JPH03222719A - Manufacture of laminated biaxially oriented film - Google Patents

Manufacture of laminated biaxially oriented film

Info

Publication number
JPH03222719A
JPH03222719A JP2019630A JP1963090A JPH03222719A JP H03222719 A JPH03222719 A JP H03222719A JP 2019630 A JP2019630 A JP 2019630A JP 1963090 A JP1963090 A JP 1963090A JP H03222719 A JPH03222719 A JP H03222719A
Authority
JP
Japan
Prior art keywords
film
laminated
polyamide
annular
vinyl acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019630A
Other languages
Japanese (ja)
Other versions
JP2825904B2 (en
Inventor
Kazuhisa Miyashita
宮下 和久
Kenji Mori
賢二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Kasei Polytec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Polytec Co filed Critical Mitsubishi Kasei Polytec Co
Priority to JP2019630A priority Critical patent/JP2825904B2/en
Publication of JPH03222719A publication Critical patent/JPH03222719A/en
Application granted granted Critical
Publication of JP2825904B2 publication Critical patent/JP2825904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a laminated biaxially oriented film superior in oxygen barrier properties and mechanical strength, by a method wherein an ethylene-vinyl acetate copolymer saponified matter and polyamide are quenched by laminating within an annular die and tubular biaxial orientation is performed under a specific orientation condition. CONSTITUTION:A matter (EVOH) whose ethylene content is 25-45mol% and saponification proof is 98% or higher is used as an ethylene-vinyl acetate copolymer saponification matter. A laminated sheet extruded through an annular die lip and comprised of polyamide, EVOH and the polyamide is quenched by a liquid whose temperature is, for example, 40 deg.C or lower, fed to two pairs of nip roll groups which are positioned at the top and bottom and having different peripheral speeds and biaxially oriented both in length and width simultaneously by pressure of gas enclosed on the inside and adjustment of peripheral speeds of the nip rolls. An annular film is heated at 45-100 deg.C by an annular heter and oriented immediately by 2-5 times within respective ranges of mean deformation rates of 2000-10000%/min. in a flowing direction and a direction meeting at right angles with the flowing direction. Then heat-treated within a temperature range extending from 190 deg.C to a temperature lower by 10 deg.C than the melting point of the polyamide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、少なくとも1層のエチレン−酢酸ビニル共重
合体けん化物よりなる層と少なくとも1層のポリアミド
よりなる層とから構成される積層二軸延伸フィルムの製
造方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a laminated double layer comprising at least one layer of saponified ethylene-vinyl acetate copolymer and at least one layer of polyamide. The present invention relates to a method for producing an axially stretched film.

詳しくは、本発明は、酸素ガス遮断性、耐ピンホール強
度等の機械的強度、厚み精度および寸法安定性に優れた
上記フィルムの製造方法に関するものである。
Specifically, the present invention relates to a method for producing the above-mentioned film, which has excellent oxygen gas barrier properties, mechanical strength such as pinhole resistance, thickness accuracy, and dimensional stability.

本発明フィルムにおける酸素ガス遮断性および耐ピンホ
ール強度は、例えば、食品、医療品、薬品等のように、
酸素による変質が問題とされる内容物の包装用フィルム
として重要な特性であり、また、厚み精度および寸法安
定性は、印刷やラミネート加工時に重要な特性である。
The oxygen gas barrier property and pinhole resistance strength of the film of the present invention are, for example, as in foods, medical products, drugs, etc.
This is an important property for packaging films for contents where deterioration due to oxygen is a problem, and thickness accuracy and dimensional stability are important properties during printing and laminating.

〔従来技術〕[Prior art]

エチレン酢酸ビニル共重合体けん化物からなる二軸延伸
フィルムは、極めて優れた酸素ガス遮断性を示し、かつ
、透明性、耐油性に優れているが、その二軸延伸フィル
ムは、耐屈曲ピンホール性に劣ってお゛す、その用途が
制限されている。
A biaxially stretched film made of a saponified ethylene vinyl acetate copolymer exhibits extremely excellent oxygen gas barrier properties, as well as excellent transparency and oil resistance. It is inferior in quality, and its uses are limited.

一方、ポリアミドフィルムは、引張強度、耐ピンホール
強度等の機械的性質に優れているが、食品、医療品、薬
品等の包装に用いた場合、酸素ガス遮断性が充分ではな
い。
On the other hand, although polyamide films have excellent mechanical properties such as tensile strength and pinhole resistance, they do not have sufficient oxygen gas barrier properties when used for packaging foods, medical products, drugs, etc.

そこで、従来より、上記各フィルムを複合した積層二軸
延伸フィルムが、注目され、いくつかの製造方法が提案
されている。
Therefore, a laminated biaxially stretched film, which is a composite of each of the above-mentioned films, has been attracting attention, and several manufacturing methods have been proposed.

