Fe、Tiな
どの遷移金属元素など各種の不純物含有率が、いずれも
1 ppa+以下である高純度球状シリカを得ることが
できる。
By the above method, it is possible to obtain high-purity spherical silica having a content of various impurities such as the aforementioned transition metal elements such as AI, Fe, and Ti, all of which are 1 ppa+ or less.

このようにして得られたシリカは、多量の水分を含むと
共に多数の細孔を有するので、目的とする球状シリカの
用途に応して必要により、前記処理で得られたシリカを
加熱処理する。
Since the silica thus obtained contains a large amount of water and has a large number of pores, the silica obtained by the above treatment is heat-treated as necessary depending on the intended use of the spherical silica.

加熱処理の条件は、球状シリカの用途によって異なり、
適宜選択することができる。
Heat treatment conditions vary depending on the use of the spherical silica.
It can be selected as appropriate.

電子部品の封止材用充填材としての球状シリカを得る場
合には、温度1000〜2200″Cの範囲での加熱処
理、好ましくは1000〜1500’Cの範囲での焼成
を行う。
When obtaining spherical silica as a filler for encapsulants of electronic components, heat treatment is performed at a temperature in the range of 1000 to 2200'C, preferably firing in the range of 1000 to 1500'C.

この処理によって、シリカ中に残留する水分を除去し、
更に、存在するシラノール基をo、1重量%程度ないし
それ以下に減少させでシリカ粒子を疏水化し、シリカ粒
子が有する細孔を閉孔させて細孔容積や比表面積を調整
し、シリカ粒子を緻密で、かつ水分が浸透し難い構造に
変化させる。
This treatment removes moisture remaining in the silica,
Furthermore, the silica particles are made hydrophobic by reducing the existing silanol groups to about 1% by weight or less, and the pores of the silica particles are closed to adjust the pore volume and specific surface area. Changes the structure to a dense one that is difficult for moisture to penetrate.

乾燥剤、化粧品原料、触媒担体、液体クロマトグラフィ
用充填材などに用いられる球状シリカを得る場合には、
温度100〜1050’cの範囲での加熱処理がよい。
When obtaining spherical silica for use in drying agents, cosmetic raw materials, catalyst supports, liquid chromatography fillers, etc.
Heat treatment at a temperature in the range of 100 to 1050'c is preferable.

石英ガラスなどのガラス、またはセラミフクスの原料用
としては、加熱処理を行わない球状シリカを用いること
もできるし、また、加熱処理を行った球状シリカを用い
ることもできる。
As a raw material for glass such as quartz glass or ceramic fuchs, spherical silica that is not subjected to heat treatment can be used, or spherical silica that has been subjected to heat treatment can also be used.

加熱時間は0.1秒〜lOO時間、好ましくは1秒〜6
時間、更に好ましくは10秒〜3時間の範囲である。加
熱処理条件としての温度と時間との組合せは適宜に選択
することができ、加熱処理する温度が高い程、時間を短
くすることができる。
The heating time is 0.1 seconds to 100 hours, preferably 1 second to 6 hours.
The time is more preferably in the range of 10 seconds to 3 hours. The combination of temperature and time as heat treatment conditions can be selected as appropriate; the higher the heat treatment temperature is, the shorter the time can be.

加熱処理を行う雰囲気は、本発明の思想を損なわない限
り任意であり、Ar、Heなどの不活性ガス雰囲気、空
気などの酸化性雰囲気、水素などの還元性雰囲気、水蒸
気雰囲気、またシリカ中の不純物を効果的に除去できる
塩素などハロゲンまたはハロゲン化物を含有する雰囲気
を用いることができる。加熱処理は、大気圧下で行うが
、減圧下で行うこともできる。
The atmosphere in which the heat treatment is carried out is arbitrary as long as it does not impair the idea of the present invention, and may be an inert gas atmosphere such as Ar or He, an oxidizing atmosphere such as air, a reducing atmosphere such as hydrogen, a water vapor atmosphere, or an atmosphere containing silica. An atmosphere containing a halogen or halide, such as chlorine, can be used to effectively remove impurities. The heat treatment is performed under atmospheric pressure, but can also be performed under reduced pressure.

加熱源は任意であり、電熱または燃焼ガスは経済的な熱
源である。その他、プラズマ加熱、イメージ炉を用いる
こともできる。
The heating source is optional; electric heat or combustion gas are economical heat sources. In addition, plasma heating and an image furnace can also be used.

なお、200’C程度以下の低温での加熱処理は、水に
浸漬し水熱処理により行うこともできる。
Note that the heat treatment at a low temperature of about 200'C or less can also be performed by immersing it in water and hydrothermal treatment.

