JPH03223106A - Method for etching si - Google Patents

Method for etching si

Info

Publication number
JPH03223106A
JPH03223106A JP1487690A JP1487690A JPH03223106A JP H03223106 A JPH03223106 A JP H03223106A JP 1487690 A JP1487690 A JP 1487690A JP 1487690 A JP1487690 A JP 1487690A JP H03223106 A JPH03223106 A JP H03223106A
Authority
JP
Japan
Prior art keywords
substrate
etching
porous layer
time
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1487690A
Other languages
Japanese (ja)
Inventor
Shinichi Ishimoto
石本 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1487690A priority Critical patent/JPH03223106A/en
Publication of JPH03223106A publication Critical patent/JPH03223106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To readily etch a Si substrate in a short time by forming a porous layer on the substrate and subsequently etching the substrate. CONSTITUTION:The etching treatment of a Si substrate on the formation of a p-Si diaphram is performed as follows. An electric current having a current density of 10-100mA/cm<2> is flown for 4-60min to form a porous layer on the window 3 of the Si substrate 1. The Si substrate 1 having the formed porous layer 8 is immersed in a fluoronitric acid solution 9 to etch and remove the porous layer 8. The method permits to form the porous layer 8 toward the thickness of the substrate 1 from the surface thereof for facilitating the subsequent etching treatment of the Si substrate and to shorten the time required for the etching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばSi(シリコン)ダイヤフラムの形
成などに好ましく用いることができるSLのエツチング
方法に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of etching SL, which can be preferably used, for example, for forming a Si (silicon) diaphragm.

〔従来の技術〕[Conventional technology]

従来、Siダイヤフラムを作るエツチング方法としてケ
ミカルエツチングがある。このケミカルエツチングは化
学反応によってSiをエツチングするものである。
Conventionally, chemical etching has been used as an etching method for producing Si diaphragms. This chemical etching etches Si through a chemical reaction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来のSiのエツチング方法は化学反応に
よるものであるため、時間がかかるという問題点があっ
た。また用いる液体の濃度等の変化によってエツチング
の厚さにばらつきが生じ、厚さの制御が難しいという問
題点があった。
Since the conventional Si etching method as described above is based on a chemical reaction, it has the problem of being time consuming. Furthermore, there is a problem in that the etching thickness varies due to changes in the concentration of the liquid used, making it difficult to control the thickness.

この発明はこのような従来技術の問題を解消するために
なされたもので、エツチングの時間を短縮した制御の容
易なSiのエツチング方法を得ることを目的とする。
The present invention has been made to solve the problems of the prior art, and aims to provide a Si etching method that shortens the etching time and is easy to control.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るSiのエツチング方法は、Si基板に多
孔質層を形成した後、エツチングするように構成したも
のである。
The Si etching method according to the present invention is configured such that a porous layer is formed on a Si substrate and then etched.

〔作 用〕[For production]

この発明における多孔質層はSi基板の表面より基板の
厚さ方向に形成され、その後のSiのエツチングを容易
にし、エツチングに要する時間を短縮する。
The porous layer in this invention is formed from the surface of the Si substrate in the thickness direction of the substrate to facilitate subsequent etching of Si and shorten the time required for etching.

〔実施例〕〔Example〕

以下、この発明の一実施例としてp−3iダイヤフラム
形成におけるSiのエツチングについて図を参照して説
明する。
Hereinafter, as an embodiment of the present invention, etching of Si in forming a p-3i diaphragm will be explained with reference to the drawings.

第1図において、(1)はp−Si基板、(2)はこの
Si基板(1)の表面に形成された不溶性の窒化膜、(
3)はSi窓であり、Si基板(1)の表面を露出させ
た部分である。
In FIG. 1, (1) is a p-Si substrate, (2) is an insoluble nitride film formed on the surface of this Si substrate (1), (
3) is a Si window, which is a portion where the surface of the Si substrate (1) is exposed.