例えば、特開昭52−115880号公報には、エチレ
ン−酢酸ビニル共重合体けん化物フィルムとポリアミド
フィルムとを密着積層した後、この積層フィルムを二軸
延伸する方法か記載されており、また、特開昭55−8
2650号公報には、未延伸またはl軸延伸されたポリ
アミドフィルムにエチレン−酢酸ビニル共重合体けん化
物フィルムを複合し、しかる後に延伸を行う複合フィル
ムの製造法が提案され、逐次二軸延伸法に関する記述も
なされている。更にまた、特公昭6i22613号公報
には、エチレン−酢酸ビニル共重合体けん化物とポリア
ミドとからなる積層チューブ状フィルムを共押出し、次
いで、含有水分率を2wt%以下に保持し、その後、加
熱及び内部の気体圧によって同時二軸延伸を行うチュー
ブラ−法か提案されている。
For example, JP-A-52-115880 describes a method in which a saponified ethylene-vinyl acetate copolymer film and a polyamide film are closely laminated and then the laminated film is biaxially stretched. Japanese Patent Publication No. 55-8
No. 2650 proposes a method for producing a composite film in which an unstretched or l-axis stretched polyamide film is composited with an ethylene-vinyl acetate copolymer saponified film and then stretched, and a sequential biaxial stretching method is proposed. There is also a description of Furthermore, Japanese Patent Publication No. 6i22613 discloses that a laminated tubular film made of a saponified ethylene-vinyl acetate copolymer and polyamide is coextruded, the moisture content is maintained at 2 wt% or less, and then heated and A tubular method has been proposed in which simultaneous biaxial stretching is performed using internal gas pressure.

ご発明が解決しようとする問題点〕 しかしながら、特開昭52−115880号公報記載の
方法は、エチレン−酢酸ビニル共重合体けん化物フィル
ムとポリアミドフィルムとを別々に製造した後に密着積
層する方法であり、この方法は、フィルムの製造、積層
、延伸というように工程も複雑であり、工業的有利な方
法とはいえない。また、特開昭55−82650号公報
記載の方法は、製造装置も高価であるばかりか、運転条
件も複雑であり、やはり工業的有利な方法とはいえない
[Problems to be Solved by the Invention] However, the method described in JP-A-52-115880 is a method in which a saponified ethylene-vinyl acetate copolymer film and a polyamide film are produced separately and then laminated in close contact with each other. However, this method involves complicated steps such as film production, lamination, and stretching, and cannot be said to be an industrially advantageous method. In addition, the method described in Japanese Patent Application Laid-open No. 55-82650 not only requires expensive manufacturing equipment but also requires complicated operating conditions, so it cannot be said to be an industrially advantageous method.

また、特公昭61−22613号公報記載の方法は、比
較的有利な方法ではあるが、本発明者等による追試の結
果、寸法安定性の優れたフィルムは得られなかった。
Further, although the method described in Japanese Patent Publication No. 61-22613 is a relatively advantageous method, as a result of additional tests by the present inventors, a film with excellent dimensional stability could not be obtained.

S問題点を解決するための手段〕 本発明者等は、上記実情に鑑み、前記積層二軸延伸フィ
ルムの工業的有利な製造方法を提供すべく、チューブラ
−二軸延伸法につき鋭意検討した結果、結晶化速度の著
しく速いエチレン−酢酸ビニル共重合体けん化物とポリ
アミドとから、酸素ガス遮断性、機械的強度、厚み精度
および寸法安定性に優れている積層二軸延伸フィルムを
製造するには、特に、延伸温度、延伸倍率、延伸時の変
形速度、延伸フィルムの熱処理温度が重要であるとの知
見を得た。
Means for Solving Problem S] In view of the above-mentioned circumstances, the present inventors have conducted extensive studies on the tubular biaxial stretching method in order to provide an industrially advantageous manufacturing method for the laminated biaxially stretched film. To produce a laminated biaxially oriented film with excellent oxygen gas barrier properties, mechanical strength, thickness accuracy, and dimensional stability from a saponified ethylene-vinyl acetate copolymer with an extremely fast crystallization rate and polyamide. In particular, it has been found that the stretching temperature, stretching ratio, deformation rate during stretching, and heat treatment temperature of the stretched film are important.

本発明は、上記知見を基に更に検討を重ねた結果完成さ
れたものであり、その要旨は、(a)  エチレン−酢
酸ビニル共重合体けん化物とポリアミドとを各別の溶融
押出機より押出して環状ダイ内で積層し、次いで、得ら
れた溶融状環状フィルムを急冷し、未配向環状積層フィ
ルムを得る第1工程; (b)  上下に位置した周速度の異なる2対のニップ
ロール群に上記未配向環状積層フィルムを供給してリン
グ状ヒーターで加熱すると共に、該未配向環状積層フィ
ルムの内部に封入された気体の圧力と前記ニップロール
の周速の調整によって縦刃・向および横方向に同時に二
軸延伸する第2工程;(c)  上記延伸フィルムを熱
処理する第3工程;よりなるチューブラ−二軸延伸法に
よる積層二軸延伸フィルムの製造方法において、 原料の共重合体けん化物としては、エチレン含有量25
〜45モル%、けん化度98%以上のエチレン−酢酸ビ
ニル共重合体けん化物を使用し、第2工程の延伸は、延
伸温度が45〜100’C1縦方向が2,000〜to
o、ooo%/分の平均変形速度で2〜5倍、横方向が
2,000〜loo、ooo%/分の平均変形速度で2
〜5倍の条件下に行い、第3工程の熱処理は、190℃
を下限とし、原料ポリアミドの融点よりも10℃低い温
度を上限とする温度条件下に行うことを特徴とする、積
層二軸延伸フィルムの製造方法に存する。
The present invention was completed as a result of further studies based on the above knowledge, and the gist thereof is (a) extruding a saponified ethylene-vinyl acetate copolymer and a polyamide from separate melt extruders. A first step in which the obtained molten annular film is rapidly cooled to obtain an unoriented annular laminated film. An unoriented annular laminated film is supplied and heated with a ring-shaped heater, and simultaneously in the vertical and horizontal directions by adjusting the pressure of the gas sealed inside the unoriented annular laminated film and the peripheral speed of the nip roll. A second step of biaxial stretching; (c) A third step of heat-treating the stretched film; In a method for producing a laminated biaxially stretched film by a tubular biaxial stretching method, the saponified copolymer as a raw material is: Ethylene content 25
A saponified ethylene-vinyl acetate copolymer with a saponification degree of 98% or more and a saponification degree of 98% or more is used, and the stretching temperature in the second step is 45 to 100' C1, 2,000 to 2,000 to
o, 2 to 5 times at an average deformation rate of ooo%/min, 2,000~looo in the lateral direction, 2 at an average deformation rate of ooo%/min
The heat treatment in the third step was performed at 190°C.
The method for producing a laminated biaxially stretched film is characterized in that the process is carried out under temperature conditions in which the lower limit is 10° C. lower than the melting point of the raw material polyamide and the upper limit is 10° C. lower than the melting point of the raw material polyamide.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、原料樹脂の一つであるエチレン−酢酸
ビニル共重合体けん化物としては、エチレン含有量25
〜45モル%、けん化度98%以上のもの(以下、r 
E、V OHJという)を使用する。エチレン含有量が
25mo 1%未満の場合は、溶融押出性が劣り、着色
し易い。一方、45m。
In the present invention, the saponified ethylene-vinyl acetate copolymer, which is one of the raw material resins, has an ethylene content of 25
~45 mol%, saponification degree of 98% or more (hereinafter referred to as r
E, V OHJ) are used. When the ethylene content is less than 25 mo 1%, melt extrudability is poor and coloring is likely to occur. On the other hand, 45m.