加熱処理して得られた球状シリカは、必要により、解砕
・分級処理を施すことができる。
The spherical silica obtained by heat treatment can be subjected to crushing and classification treatment, if necessary.

電子部品封止材用充填材としての球状シリカの平均粒径
は、1〜100μm、好ましくは5〜40μm、更に好
ましくは10〜30μmの範囲である。
The average particle diameter of spherical silica as a filler for electronic component sealing material is in the range of 1 to 100 μm, preferably 5 to 40 μm, and more preferably 10 to 30 μm.

石英ガラス原料用としての球状シリカの平均粒径は、1
〜600μm、好ましくは1〜300 tt m、更に
好ましくは、焼結用、ホットプレス用、ゾル−ゲル法副
原料用などでは1〜20μm、またアーク溶融、ベルタ
イ法などの溶融用では100〜300μmの範囲である
The average particle size of spherical silica as a raw material for quartz glass is 1
~600 μm, preferably 1 to 300 tt m, more preferably 1 to 20 μm for sintering, hot pressing, sol-gel method auxiliary materials, etc., and 100 to 300 μm for melting such as arc melting, Bertie method, etc. is within the range of

〔発明の効果] 本発明の方法によって、不純物含有率の低い高純度の球
状のシリカを簡略化された工程で製造することができる
[Effects of the Invention] According to the method of the present invention, highly pure spherical silica with a low impurity content can be produced in a simplified process.

本発明の方法により、アルカリ (土111i)金属。By the method of the present invention, alkali (earth 111i) metals.

ハロゲン、遷移金属元素、放射性物質などの不純物含有
率の低い、高密度集積回路電子部品の封止材用充填材に
通した高純度の球状シリカを得ることができる。
It is possible to obtain high-purity spherical silica, which has a low content of impurities such as halogens, transition metal elements, and radioactive substances, and is passed through a filler for encapsulants of high-density integrated circuit electronic components.

〔実施例〕〔Example〕

以下、実施例および比較例により本発明を説明する。な
お、「%」は「重量%」を示す。また、各側における水
分含有率は、乾燥物基準の値である。
The present invention will be explained below with reference to Examples and Comparative Examples. Note that "%" indicates "% by weight". Moreover, the moisture content on each side is a value on a dry matter basis.

実施例〜1゜ 内壁に毎時6kgの硫酸10%水溶液を流して濡れ壁を
形成させた容器内に、搬送用気体として温度60℃の空
気を毎分30Of供給した。
Example - 1° Air at a temperature of 60° C. was supplied at a rate of 30 per minute as a conveying gas into a container in which a wet wall was formed by flowing 6 kg of a 10% sulfuric acid aqueous solution per hour onto the inner wall.

この容器内に、温度20℃における粘度が140センチ
ポイズである珪酸ソーダ水溶液(JISに1408゜3
号相当品; 5iOz : 30%、 NatO: 1
0%3含水率:60%)を毎分10gの流速で2流体ノ
ズルを通して供給し、噴霧用気体として毎分17Nの空
気を用いて噴霧した。
In this container, a sodium silicate aqueous solution having a viscosity of 140 centipoise at a temperature of 20°C (JIS 1408°3
Equivalent product; 5iOz: 30%, NatO: 1
0%3 moisture content: 60%) was supplied through a two-fluid nozzle at a flow rate of 10 g/min, and atomized using air at 17 N/min as the atomizing gas.

容器下部の出口から流出する、噴霧されて生成した珪酸
ソーダ水溶液の液滴およびゲル化物と硫酸水溶液の集合
体を、サイクロンを用いて捕集した。
Droplets of the aqueous sodium silicate solution and aggregates of the gelled product and the aqueous sulfuric acid solution that were generated by spraying and flowing out from the outlet at the bottom of the container were collected using a cyclone.

捕集された前記集合体を、撹拌しながら温度的100°
Cにて約1時間保持することにより球状シリカが生成し
た。生成した球状シリカを集合体から分離した。
The collected aggregate was heated to a temperature of 100° while stirring.
By holding at C for about 1 hour, spherical silica was produced. The produced spherical silica was separated from the aggregate.

前記集合体3kgから得られた球状シリカを、硫6I1
10%水溶液1kg中に浸漬し、温度的100°Cで約
1時間攪拌して不純物の抽出を行った後、純水で洗浄し
て脱酸した後、濾過し湿シリカを得た。
The spherical silica obtained from 3 kg of the above aggregate was treated with sulfur 6I1
It was immersed in 1 kg of a 10% aqueous solution and stirred at a temperature of 100° C. for about 1 hour to extract impurities, then washed with pure water to deoxidize, and then filtered to obtain wet silica.