第2図は第1図のSi基板(1)の所定部に多孔質層を
形成する装置を説明する図である。Si基板(1)には
電極(図示省略)がモールドされている。(4)はpt
電極、(5)は直流電源、(6)は容器、(7)はフッ
酸水溶液である。なお、この実施例においてはフッ酸の
濃度は約49%、温度は20〜30℃とした。
FIG. 2 is a diagram illustrating an apparatus for forming a porous layer on a predetermined portion of the Si substrate (1) of FIG. 1. Electrodes (not shown) are molded on the Si substrate (1). (4) is pt.
The electrode, (5) is a DC power supply, (6) is a container, and (7) is a hydrofluoric acid aqueous solution. In this example, the concentration of hydrofluoric acid was approximately 49%, and the temperature was 20 to 30°C.

第2図の装置において、電流密度10〜100―^/C
lI2の電流を4〜60分間通流し、Si基板(1)の
窓(3)に多孔質層(8)を形成した。このとき、電流
密度と時間の関係については一例として、深さ30μm
の多孔質層の孔を形成するのに100−^/Cl12の
とき4分程度、50m^/ c m 2のとき9分程度
であった。また、時間と孔の深さとの関係については、
−例として電流密度50mA/cm2のとき、9分で約
30am、20分で約60μm、60分で約100μm
の多孔質層が形成された。
In the device shown in Figure 2, the current density is 10 to 100-^/C.
A current of lI2 was passed for 4 to 60 minutes to form a porous layer (8) in the window (3) of the Si substrate (1). At this time, as an example, the relationship between current density and time is as follows:
It took about 4 minutes to form pores in the porous layer at 100-^/Cl12 and about 9 minutes at 50 m^/cm2. Also, regarding the relationship between time and hole depth,
- For example, when the current density is 50 mA/cm2, about 30 am in 9 minutes, about 60 μm in 20 minutes, and about 100 μm in 60 minutes
A porous layer was formed.

このようにしてSi基板に形成された多孔質層は基板の
厚さ方向に形成される。なお、電流の大小によって後で
述べるダイヤフラムの形成を速くしたり遅くしたりでき
る。
The porous layer thus formed on the Si substrate is formed in the thickness direction of the substrate. Note that the formation of the diaphragm, which will be described later, can be made faster or slower by changing the magnitude of the current.

次に多孔質層を形成したSit極からモールド電極をは
ずし、そして窒化膜をとりのぞいたものが第3図である
。Si基板(1)上にSi多孔質層(8)が形成された
状態となっている。
Next, the molded electrode was removed from the Sit electrode on which the porous layer was formed, and the nitride film was removed, as shown in FIG. A Si porous layer (8) is now formed on the Si substrate (1).

第4図は上記のように多孔質層(8)を形成したSi基
板(1)をフッ硝酸溶液に浸漬し、多孔質層をエツチン
グする状態を示す説明図である。図において、(9)は
エツチングのためのフッ硝酸溶液、(10)はエツチン
グによって形成されたダイヤフラム部である。
FIG. 4 is an explanatory diagram showing a state in which the Si substrate (1) on which the porous layer (8) is formed as described above is immersed in a fluoro-nitric acid solution and the porous layer is etched. In the figure, (9) is a fluoro-nitric acid solution for etching, and (10) is a diaphragm portion formed by etching.

なお、フッ酸と硝酸の混合比は約1:3〜1:5の範囲
で行った。
Note that the mixing ratio of hydrofluoric acid and nitric acid was in the range of approximately 1:3 to 1:5.

第5図は上記した一連の工程を概念的に示した説明図で
ある。第5図(a>はSi基板(1)の横断面図、第5
図(b)は第2図の装置によりSi基板(1)に多孔質
層を形成した状態を説明する断面図である。多孔質層(
8)はSi基板(1)の結晶軸に関係なく基板(1)の
厚さ方向に形成される。
FIG. 5 is an explanatory diagram conceptually showing the series of steps described above. Figure 5 (a> is a cross-sectional view of the Si substrate (1),
Figure (b) is a cross-sectional view illustrating a state in which a porous layer is formed on a Si substrate (1) using the apparatus shown in Figure 2. Porous layer (
8) is formed in the thickness direction of the Si substrate (1) regardless of the crystal axis of the Si substrate (1).