1%を越える場合は、酸素遮断性等の物性が劣化する。If it exceeds 1%, physical properties such as oxygen barrier properties will deteriorate.

そして、けん化度が98mo 1%未満の場合は、酸素
遮断性や耐湿性が低下する。
If the degree of saponification is less than 98 mo 1%, oxygen barrier properties and moisture resistance will decrease.

また、上記EVOHは、プロピレン、イソブチン、α−
オクテン、α−ドデセン、α−オクタデセン等のα−オ
レフィン、不飽和カルボン酸またはその塩の部分アルキ
ルエステル、或いは、完全アルキルエステル、ニトリル
、アミド、無水物、不飽和スルホン酸またはその塩等の
コモノマーを少量含んでいても差し支えない。更に、E
VOHには、少量のポリオレフィン系樹脂、ポリエステ
ル系樹脂、ポリアミド系樹脂等を混合しても差し支えな
い。
In addition, the above EVOH includes propylene, isobutyne, α-
α-olefins such as octene, α-dodecene, α-octadecene, partial or complete alkyl esters of unsaturated carboxylic acids or their salts, comonomers such as nitriles, amides, anhydrides, unsaturated sulfonic acids or their salts, etc. There is no problem even if it contains a small amount of. Furthermore, E
VOH may be mixed with a small amount of polyolefin resin, polyester resin, polyamide resin, etc.

本発明において、他の原料樹脂であるポリアミドとは、
■ε−カプロラクタム単独重合体(ホモポリマー)、■
ε−カプロラクタムを主成分とし、2〜10モル%の他
の化合物との共重合体(コポリマー)、■これらホモポ
リマー及び/又はコポリマーに、これらと相溶性のある
重合体を5〜20重量%混合したものをいう。
In the present invention, the other raw material resin, polyamide, is
■ε-caprolactam homopolymer (homopolymer), ■
A copolymer containing ε-caprolactam as the main component and 2 to 10 mol% of other compounds; ■ 5 to 20% by weight of a polymer compatible with these homopolymers and/or copolymers; It means a mixture.

なお、上記ホモポリマーを形成する他の化合物としては
、脂肪族あるいは芳香族のジアミン類またはジカルボン
酸類とのナイロン塩が挙げられ、ジアミン類の代表例と
しては、エチレンジアミン、テトラメチレンジアミン、
ペンタメチレンジアミン、ヘキサメチレンジアミン、オ
クタメチレンジアミン、デカメチレンジアミン、メタキ
シリレンジアミン、パラキシリレンジアミン等が、ジカ
ルボン酸類の代表例としては、アジピン酸、セバシン酸
、コルク酸、ゲルタール酸、アゼライン酸、β−メチル
アジピン酸、テレフタル酸、イソフタル酸、デカメチレ
ンジカルボン酸、ドデカメチレンジカルボン酸、ピメリ
ン酸等が挙げられる。
Other compounds that form the above homopolymer include nylon salts with aliphatic or aromatic diamines or dicarboxylic acids, and representative examples of diamines include ethylenediamine, tetramethylenediamine,
Typical examples of dicarboxylic acids include pentamethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine, metaxylylene diamine, paraxylylene diamine, etc., and adipic acid, sebacic acid, corkic acid, geltaric acid, and azelaic acid. , β-methyladipic acid, terephthalic acid, isophthalic acid, decamethylene dicarboxylic acid, dodecamethylene dicarboxylic acid, pimelic acid, and the like.

なお、EVOH及びポリアミドは、いずれも吸湿性か大
きいが、吸湿したものを使用すると、原料を溶融して押
し出す際に、水蒸気やオリゴマーが発生してフィルム化
を阻害し易いので、水分含有率が0.1重量%以下の実
質的に無水の原料を用いるのが好ましい。
Both EVOH and polyamide are highly hygroscopic, but if you use one that has absorbed moisture, water vapor and oligomers are generated when the raw materials are melted and extruded, which tends to inhibit film formation. Preferably, less than 0.1% by weight of substantially anhydrous raw materials are used.