この湿シリカを温度180℃で6時間乾燥し、得られた
乾燥シリカを石英製坩堝に入れ電気炉を用いて、温度1
250℃で4時間の加熱処理を行い球状シリカを得た。
This wet silica was dried at a temperature of 180°C for 6 hours, and the obtained dry silica was placed in a quartz crucible and heated using an electric furnace at a temperature of 180°C.
A heat treatment was performed at 250° C. for 4 hours to obtain spherical silica.

得られた球状シリカは、平均粒径が22μm、比表面積
は0.9ポ/gでおった。
The obtained spherical silica had an average particle diameter of 22 μm and a specific surface area of 0.9 po/g.

この球状シリカの不純物含有率は、Na O,2ppm
The impurity content of this spherical silica is NaO, 2ppm
.

Al 1ρpI11であり、Uは0.1ppb以下であ
った。
Al was 1ρpI11, and U was 0.1 ppb or less.

比較例−1゜ 容器内壁に硫酸水溶液を流さず濡れ壁を形成させなかっ
たほかは実施例−1と同様にして珪酸ソーダ水溶液を噴
霧した。
Comparative Example 1 A sodium silicate aqueous solution was sprayed in the same manner as in Example 1, except that the sulfuric acid aqueous solution was not poured onto the inner wall of the container and no wet wall was formed.

この条件においては、珪酸ソーダ水溶液の噴霧生成物は
大部分が容器内へ付着し、容器出口に設けられたサイク
ロンでは少量の凝集した粒子しか捕集されなかった。
Under these conditions, most of the sprayed product of the sodium silicate aqueous solution adhered to the inside of the container, and only a small amount of aggregated particles were collected by the cyclone provided at the outlet of the container.

捕集物の水分含有率は45%であった。The moisture content of the collected material was 45%.

比較例−2゜ 実施例−1と同様の容器内に、温度80°Cの空気を毎
分3001.供給した。ただし、内壁に硫酸水溶液を流
さず濡れ壁を形成させなかった。
Comparative Example-2゜Into a container similar to Example-1, air at a temperature of 80°C was pumped at 3001°C per minute. supplied. However, the sulfuric acid aqueous solution was not poured onto the inner wall to prevent the formation of a wet wall.

この容器内に、実施例−1と同様にして珪酸ソーダ水溶
液を噴霧した。
A sodium silicate aqueous solution was sprayed into this container in the same manner as in Example-1.

この条件でも、容器内への珪酸ソーダの付着が多く、容
器出口に設けられたサイクロンで捕集された珪酸ソーダ
の得率は3%であった。
Even under these conditions, a large amount of sodium silicate adhered to the inside of the container, and the yield of sodium silicate collected by the cyclone provided at the outlet of the container was 3%.

捕集物の水分含を率は22%であった。The moisture content of the collected material was 22%.

比較例=3、 実施例−1と同様の容器内に、温度100°Cの空気を
毎分300 f供給した。ただし、内壁に硫酸水溶液を
流さず濡れ壁を形成させなかった。
Comparative Example = 3: Air at a temperature of 100° C. was supplied at a rate of 300 f/min into a container similar to Example-1. However, the sulfuric acid aqueous solution was not poured onto the inner wall to prevent the formation of a wet wall.

この容器内に、実施例−1と同様にして珪酸ソーダ水溶
液を噴霧した。
A sodium silicate aqueous solution was sprayed into this container in the same manner as in Example-1.

この条件では、噴霧されて生成した珪酸ソーダ水溶液の
液滴からの水分の消散が多く、水分含有率11%の珪酸
ソーダの球状粒子が容器出口tこ設けられたサイクロン
によって捕集された。しかし、この条件においても容器
内への珪酸ソーダの付着が多く、サイクロンで捕集され
た珪酸ソーダ球状粒子の得率は21%であった。
Under these conditions, a large amount of water dissipated from the droplets of the aqueous sodium silicate solution produced by spraying, and spherical particles of sodium silicate with a water content of 11% were collected by a cyclone provided at the outlet of the container. However, even under these conditions, a large amount of sodium silicate adhered to the inside of the container, and the yield of sodium silicate spherical particles collected by the cyclone was 21%.

得られた珪酸ソーダ粒子130 gに硫酸10%水溶液
2.9kgを加え、温度約100’Cで約1時間攪拌し
てシリカを生成させた。
2.9 kg of a 10% aqueous sulfuric acid solution was added to 130 g of the obtained sodium silicate particles, and the mixture was stirred at a temperature of about 100'C for about 1 hour to produce silica.

生成したシリカを分離し、新たな硫酸10%水溶液1k
g中に浸漬し、以下、実施例−1と同様に処理をして球
状シリカを得た。
Separate the generated silica and add 1k of fresh 10% sulfuric acid aqueous solution.
g, and then treated in the same manner as in Example 1 to obtain spherical silica.