第5図(c)は第4図のエツチングにより除去される部
分を示す断面図であり、図の破線部分が除去される。第
5図(d)はエツチング後の状態を説明する断面図であ
る。
FIG. 5(c) is a cross-sectional view showing the portion removed by etching in FIG. 4, and the broken line portion in the figure is removed. FIG. 5(d) is a sectional view illustrating the state after etching.

上記のようにこの発明の実施例によれば電気化学反応に
よって、強制的に基板の厚さ方向に深い孔を形成した後
、多孔質層の山(凸部)をエツチングする方法なので、
結果的にみれば結晶軸の違いを無視するかの如く基板の
厚さ方向のみにエツチングできる。従って、従来の方法
に比ベエッチングの処理時間を短くすることができる。
As described above, according to the embodiment of the present invention, deep holes are forcibly formed in the thickness direction of the substrate by electrochemical reaction, and then the peaks (projections) of the porous layer are etched.
As a result, etching can be performed only in the thickness direction of the substrate, as if ignoring the difference in crystal axes. Therefore, the etching time can be reduced compared to conventional methods.

なお、上記実施例では多孔質層の形成とエツチングを各
1回ずつ行ったが、これらを2回以上繰り返してもよい
。電気化学反応によって形成された多孔質層の孔の深さ
と時間とは比例せず、形成される孔の深さに対する所要
時間は指数関数的に増えるので、上記のように操作を反
復することは時間を短縮する上で好ましいことである。
In the above example, the formation of the porous layer and the etching were performed once each, but these steps may be repeated two or more times. The depth of the pores in the porous layer formed by the electrochemical reaction is not proportional to the time, and the time required for the depth of the pores formed increases exponentially, so it is not possible to repeat the operation as described above. This is preferable in terms of reducing time.

また、エツチングにフッ硝酸を用いたが、例えばフッ硝
酢酸、王水、フッ酸など他の混酸、酸を用いても差し支
えない、混酸を用いる場合、その混合比は特に限定され
ない、さらに、電流密度、酸の濃度、時間、温度などを
適宜変更し得ることは言うまでもない。これらファクタ
ーの1つまたは2以上を制御することによりエツチング
の厚さを任意に制御することができる。
In addition, although fluoronitric acid was used for etching, other mixed acids and acids such as fluoronitric acid, aqua regia, and hydrofluoric acid may also be used. When a mixed acid is used, the mixing ratio is not particularly limited. It goes without saying that the density, acid concentration, time, temperature, etc. can be changed as appropriate. By controlling one or more of these factors, the etching thickness can be controlled as desired.

例えば電流と時間を制御することでエツチングの厚さ(
多孔質層の厚さと同等)を制御できる。
For example, by controlling the current and time, the etching thickness (
(equivalent to the thickness of the porous layer) can be controlled.

エツチング制御つまりエツチングするSiの厚さの制御
方法はSi電極に流れる電流と電流を流した時間とで多
孔質層の厚さを設定し、フッ硝酸でエツチングする方法
である。このSi電極に流れる電流の大小によって反応
を速くしたり遅くしたりできるのでダイヤフラムの形成
を速くすることができる。
Etching control, that is, a method for controlling the thickness of Si to be etched, is to set the thickness of the porous layer by the current flowing through the Si electrode and the time for which the current is passed, and then etching with hydrofluoric nitric acid. Since the reaction can be made faster or slower depending on the magnitude of the current flowing through the Si electrode, the formation of the diaphragm can be made faster.

このようなこの発明のSiのエツチング方法は、特にS
iダイヤフラム形成におけるSLのエツチングに好まし
く用いることができる。
The Si etching method of the present invention is particularly suitable for etching S
It can be preferably used for etching SL in forming an i-diaphragm.