更に、上記の原料樹脂には、フィルムの性質を損わない
範囲で、滑剤、帯電防止剤、酸化防止剤、ブ七ツキング
防止剤、安定剤、染料、顔料、無機質微粒子等の各種添
加剤を添加することができる。
Furthermore, various additives such as lubricants, antistatic agents, antioxidants, anti-blocking agents, stabilizers, dyes, pigments, and inorganic fine particles may be added to the above raw resin to the extent that they do not impair the properties of the film. Can be added.

先ず、本発明方法では、第1工程において、EVOHと
ポリアミドを原料樹脂とし、実質的に無定形で配向して
いない未延伸の環状積層フィルム(以下「環状積層未延
伸フィルムJという)を製造する。
First, in the method of the present invention, in the first step, a substantially amorphous, unoriented, unstretched annular laminated film (hereinafter referred to as "annular laminated unstretched film J") is produced using EVOH and polyamide as raw material resins. .

環状積層未延伸フィルムを製造するには、2本のスパイ
ラルに導かれた溶融状態のポリアミドと、それらとは別
のスパイラルに導かれた溶融状態のEVOHとを、内側
よりポリアミド、EVOH、ポリアミドの順で、各々単
独に環状に分散し、ダイランド部へ流入させて複合化し
、ダイリップより押し出された溶融状態の積層シートを
例えば温度40℃以下の液体に接触させて急冷し、環状
積層未延伸フィルムを得る。なお、これらの積層未延伸
フィルムの厚さ構成は、ポリアミド層の総厚みをE V
 ’OH層の厚みの1.3倍以上とすることにより、後
続の延伸操作がより安定して行われるので好ましい。
To produce an annular laminated unstretched film, polyamide in a molten state guided by two spirals and EVOH in a molten state guided by another spiral are mixed from the inside with polyamide, EVOH, and polyamide. The laminated sheets in a molten state are extruded from the die lip and then brought into contact with a liquid at a temperature of 40° C. or less to be rapidly cooled to form an annular laminated unstretched film. get. In addition, the thickness structure of these laminated unstretched films is such that the total thickness of the polyamide layer is E V
It is preferable that the thickness be at least 1.3 times the thickness of the OH layer, since the subsequent stretching operation can be performed more stably.

次に、本発明方法では、第2工程において、上記のよう
にして得られた環状積層未延伸フィルムを特定の延伸温
度、変形速度および倍率を採用して延伸する。
Next, in the method of the present invention, in the second step, the annular laminated unstretched film obtained as described above is stretched using a specific stretching temperature, deformation rate, and magnification.

第2工程では、上、下に位置した周速度の異なる2対の
ニップロール群に上記の環状積層未延伸フィルムを引き
続き供給し、その内部に封入された気体の圧力と該ニッ
プロールの周速の調整によって縦、横同時に二軸延伸す
る。
In the second step, the above-mentioned annular laminated unstretched film is continuously supplied to two pairs of nip rolls located at the top and bottom and having different circumferential speeds, and the pressure of the gas sealed inside and the circumferential speed of the nip rolls are adjusted. Biaxially stretched both vertically and horizontally at the same time.

上記延伸においては、環状フィルムをリング状ヒータに
より45〜100℃の温度範囲に加熱し、直ちに、流れ
方向の平均変形速度2,000〜1o、ooo%/分の
範囲で2〜5倍、流れ方向に直角な方向の平均変形速度
2,000〜10,00096/分の範囲で2〜5倍に
延伸する。
In the above-mentioned stretching, the annular film is heated to a temperature range of 45 to 100°C by a ring-shaped heater, and immediately the average deformation rate in the machine direction is 2,000 to 1o, and the flow rate is increased by 2 to 5 times in the range of ooo%/min. Stretching is carried out 2 to 5 times at an average deformation rate of 2,000 to 10,00096/min in the direction perpendicular to the direction.

未延伸フィルムの温度が45℃より低いと、フィルムの
温度による軟化が起こらず、従って、延伸応力か高くな
り、延伸できない。一方、100℃を越えると、延伸応
力が弱くなり、伸張バブルが揺れ、非常に不安定な延伸
になる。また、加熱後、時間が経つと、フィルムが急激
に結晶化し、延伸斑を生じたり、延伸時フィルムが裂は
易くなる。従って、フィルムを45〜100℃に加熱後
直ちに延伸することが必要である。
If the temperature of the unstretched film is lower than 45° C., the film will not soften due to temperature, and therefore the stretching stress will be high and stretching will not be possible. On the other hand, when the temperature exceeds 100°C, the stretching stress becomes weak, the stretching bubbles shake, and the stretching becomes extremely unstable. Moreover, as time passes after heating, the film rapidly crystallizes, causing stretching unevenness and making the film easy to tear during stretching. Therefore, it is necessary to stretch the film immediately after heating it to 45-100°C.

流れ方向およびそれに直角な方向の平均延伸変形速度は
、2000%/分以上10000%以下であることが必
要である。ここで、平均変形速度とは、次の式で表され
る式によって算出される値をいう。
The average stretching deformation speed in the machine direction and the direction perpendicular thereto needs to be 2000%/min or more and 10000% or less. Here, the average deformation speed refers to a value calculated by the following equation.