得られた球状シリカは、平均粒径が24μm、比表面積
は0.9ボ/gであった。
The obtained spherical silica had an average particle diameter of 24 μm and a specific surface area of 0.9 bo/g.

この球状シリカの不純物含有率は、Na 10pp…A
l 5 pρ−であり、Uは2 ppbであった。
The impurity content of this spherical silica is Na 10pp...A
l 5 pρ-, and U was 2 ppb.

Claims (1)

【特許請求の範囲】[Claims] 1)アルカリ金属珪酸塩水溶液を気相中に噴霧して生成
した微粒子を水分を含有する状態で酸含有液で捕集し、
ついで得られた球状のシリカゲルを酸含有液で処理した
後、水洗することを特徴とする球状シリカの製造方法。
1) Fine particles generated by spraying an aqueous alkali metal silicate solution into the gas phase are collected with an acid-containing liquid in a water-containing state,
A method for producing spherical silica, which comprises treating the obtained spherical silica gel with an acid-containing liquid and then washing it with water.
JP1781090A 1990-01-30 1990-01-30 Preparation of spherical silica Pending JPH03223107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1781090A JPH03223107A (en) 1990-01-30 1990-01-30 Preparation of spherical silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1781090A JPH03223107A (en) 1990-01-30 1990-01-30 Preparation of spherical silica

Publications (1)

Publication Number Publication Date
JPH03223107A true JPH03223107A (en) 1991-10-02

Family

ID=11954086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1781090A Pending JPH03223107A (en) 1990-01-30 1990-01-30 Preparation of spherical silica

Country Status (1)

Country Link
JP (1) JPH03223107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021948A (en) * 2004-07-07 2006-01-26 Asahi Denka Kogyo Kk Manufacturing method of high purity silica particle, high purity silica particle obtained thereby and manufacturing method of high purity quartz glass particle using it
JP2013091574A (en) * 2011-10-24 2013-05-16 Taiheiyo Cement Corp Method for producing non-liquid substance and apparatus for producing non-liquid substance
JP2013095888A (en) * 2011-11-04 2013-05-20 Jgc Catalysts & Chemicals Ltd Method for producing pigment-including silica particle, pigment-including silica particle, and cosmetic including the particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021948A (en) * 2004-07-07 2006-01-26 Asahi Denka Kogyo Kk Manufacturing method of high purity silica particle, high purity silica particle obtained thereby and manufacturing method of high purity quartz glass particle using it
JP4649677B2 (en) * 2004-07-07 2011-03-16 株式会社Adeka Method for producing high-purity silica particles, high-purity silica particles obtained thereby, and method for producing high-purity quartz glass particles using the same
JP2013091574A (en) * 2011-10-24 2013-05-16 Taiheiyo Cement Corp Method for producing non-liquid substance and apparatus for producing non-liquid substance
JP2013095888A (en) * 2011-11-04 2013-05-20 Jgc Catalysts & Chemicals Ltd Method for producing pigment-including silica particle, pigment-including silica particle, and cosmetic including the particle

Similar Documents

Publication Publication Date Title
JP5897043B2 (en) High purity silica granule for quartz glass application and its production method
EP0283933B1 (en) Process for producing unsintered cristobalite silica
US5017523A (en) Method for the preparation of ultra-fine hollow glass spheres
WO2018079556A1 (en) Halloysite powder and method for producing halloysite powder
JPH02500972A (en) Improvements in and related to vitreous silica
JP2001089168A (en) Production of synthetic silica glass powder of high purity
US7140201B2 (en) Method for producing silica particles
CN106276935A (en) Waterglass co-producing white carbon black cleanly production technique
JPH03223107A (en) Preparation of spherical silica
JPS61136922A (en) Manufacture of fine bismuth oxide particle
JP2733863B2 (en) Method for producing spherical silica
JP2733862B2 (en) Method for producing spherical silica
JP3115162B2 (en) Method for producing quartz glass powder
WO2019208612A1 (en) Metahalloysite powder and metahalloysite powder production method
JP2665437B2 (en) Purification method of silicon metal
JP2019194147A (en) Halloysite powder and method for producing halloysite powder
JP3071363B2 (en) Manufacturing method of synthetic quartz glass
JP3040310B2 (en) Manufacturing method of synthetic quartz glass
JP3315172B2 (en) Method for producing silicon carbide powder
JP2586973B2 (en) Cristobalite manufacturing method
JP3661026B2 (en) Method for producing cristobalite particles
JP2675819B2 (en) Manufacturing method of quartz glass
JPH1111929A (en) Production of high purity silica powder and high purity silica powder produced by this method
JPH1111931A (en) Ultrahigh purity silica powder, its production and silica glass crucible for pulling of single crystal using the same
JPH01224215A (en) Fine particulate silica slurry and production thereof