ところで、上記実施例ではp−3iのときを述べたが、
n−3iの場合は通電時に光を照射するとよい、また、
上記実施例ではSiダイヤフラム形成のSiエツチング
についても述べたが、ICや機能デバイスのSiエツチ
ングに用いてもよい。
By the way, in the above example, the case of p-3i was described, but
In the case of n-3i, it is recommended to irradiate light when energizing, and
In the above embodiment, Si etching for forming a Si diaphragm was also described, but it may also be used for Si etching for ICs and functional devices.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、81基板に多孔質層を
形成した後、エツチングするように構成したので、エツ
チングの時間を短縮した制電の容易なSiのエツチング
方法を得ることができるという効果がある。
As described above, according to the present invention, since the porous layer is formed on the 81 substrate and then etched, it is possible to obtain a Si etching method that shortens the etching time and easily suppresses static electricity. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は何れもこの発明の一実施例を説明する
図であり、第1図は一実施例に用いるSi基板を示す平
面図、第2図はSi多孔質層を形成するための装置の概
要図、第3図はSi多孔質層を形成したSi基板の平面
図、第4図はSi多孔質層をエツチングする装置を示す
側面図、第5図は一連の工程による81基板へのダイヤ
フラムの形成を示す説明図である。 図において、(1)はSi基板、(8) ハs i 多
孔質層、(10)はダイヤフラム部である。 なお、図中、同一符号は同一、又は相当部分を示す。
1 to 5 are diagrams explaining one embodiment of the present invention, in which FIG. 1 is a plan view showing a Si substrate used in one embodiment, and FIG. 2 is a plan view showing a Si porous layer formed thereon. 3 is a plan view of a Si substrate with a porous Si layer formed thereon, FIG. 4 is a side view showing the device for etching the porous Si layer, and FIG. It is an explanatory view showing formation of a diaphragm on a substrate. In the figure, (1) is a Si substrate, (8) is a Si porous layer, and (10) is a diaphragm part. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] Si基板に多孔質層を形成した後、エッチングすること
を特徴とするSiのエッチング方法。
A method for etching Si, which comprises forming a porous layer on a Si substrate and then etching it.
JP1487690A 1990-01-26 1990-01-26 Method for etching si Pending JPH03223106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1487690A JPH03223106A (en) 1990-01-26 1990-01-26 Method for etching si

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1487690A JPH03223106A (en) 1990-01-26 1990-01-26 Method for etching si

Publications (1)

Publication Number Publication Date
JPH03223106A true JPH03223106A (en) 1991-10-02

Family

ID=11873217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1487690A Pending JPH03223106A (en) 1990-01-26 1990-01-26 Method for etching si

Country Status (1)

Country Link
JP (1) JPH03223106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179842A3 (en) * 1992-01-31 2002-09-04 Canon Kabushiki Kaisha Semiconductor substrate and method for preparing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179842A3 (en) * 1992-01-31 2002-09-04 Canon Kabushiki Kaisha Semiconductor substrate and method for preparing same

Similar Documents

Publication Publication Date Title
WO2001038222A8 (en) Silicon nanoparticle and method for producing the same
JPH0496227A (en) Etching method
KR20050086693A (en) Dispersion of nanowires of semiconductor material
JPH03223106A (en) Method for etching si
JP4148547B2 (en) Manufacturing method of semiconductor device
JP2001091262A (en) Semiconductor sensor and manufacturing method therefor
JP2680800B2 (en) SOI wafer and method of manufacturing the same
Christophersen et al. Deep electrochemical trench etching with organic hydrofluoric electrolytes
JP2002252202A (en) Method for forming minute structure on surface of semiconductor substrate and semiconductor substrate having minute structure made by this method and device using it
JP3201793B2 (en) Processing method of Si substrate
JP2815001B2 (en) Method for manufacturing thin film SOI substrate
KR100373459B1 (en) SiC PEC oxidation and etching with H2O2 electrolyte
JP3129851B2 (en) Method for manufacturing semiconductor device
KR0186101B1 (en) Method of manufacturing micro-tip of field emission display
JPH05198556A (en) Anodizing device
JPH07211876A (en) Manufacture of semiconductor substrate
Hobbes Wet Chemical Etching and Wet Bulk Micromachining—Pools as Tools
JPH04148526A (en) Manufacture of silicon substrate
JPS61228630A (en) Method for etching semiconductor wafer
JPS5512726A (en) Process for manufacturing semiconductor substrate
JPH02228049A (en) Manufacture of semiconductor device
JP3127457B2 (en) Si etching method
JPS62264625A (en) Method of etching gaas
JPH04119648A (en) Manufacture of semiconductor device
JPH08288251A (en) Manufacture of semiconductor device