上記式において、各々の記号は次の意味を有する。In the above formula, each symbol has the following meaning.

V ]+1 、 、フィルムの平均縦変形速度(%/分
)X ・縦延伸倍率(倍)であ1八UH/ULよりなる L :チューブの延伸開始点からバブルが最大となる地
点までの長さ(m) UL :低速側ニップロールの線速度(m/分)UH:
高速側ニップロールの線速度(m/分)VTD:フィル
ムの平均横変形速度(%/分)Y :横延伸倍率(倍)
であり、R/2rで決定される。rは低速側ニップロー
ル出口における折り畳まれたフィルム幅、Rはバブルが
最大となった時のバブルの外周長を意味する。
V ]+1, , average longitudinal deformation rate of the film (%/min) (m) UL: Linear speed of low speed side nip roll (m/min) UH:
Linear speed of high-speed side nip roll (m/min) VTD: Average lateral deformation speed of film (%/min) Y: Lateral stretching ratio (times)
and is determined by R/2r. r is the width of the folded film at the exit of the nip roll on the low speed side, and R is the outer circumference length of the bubble when the bubble is at its maximum.

そして1、縦、横の平均変形速度がそれぞれ2゜000
%/分より低い場合は、延伸中にフィルムが裂は易くな
り好ましくない。また、10000兄/分より大である
場合は、延伸斑が生じ易く好ましくない。
1. The average deformation speed in the vertical and horizontal directions is 2°000 each.
If it is lower than %/min, the film tends to tear easily during stretching, which is not preferable. Moreover, if it is greater than 10,000 per minute, stretching unevenness tends to occur, which is not preferable.

延伸倍率が、流れ方向およびそれに直角な方向に各々2
倍より小さい場合は、最終的に得られるフィルムに所望
の配向効果を賦与することができず、5倍より大きい場
合は、延伸時にフィルムが裂は易く好ましくない。
The stretching ratio is 2 in the machine direction and in the direction perpendicular to it.
If it is less than 5 times, the desired orientation effect cannot be imparted to the final film, and if it is more than 5 times, the film tends to tear during stretching, which is undesirable.

本発明の第3工程では、第2工程を経て縦横同時に延伸
されたフィルムを、190’Cを下限とし、原料ポリア
ミドの融点よりも10’C低い温度を上限とする温度範
囲で熱処理する。
In the third step of the present invention, the film stretched simultaneously in the longitudinal and transverse directions through the second step is heat-treated in a temperature range with a lower limit of 190'C and an upper limit of 10'C lower than the melting point of the raw material polyamide.

上記熱処理により、二軸延伸された積層フィルムの寸法
安定性を向上させることができる。
The above heat treatment can improve the dimensional stability of the biaxially stretched laminated film.

EVOHの融点は、Et含有量32モル%で180℃で
あり、従って、190℃以上ではEVOHの融点を越え
るが、フィルムの破断等のトラブルはなく、寸法安定性
は向上する。
The melting point of EVOH is 180° C. with an Et content of 32 mol %, and therefore, at 190° C. or higher, it exceeds the melting point of EVOH, but there are no problems such as film breakage, and dimensional stability is improved.

熱処理する場合には、第2工程を経て縦横同時に延伸さ
れたフィルムの折り畳まれた両端をニップロール出口で
テンタークリップに咬ませテンター内で熱処理する方法
、チューブ状フィルムを切開してフィルムの切開部をテ
ンタークリップに咬ませテンター内で熱処理する方法、
折り畳まれたフィルムをそのまま高温ロール上で熱処理
する方法等、従来より行われている熱処理方法を採用し
得る。
In the case of heat treatment, the folded ends of the film, which has been stretched simultaneously in the vertical and horizontal directions through the second step, are held in tenter clips at the exit of the nip roll and heat treated in the tenter. A method of heat-treating in a tenter by attaching it to a tenter clip,
Conventional heat treatment methods, such as a method of heat treating the folded film as it is on a high-temperature roll, can be employed.

熱処理温度が190℃より低いと、最終的に得られるフ
ィルムの熱水収縮率、乾熱収縮率が大きくなり、目的と
する寸法安定性の高いフィルムを得ることができない。
If the heat treatment temperature is lower than 190°C, the hot water shrinkage rate and dry heat shrinkage rate of the final film will increase, making it impossible to obtain a film with high dimensional stability as desired.

また、上限を越える温度で熱処理を行なうと、フィルム
が破断したり、得られたフィルムの表面が白化、失透し
たり、フィルムが脆くなり易いので好ましくない。
Furthermore, heat treatment at a temperature exceeding the upper limit is not preferable because the film may break, the surface of the obtained film may become white or devitrified, or the film may become brittle.

第3工程での熱処理により充分に熱固定されたフィルム
は、常法に従い冷却し、巻き取られる。
The film that has been sufficiently heat-set by the heat treatment in the third step is cooled and rolled up according to a conventional method.

〔実施例〕 次に、本発明を実施例に基づいて更に詳細に説明するか
、本発明は、その要旨を越えない限り、以下の例に限定
されるものではない。
[Examples] Next, the present invention will be explained in more detail based on Examples, and the present invention is not limited to the following examples unless the gist thereof is exceeded.

以下の例において、得られたフィルムの物理的性質は、
次に記した方法によって評価した。
In the example below, the physical properties of the resulting film are:
Evaluation was made by the method described below.

■ フィルムの厚さ(μm) 幅方向に30mmの間隔でフィルムの全厚さを測定し、
その平均値を求めてフィルムの厚さとする。
■ Film thickness (μm) Measure the total thickness of the film at intervals of 30 mm in the width direction,
The average value is calculated and used as the thickness of the film.

厚さは、接触式のシックネスゲージを用いて測定した。The thickness was measured using a contact thickness gauge.

■ フィルムの厚さ斑(%) 次式より算出した値を意味する。■ Film thickness unevenness (%) It means the value calculated from the following formula.

(この厚さ斑が10%以下であると厚さ精度がよいとい
える。) ■ 熱水収縮率(%) 先ず、製品フィルムを温度23℃1相対湿度50%の雰
囲気下でコンディショニングし、フィルム表面に、−辺
の長さが80mmである正方形の標線を、正方形の各辺
がフィルムの縦方向及び横方向に平行となるように描い
た。次に、この試料を沸騰水の中に5分間浸漬して取り
出した後、再び温度23℃、相対湿度50%の雰囲気下
に24時間放置した。沸騰水へ浸漬する前と浸漬した後
の正方形の寸法を測定し、下記の計算式より求めた。
(If this thickness unevenness is 10% or less, it can be said that the thickness accuracy is good.) ■ Hot water shrinkage rate (%) First, the product film is conditioned in an atmosphere with a temperature of 23°C and a relative humidity of 50%. On the surface, a marked line of a square with a negative side length of 80 mm was drawn so that each side of the square was parallel to the vertical and horizontal directions of the film. Next, this sample was immersed in boiling water for 5 minutes, taken out, and then left again in an atmosphere at a temperature of 23° C. and a relative humidity of 50% for 24 hours. The dimensions of the square before and after immersion in boiling water were measured and calculated using the following formula.

平均熱水収縮率−(縦方向熱水収縮率十横方向熱水収縮
率)/2 上記式において、I Ml+  I M2は、フィルム
の縦方向に沿った辺の浸漬前後の長さを、I’TI+ 
 IT2はフィルムの横方向に沿った辺の浸漬前後の長
さを、それぞれ意味する。
Average hot water shrinkage rate - (longitudinal hot water shrinkage rate + transverse hot water shrinkage rate)/2 In the above formula, I Ml + I M2 is the length of the side along the longitudinal direction of the film before and after immersion, I 'TI+
IT2 means the length of the side of the film in the lateral direction before and after dipping, respectively.

なお、縦方向熱水収縮率及び横方向熱水収縮率は、非収
縮性フィルムの場合、約4%以下が望ましい。
Note that the hot water shrinkage rate in the longitudinal direction and the hot water shrinkage rate in the transverse direction are desirably about 4% or less in the case of a non-shrinkable film.

■ 酸素透過率(cc/cnr−d a y )酸素透
過率測定装置0XY−TRANl 00型(Mode 
rn  con t ro 1社製)を用い25℃、6
5%RHの条件にて測定した。
■ Oxygen permeability (cc/cnr-day) Oxygen permeability measuring device 0XY-TRANl 00 type (Mode
rn contro 1) at 25°C, 6
Measurement was performed under the condition of 5% RH.

実施例1 ポリ−ε−カプロアミド(三菱化成(掬製、ツバミツド
1022)及びエチレン含有率32モル%、けん化度9
9.5モル%以上のEVOH(日本合成化学工業(株制
、ソアノールDC)を原料とし、40mmφ押出機3台
を使用し、ダイ内接着用環状ダイにより、外層がポリア
ミド樹脂、中間層がEVOH樹脂、内層がポリアミド樹
脂よりなる溶融状態の環状積層フィルムを押出し、30
℃の水中で急冷し、外層が45μのポリアミド樹脂層、
中間層が45μのEVOH樹脂層、内層が45μのポリ
アミド樹脂層よりなる積層環状未延伸フィルムを得た。
Example 1 Poly-ε-caproamide (Tsubamitsudo 1022 manufactured by Mitsubishi Kasei Co., Ltd. (Kiyoshi)), ethylene content 32 mol%, saponification degree 9
Using 9.5 mol% or more EVOH (Nippon Gosei Kagaku Kogyo Co., Ltd., Soarnol DC) as a raw material, using three 40 mmφ extruders, and using an annular die for adhesion within the die, the outer layer is polyamide resin and the middle layer is EVOH. Extrude a molten annular laminated film whose inner layer is made of polyamide resin, and
A polyamide resin layer with an outer layer of 45μ, rapidly cooled in water at ℃,
A laminated annular unstretched film was obtained in which the intermediate layer was an EVOH resin layer with a thickness of 45μ and the inner layer was a polyamide resin layer with a thickness of 45μ.

上記フィルムを周速7m/分の移送速度でニップロール
に導き、フィルム内部に封入された空気圧によりチュー
ブ状に広げ、更に、リング状のヒータで80℃に加熱し
、封入された空気圧により直ちにバブルを形成させた。
The above film is introduced into a nip roll at a circumferential speed of 7 m/min, spread into a tube shape by air pressure sealed inside the film, heated to 80°C with a ring-shaped heater, and bubbles are immediately generated by the sealed air pressure. formed.

バブルの形成は、延伸開始点より70cmの地点で最大
径(延伸開始時の3倍径)になるように、空気圧、延伸
中のフィルム温度を制御して行なった。次いで、バブル
を冷却し、偏平ガイドロールで折り畳みながら、21m
/分て回転する高速ニップロールに導いた。
The bubbles were formed by controlling the air pressure and film temperature during stretching so that the bubbles reached their maximum diameter (3 times the diameter at the start of stretching) at a point 70 cm from the stretching start point. Next, while cooling the bubble and folding it with flat guide rolls, it was rolled for 21 m.
It was guided to a high-speed nip roll that rotates at a rate of 1/2 minutes.

この折り畳まれたフィルムの両端を40℃に保持したテ
ンタークリップで把持し、フィルム温度が200℃にな
るように調整しながら9秒間の熱処理を行なった。
Both ends of this folded film were held with tenter clips maintained at 40°C, and heat treatment was performed for 9 seconds while adjusting the film temperature to 200°C.

熱処理を行なった後のフィルムは、フィルム両耳を切り
取り、2枚のフィルムとしてワインダーに巻き取り、約
5μのポリアミド樹脂層、約5μのEVOH樹脂層、約
5μのポリアミド樹脂層の順に積層された総厚み約15
μの積層二軸延伸フィルムを製造した。
After the heat treatment, both edges of the film were cut out, and two films were wound up in a winder, and a polyamide resin layer of about 5 μm, an EVOH resin layer of about 5 μm, and a polyamide resin layer of about 5 μm were laminated in this order. Total thickness approx. 15
A laminated biaxially stretched film of μ was produced.

上記の方法により、5時間連続してフィルムの製造を行
ったが、途中、何等の異常もなく、順調に運転できた。
Film production was carried out continuously for 5 hours using the above method, and the operation was carried out smoothly without any abnormalities during the process.

運転条件の詳細および延伸時の状況を第1表に示す。Details of the operating conditions and conditions during stretching are shown in Table 1.

実施例2〜6及び比較例1〜8 実施例1と同種の原料を使用し、同側の方法に従い、第
1表記載の各条件下に、NY/EVOH/’ N yが
7/7/7及び5 / 5 / 5の層構成の積層二軸
延伸フィルムを製造した。
Examples 2 to 6 and Comparative Examples 1 to 8 Using the same raw materials as in Example 1 and following the same method, under each condition listed in Table 1, NY/EVOH/'N y was 7/7/ Laminated biaxially oriented films with layer configurations of 7 and 5/5/5 were produced.

運転条件の詳細および延伸時の状況を第1表に示す。Details of the operating conditions and conditions during stretching are shown in Table 1.

〔効 果〕〔effect〕

本発明は、以上詳細に説明した通りであり、エチレン−
酢酸ビニル共重合体けん化物とポリアミドからなり、食
品、薬品、医療品等の包装に極めて好適な積層二軸延伸
フィルムを容易かつ安定的に、しかも、安価に製造でき
る方法を提供するものであり、次のような特別顕著な効
果を奏し、その産業上の利用価値は極めて大である。
The present invention has been explained in detail above, and the ethylene-
The present invention provides a method for easily, stably, and inexpensively producing a laminated biaxially oriented film made of saponified vinyl acetate copolymer and polyamide and extremely suitable for packaging foods, drugs, medical products, etc. , it produces the following particularly remarkable effects, and its industrial utility value is extremely great.

(1)本発明方法によるときは、二軸延伸法において特
に重要な延伸条件が確立されているので、常に、品質の
安定した積層二軸延伸フィルムを製造することができる
(1) When using the method of the present invention, particularly important stretching conditions in the biaxial stretching method have been established, so a laminated biaxially stretched film with stable quality can always be produced.

(2)本発明方法によるときは、組成の特定化されたエ
チレン−酢酸ビニル共重合体けん化物を用いるので、常
に、酸素ガス遮断性、機械的強度に優れた積層二軸延伸
フィルムを製造することができる。
(2) When using the method of the present invention, a saponified ethylene-vinyl acetate copolymer with a specified composition is used, so a laminated biaxially stretched film with excellent oxygen gas barrier properties and mechanical strength can always be produced. be able to.

(3)本発明方法によるときは、特定化された熱処理条
件を用いるので、常に、寸法安定性の優れた積層二軸延
伸フィルムを得ることができる。
(3) When using the method of the present invention, specified heat treatment conditions are used, so a laminated biaxially stretched film with excellent dimensional stability can always be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)(a)エチレン−酢酸ビニル共重合体けん化物と
ポリアミドとを各別の溶融押出機より押出して環状ダイ
内で積層し、次いで、得られた溶融状態の環状フィルム
を急冷し、未配向環状積層フィルムを得る第1工程; (b)上下に位置した周速度の異なる2対のニップロー
ル群に上記未配向環状積層フィルムを供給してリング状
ヒーターで加熱すると共に、該未配向環状積層フィルム
の内部に封入された気体の圧力と前記ニップロールの周
速の調整によって縦方向および横方向に同時に二軸延伸
する第2工程; (c)上記延伸フィルムを熱処理する第3工程;よりな
るチューブラー二軸延伸法による積層二軸延伸フィルム
の製造方法において、 原料の共重合体けん化物としては、エチレン含有量25
〜45モル%、けん化度98%以上のエチレン−酢酸ビ
ニル共重合体けん化物を使用し、第2工程の延伸は、延
伸温度が45〜100℃、縦方向が2,000〜100
,000%/分の平均変形速度で2〜5倍、横方向が2
,000〜100,000%/分の平均変形速度で2〜
5倍の条件下に行い、第3工程の熱処理は、190℃を
下限とし、原料ポリアミドの融点よりも10℃低い温度
を上限とする温度条件下に行うことを特徴とする、積層
二軸延伸フィルムの製造方法。
(1) (a) Saponified ethylene-vinyl acetate copolymer and polyamide are extruded from separate melt extruders and laminated in an annular die.Then, the obtained annular film in the molten state is rapidly cooled and left unused. First step of obtaining an oriented annular laminate film; (b) The unoriented annular laminate film is supplied to two pairs of nip rolls positioned above and below and having different circumferential speeds and heated with a ring heater, and the unoriented annular laminate film is heated by a ring heater. a second step of simultaneously biaxially stretching the film in the longitudinal and transverse directions by adjusting the pressure of the gas sealed inside the film and the circumferential speed of the nip roll; (c) a third step of heat-treating the stretched film; In the method for producing a laminated biaxially stretched film using the biaxially stretched method, the saponified copolymer as a raw material has an ethylene content of 25%.
A saponified ethylene-vinyl acetate copolymer with a saponification degree of 98% or more and a saponification degree of 98% or more is used, and the stretching temperature in the second step is 45 to 100°C, and the longitudinal direction is 2,000 to 100°C.
,000%/min average deformation rate 2-5 times, lateral direction 2
,000-100,000%/min average deformation rate
Laminated biaxial stretching, characterized in that the heat treatment in the third step is carried out under temperature conditions with a lower limit of 190°C and an upper limit of 10°C lower than the melting point of the raw material polyamide. Film manufacturing method.
(2)積層二軸延伸フィルムの層構成が、ポリアミド層
(A層)、エチレン−酢酸ビニル共重合体けん化物(B
層)をA/B/Aの順に積層した層構成であることを特
徴とする請求項第1項記載の積層二軸延伸フィルムの製
造方法。
(2) The layer structure of the laminated biaxially stretched film is a polyamide layer (A layer), a saponified ethylene-vinyl acetate copolymer (B
2. The method for producing a laminated biaxially stretched film according to claim 1, wherein the laminated biaxially stretched film has a layer structure in which the layers A/B/A are laminated in the order of A/B/A.
JP2019630A 1990-01-30 1990-01-30 Manufacturing method of laminated biaxially stretched film Expired - Fee Related JP2825904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019630A JP2825904B2 (en) 1990-01-30 1990-01-30 Manufacturing method of laminated biaxially stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019630A JP2825904B2 (en) 1990-01-30 1990-01-30 Manufacturing method of laminated biaxially stretched film

Publications (2)

Publication Number Publication Date
JPH03222719A true JPH03222719A (en) 1991-10-01
JP2825904B2 JP2825904B2 (en) 1998-11-18

Family

ID=12004523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019630A Expired - Fee Related JP2825904B2 (en) 1990-01-30 1990-01-30 Manufacturing method of laminated biaxially stretched film

Country Status (1)

Country Link
JP (1) JP2825904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002019049A (en) * 2000-07-11 2002-01-22 Unitika Ltd Heat shrinkable biaxially stretched laminated film
JP2007283570A (en) * 2006-04-14 2007-11-01 Kyoraku Co Ltd Manufacturing process of biaxially stretched multilayer film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415828B1 (en) * 2019-09-30 2022-06-30 코오롱인더스트리 주식회사 Polyester multilayer-film and methof for preparing thereof
KR20230024007A (en) * 2021-08-11 2023-02-20 코오롱인더스트리 주식회사 Method for manufacturing biaxially oriented polyester film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002019049A (en) * 2000-07-11 2002-01-22 Unitika Ltd Heat shrinkable biaxially stretched laminated film
JP4485659B2 (en) * 2000-07-11 2010-06-23 ユニチカ株式会社 Method for producing heat-shrinkable biaxially stretched laminated film
JP2007283570A (en) * 2006-04-14 2007-11-01 Kyoraku Co Ltd Manufacturing process of biaxially stretched multilayer film

Also Published As

Publication number Publication date
JP2825904B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
JP7114837B2 (en) Laminate film
JP3829864B1 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
KR900000866B1 (en) Process for preparation of diaxially drawn
JP4861673B2 (en) Linear-cut polyamide-based heat-shrinkable laminated film and method for producing the same
JP4618228B2 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JP2964663B2 (en) Laminated biaxially stretched film and method for producing the same
JPH03222719A (en) Manufacture of laminated biaxially oriented film
JP2821243B2 (en) Manufacturing method of laminated biaxially stretched film
JPH0459353A (en) Laminate wrapping film
JPS6046138B2 (en) Method of manufacturing gas barrier film
JPH0552253B2 (en)
JP4386001B2 (en) Polyamide-based resin laminated film roll and method for producing the same
JP5467296B2 (en) Polyamide-based laminated film with excellent water vapor and alcohol permeability
JPH09187901A (en) Multi-layer drawing polyamide film
JP5937317B2 (en) Balloon packaging containing biaxially stretched polybutylene terephthalate film
JPH1158490A (en) Manufacture of multilayer oriented polyamide film
JP4209047B2 (en) Polyamide film with improved slip and method for producing the same
JPH02245026A (en) Polyamide resin
JP2006182018A (en) Biaxially oriented laminate film and its manufacturing method
JP5183022B2 (en) Straight-cut polyamide film and method for producing the same
JP3829866B1 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JP2022026808A (en) Biaxially oriented polyester sealant film
JP2001341198A (en) Biaxially stretched polyamide film and method for manufacturing the same
JPH04276441A (en) Barrier film of heat-shrinkable multilayer and its manufacture
JPH11320673A (en) Manufacture of simultaneously biaxially oriented film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees