JPH03222405A - Aligner and blind exposure method used therefor - Google Patents

Aligner and blind exposure method used therefor

Info

Publication number
JPH03222405A
JPH03222405A JP2019587A JP1958790A JPH03222405A JP H03222405 A JPH03222405 A JP H03222405A JP 2019587 A JP2019587 A JP 2019587A JP 1958790 A JP1958790 A JP 1958790A JP H03222405 A JPH03222405 A JP H03222405A
Authority
JP
Japan
Prior art keywords
exposure
shutter
temperature
actual
exposure process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019587A
Other languages
Japanese (ja)
Inventor
Koji Fujishima
幸二 藤嶋
Masashi Yamamoto
山本 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP2019587A priority Critical patent/JPH03222405A/en
Publication of JPH03222405A publication Critical patent/JPH03222405A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To make it possible to use an aligner at the focal point which has been most stabilized and hence improve focussing accuracy by performing blind exposure processing prior to actual exposure processing and opening and closing a first shutter, performing the blind exposure processing at the interval identical to the on/off interval required when performing the actual exposure processing. CONSTITUTION:Under the condition where a first shutter 7 is open, an attempt is made to irradiate exposure light from an exposure light source 6 in the same way required for an actual exposure process and raise the temperature of an aligner, particularly the temperature of an exposure optical system 2 near the temperature prevailing during actual exposure process. A further attempt is made to open and close a first shutter 7 at an interval equivalent to an on/off exposure interval required during actual exposure process, which increases the temperature of the aligner, particularly the optical system 2 to the temperature prevailing during the actual exposure process and maintains the temperature so that actual exposure process may be carried out from a constant focal point which has been stabilized. It is, therefore, possible to obtain stabilized exposure accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、露光装置に関し、特に半導体集積回路装置の
ステップ式投影露光装置において、露光光による光学系
の温度変動に影響されることなく、安定化された一定の
焦点位置からの露光処理が可能とされる露光装置および
それに用いられる主露光方法に適用して有効な技術に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an exposure apparatus, and particularly to a step type projection exposure apparatus for semiconductor integrated circuit devices, which can be used without being affected by temperature fluctuations in an optical system caused by exposure light. The present invention relates to an exposure apparatus that is capable of performing exposure processing from a stabilized and constant focal position, and a technique that is effective when applied to a main exposure method used therein.

[従来の技術] 半導体集積回路装置は、多数回のホトエツチングおよび
薄膜のデポジションなどが繰り返されることによって製
造され、たとえばリソグラフィの基本工程は、レジスト
の塗布、感光および現像などによって構成される。
[Prior Art] Semiconductor integrated circuit devices are manufactured by repeating photo-etching and thin film deposition many times. For example, the basic steps of lithography include resist coating, exposure, and development.

また、近年のサブミクロンの半導体集積回路装置におけ
るパターンニング技術においては、ステッパの焦点深度
が浅くなってきており、焦点変動をいかに抑えるかが重
要な要因となってきている。
Furthermore, in recent patterning techniques for submicron semiconductor integrated circuit devices, the depth of focus of steppers has become shallower, and how to suppress focal fluctuations has become an important factor.

この焦点変動の要因としては、たとえば露光光による光
学系の温度変動、大気圧の変化に伴う焦点深度変動およ
び縮小倍率変動などが考えられる。
Possible causes of this focus variation include, for example, temperature variation in the optical system due to exposure light, depth of focus variation and reduction magnification variation due to changes in atmospheric pressure.

たとえば、光学系の温度変動については、露光時におい
て強烈な露光光がレンズエレメントに当たるために、わ
ずかな光吸収があってもレンズ自体の温度が上昇する。
For example, regarding temperature fluctuations in the optical system, intense exposure light hits the lens element during exposure, so even a small amount of light absorption causes the temperature of the lens itself to rise.

そして、たとえば露光時間を4 Q Qms e cに
設定し、100枚のウェハを連続露光した後に60分間
休止した場合の最適焦点位置は、第2図に示すような焦
点変動が発生し、結果として約0.8μm程度の焦点変
化を生じる場合がある。
For example, when the exposure time is set to 4 Q Qmsec and 100 wafers are exposed continuously and then paused for 60 minutes, the optimum focus position will be as shown in Figure 2. A focus change of about 0.8 μm may occur.

この現象は、再現性が高いために、たとえば株式会社工
業調査会、昭和62年11月18日発行、「電子材料別
冊 超LSI!I!造・試験装置ガイドブックJP78
〜P83などの文献に記載されるように、使用する全て
のレチクルに対してレチクル透過率を測定し、光学系の
温度変動による焦点変動を実験式から算出して焦点位置
を補正する補正曲線をあらかじめ求めておき、全レチク
ルに対応したプログラムを作成してソフトウェア上でウ
ェハ毎に焦点位置補正を行う方法が採用されている。
Because this phenomenon is highly reproducible, for example, Kogyo Chosukaikai Co., Ltd., published on November 18, 1986, "Electronic Materials Special Edition Ultra LSI! I! Manufacturing and Testing Equipment Guidebook JP78
~As described in the literature such as P83, the reticle transmittance is measured for all the reticles used, and the focus fluctuation due to temperature fluctuation of the optical system is calculated from an empirical formula, and a correction curve is created to correct the focus position. A method is adopted in which the focus position is determined in advance, a program is created that is compatible with all reticles, and the focus position is corrected for each wafer using software.

[発明が解決しようとする課題] ところが、前記のような従来技術にふいては、露光装置
を最も焦点位置の安定状態において使用するという点に
ついて配慮がされておらず、ソフトウェア上で焦点精度
を向上される方法が取られている。従って、従来の焦点
位置補正方法は、時間的な問題と焦点位置の補正精度と
の点について問題があり、たとえば時・間約な問題につ
いては、全レチクルの透過率の測定と、全レチクルに対
応するプログラム作成とが必要であるために、使用まで
に多大な時間が必要であるという欠点がある。
[Problems to be Solved by the Invention] However, in the prior art as described above, no consideration is given to using the exposure device in the most stable state of the focus position, and the focus accuracy is not adjusted on the software. Measures are being taken to improve it. Therefore, conventional focus position correction methods have problems in terms of time and focus position correction accuracy. Since it is necessary to create a corresponding program, it has the disadvantage that it takes a lot of time to use.

一方、焦点位置の補正精度については、最も焦点変動の
大きい時点において実際の露光処理を行うために充分な
補正精度が得られず、また補正係数の合わせ込みが不充
分であるために、さらに約2〜3割程度の補正が必要で
あるという不具合がある。
On the other hand, regarding the correction accuracy of the focus position, it is not possible to obtain sufficient correction accuracy to perform the actual exposure processing at the time when the focus fluctuation is the largest, and the adjustment of the correction coefficient is insufficient, so There is a problem that a correction of about 20 to 30% is required.

すなわち、従来の露光装置においては、全レチクルに対
応するプログラムによるソフトウェア上において焦点精
度を向上させる方法が取られているが、本発明者は露光
装置を最も焦点位置の安定状態において使用することに
よって焦点精度を向上できる方法について見い出した。
In other words, in conventional exposure equipment, a method is used to improve focus accuracy using software using a program that corresponds to all reticles. We have discovered a method that can improve focus accuracy.

そこで、本発明の目的は、使用するレチクルに関係なく
最も焦点位置の安定した状態で使用でき、焦点位置精度
の向上が可能とされる露光装置およびそれに用いられる
空露光方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an exposure apparatus and a blank exposure method used therein, which can be used with the most stable focal position regardless of the reticle used, and which can improve focal position accuracy. .

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[課題を解決するための手段] 本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。
[Means for Solving the Problems] Among the inventions disclosed in this application, a brief overview of typical inventions is as follows.

すなわち、本発明の露光装置は、露光光源からの露光光
が第1シャッタの開閉動作により制御され、被露光対象
パターンが光学系により露光対象物に投影される露光装
置であって、前記露光装置による実露光処理の前に主露
光処理を行い、該主露光処理を前記実露光処理時におけ
る開閉間隔と同じ間隔で第1シャッタを開閉動作させて
行うものである。
That is, the exposure apparatus of the present invention is an exposure apparatus in which the exposure light from the exposure light source is controlled by the opening/closing operation of the first shutter, and the pattern to be exposed is projected onto the exposure target by an optical system, wherein the exposure apparatus A main exposure process is performed before the actual exposure process, and the main exposure process is performed by opening and closing the first shutter at the same intervals as the opening and closing intervals during the actual exposure process.

また、前記被露光対象パターンと前記露光対象物との間
に第2シャッタが介在され、該第2シャッタが前記空露
光処理時に閉じられて前記露光対象物の露光が防止され
るようにしたものである。
Further, a second shutter is interposed between the pattern to be exposed and the object to be exposed, and the second shutter is closed during the blank exposure process to prevent exposure of the object to be exposed. It is.

さらに、本発明の露光装置に用いられる空露光方法は、
前記第1シャッタの開閉動作を2段階に制御し、第1段
階で前記実露光処理時の温度の近傍まで前記第1シャッ
タを開いた状態に保持し、さらに第2段階で前記実露光
処理時の温度まで前記実露光処理時における開閉間隔と
同じ間隔で前記第1シャッタを開閉動作させるようにし
たものである。
Furthermore, the blank exposure method used in the exposure apparatus of the present invention is as follows:
The opening/closing operation of the first shutter is controlled in two stages, and in the first stage the first shutter is kept open until the temperature approaches the temperature during the actual exposure process, and in the second stage, the opening and closing operation is controlled during the actual exposure process. The first shutter is opened and closed at the same intervals as the opening and closing intervals during the actual exposure process up to a temperature of .

[作用] 前記した露光装置によれば、露光装置による実露光処理
の前に中庭光処理を行い、この中庭光処理を実露光処理
時における開閉間隔と同じ間隔で第1シャッタを開閉動
作させて行うことにより、露光装置、特に光学系が実露
光処理時の温度状態に上昇して保持され、安定化された
一定の焦点位置から実露光処理を行うことができる。
[Function] According to the exposure apparatus described above, the courtyard light process is performed before the actual exposure process by the exposure apparatus, and the first shutter is opened and closed at the same interval as the opening and closing interval during the actual exposure process during the courtyard light process. By doing so, the exposure apparatus, especially the optical system, is raised to and maintained at the temperature state during the actual exposure process, and the actual exposure process can be performed from a stabilized constant focal position.

また、この場合に被露光対象パターンと露光対象物との
間に第2シャッタが介在され、この第2シャッタが中庭
光処理時に閉じられることにより、中庭光処理時におけ
る露光対象物への影響を防止することができる。
Furthermore, in this case, a second shutter is interposed between the pattern to be exposed and the object to be exposed, and by closing this second shutter during the courtyard light processing, the influence on the exposed object during the courtyard light processing can be reduced. It can be prevented.

さらに、第1シャッタの開閉動作を2段階に制御し、第
1段階で実露光処理時の温度の近傍まで第1シャッタを
開いた状態に保持し、さらに第2段階で実露光処理時の
温度まで実露光処理時における開閉間隔と同じ間隔で第
1シャッタを開閉動作させることにより、光学系を実露
光処理時の温度状態に短時間で上昇させることができる
Furthermore, the opening/closing operation of the first shutter is controlled in two stages; in the first stage, the first shutter is kept open until the temperature approaches the temperature during actual exposure processing, and in the second stage, the opening and closing operation of the first shutter is controlled to the temperature during actual exposure processing. By opening and closing the first shutter at the same intervals as the opening and closing intervals during the actual exposure process, the temperature of the optical system can be raised to the temperature state during the actual exposure process in a short time.

[実施例] 第1図は本発明の一実施例である露光装置を示す概略構
成図である。
[Embodiment] FIG. 1 is a schematic configuration diagram showing an exposure apparatus that is an embodiment of the present invention.

まず、第1図により本実施例の露光装置の構成を説明す
る。
First, the configuration of the exposure apparatus of this embodiment will be explained with reference to FIG.

本実施例の露光装置は、たとえば縮小投影光学系を用い
たステップ式投影露光装置とされ、露光光を照射する露
光照明系1と、この露光光を集束および投影する露光光
学系2と、被露光対象パターンが形成されたレチクルを
搭載するレチクル搭載系3と、露光対象物としてのウェ
ハを搭載および駆動するウェハ駆動系4と、空露光時に
おける露光を防止するシャッタ駆動系5とから構成され
ている。
The exposure apparatus of this embodiment is, for example, a step-type projection exposure apparatus using a reduction projection optical system, and includes an exposure illumination system 1 that irradiates exposure light, an exposure optical system 2 that focuses and projects this exposure light, and It is composed of a reticle mounting system 3 that mounts a reticle on which a pattern to be exposed is formed, a wafer drive system 4 that mounts and drives a wafer as an exposure target, and a shutter drive system 5 that prevents exposure during blank exposure. ing.

露光照明系1は、たとえばフィルタなどによりG線(4
36nm)波長が放射される水銀ランプなどの露光光#
I6と、露光光源6からの露光光を遮断する第1シャッ
タ7とから構成され、露光光a!!6から照射された露
光光の露光時間が、プログラムによって自動制御される
第1シャッタフにより制御される構造となっている。
The exposure illumination system 1 uses, for example, a filter to capture G-line (4
Exposure light such as a mercury lamp that emits a wavelength of 36 nm) #
I6 and a first shutter 7 that blocks the exposure light from the exposure light source 6, and blocks the exposure light a! ! The structure is such that the exposure time of the exposure light irradiated from 6 is controlled by a first shutter that is automatically controlled by a program.

また、第1シャッタ7は、空露光時にふいて2段階に制
御され、第1段階で実際の露光時の温度の近傍まで開い
た状態に保持され、さらに第2段階で実際の露光時の温
度まで実際の露光時における開閉間隔と同じ間隔で開閉
動作されるものである。
The first shutter 7 is wiped during blank exposure and is controlled in two stages. In the first stage, it is held open to a temperature close to the temperature at the time of actual exposure, and in the second stage, the temperature at the time of actual exposure is maintained. The opening and closing operations are performed at the same intervals as the opening and closing intervals during actual exposure.

露光光学系2は、たとえば露光光を集束する集光レンズ
8と、投影する縮小投影レンズ9とから構成され、露光
光源6から照射された露光光が集光レンズ8によって集
束され、さらに縮小投影レンズ9によって投影される構
造となっている。
The exposure optical system 2 includes, for example, a condenser lens 8 that focuses exposure light and a reduction projection lens 9 that projects the exposure light. It has a structure in which it is projected by a lens 9.

レチクル搭載系3は、たとえば透明な石英ガラス基板な
どにクロム(Cr)などの遮光膜で被露光対象パターン
である回路パターンlOaが形成されたレチクル10が
、図示しないチャックなどによってレチクルステージ1
1に着脱可能に搭載されている。
In the reticle mounting system 3, a reticle 10 in which a circuit pattern lOa, which is a pattern to be exposed, is formed with a light-shielding film such as chromium (Cr) on a transparent quartz glass substrate, etc., is mounted on a reticle stage 10 by a chuck (not shown) or the like.
1 is removably installed.

ウェハ駆動系4は、たとえばモータ12などの駆動源に
よってXY方向に制御されるウェハステージ13に、図
示しないチャックなどによって着脱可能にウェハ14が
搭載されている。
In the wafer drive system 4, a wafer 14 is removably mounted on a wafer stage 13 that is controlled in the X and Y directions by a drive source such as a motor 12 using a chuck (not shown) or the like.

シャッタ駆動系5は、プログラムによって自動的に制御
され、空露光時に第2シャッタ15が閉じられてウェハ
14の露光が防止される構造となっている。
The shutter drive system 5 is automatically controlled by a program, and has a structure in which the second shutter 15 is closed during blank exposure to prevent exposure of the wafer 14.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

たとえば、実際の露光工程においては、レチクルlOを
実際の回路パターン10aを備えたものと交換し、ウェ
ハステージ13の移動によって縮小投影レンズ9の直下
にウェハ14が位置された状態において露光光源6から
露光光を照射し、集光レンズ8および縮小投影レンズ9
を経てウェハ14の所定の露光箇所、たとえば1チツプ
サイズの範囲に露光光を投影させて露光処理を行う。そ
して、レチクル100回路パターン10aに対してウェ
ハ14を繰り返しステップさせ、ウェハ14の全体の露
光処理を行う方法が取られている。
For example, in the actual exposure process, the reticle IO is replaced with one having an actual circuit pattern 10a, and the wafer 14 is positioned directly under the reduction projection lens 9 by the movement of the wafer stage 13, and the exposure light source 6 is irradiates with exposure light, condensing lens 8 and reduction projection lens 9
The exposure process is performed by projecting exposure light onto a predetermined exposure location on the wafer 14, for example, a range of one chip size. Then, a method is adopted in which the wafer 14 is repeatedly stepped against the circuit pattern 10a of the reticle 100 to perform exposure processing on the entire wafer 14.

ところが、本実施例の露光装着にふいては、上記の露光
処理の前に以下の方法によって主露光処理を行うもので
ある。
However, in the exposure mounting of this embodiment, the main exposure process is performed by the following method before the above-mentioned exposure process.

始めに、第1シャッタ7を開いた状態において、実際の
露光処理と同様に露光光#16から露光光を照射し、露
光装置、特に露光光学系2の温度を実際の露光処理時の
温度の近傍型で上昇させる。さらに、露光処理時の近傍
の温度から露光処理時における温度まで、第1シャッタ
7を実際の露光処理時における開閉間隔と同じ間隔で開
閉動作させる。このような第1シャッタフの2段階制御
により、露光装置の温度が実際の露光処理時における温
度に到達するまでの時間が短縮され、主露光処理を導入
することによる露光工程のスルーブツトの低下を抑制す
ることができる。
First, with the first shutter 7 open, exposure light #16 is irradiated in the same manner as in the actual exposure process, and the temperature of the exposure device, especially the exposure optical system 2, is adjusted to the temperature during the actual exposure process. Raise it in the neighborhood type. Furthermore, the first shutter 7 is opened and closed at the same intervals as the opening and closing intervals during the actual exposure process, from the temperature in the vicinity during the exposure process to the temperature during the exposure process. This two-stage control of the first shutter shortens the time it takes for the temperature of the exposure device to reach the temperature during actual exposure processing, and suppresses the drop in throughput of the exposure process due to the introduction of main exposure processing. can do.

また、この時、ウェハステージ13にウェハ14が載置
されている場合においては、第2シャッタ15を主露光
処理が終るまで閉じた状態とすることにより、中庭光時
におけるウェハ14の露光防止が可能である。
At this time, when the wafer 14 is placed on the wafer stage 13, the second shutter 15 is kept closed until the main exposure process is completed, thereby preventing the wafer 14 from being exposed to light in the courtyard light. It is possible.

従って、本実施例の露光装置llごよれば、実際の露光
処理の前に主露光処理を行い、特に露光光学系2の温度
を実際の露光処理時における温度と同じ状態とし、かつ
安定状態とすることにより、定の焦点位置が安定状態に
おいて保持され、ウェハ14の露光処理を安定状態から
実施することができる。
Therefore, according to the exposure apparatus 11 of this embodiment, the main exposure process is performed before the actual exposure process, and in particular, the temperature of the exposure optical system 2 is kept in the same state as the temperature during the actual exposure process, and the temperature is kept in a stable state. By doing so, a fixed focus position is maintained in a stable state, and the exposure process of the wafer 14 can be performed from a stable state.

以上、本発明者によってなされた発明を実施例に基づき
具体的に説明したが、本発明は前記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。
As above, the invention made by the present inventor has been specifically explained based on Examples, but it should be noted that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Not even.

たとえば、本実施例の露光装置については、露光光源6
がG線波長の放射される水銀ランプである場合について
説明したが、本発明は前記実施例に限定されるものでは
なく、たとえばE線(545nm)波長が照射される露
光光源6などについても適用可能である。
For example, in the exposure apparatus of this embodiment, the exposure light source 6
Although the case where the mercury lamp emits the G-line wavelength has been described, the present invention is not limited to the above-mentioned embodiment, and can also be applied to, for example, the exposure light source 6 that emits the E-line (545 nm) wavelength. It is possible.

また、本実施例においては、1ステツプ毎の露光箇所が
1チンブサイズの範囲において実施される場合について
説明したが、これに限定されるものではなく、たとえば
露光光学系2を調整することによって変更可能である。
Furthermore, in this embodiment, a case has been described in which the exposure area for each step is carried out within the range of one chimbe size, but it is not limited to this, and can be changed by adjusting the exposure optical system 2, for example. It is.

以上の説明では、主として本発明者によってなされた発
明をその利用分野である半導体集積回路装置のウェハ1
4に用いられるステップ式投影露光装置に適用した場合
について説明したが、これに限定されるものではなく、
たとえば縮小投影露光装置などの他の投影光学系を用い
た露光装置についても広く適用可能である。
In the above description, the invention made by the present inventor will mainly be described as a wafer 1 of a semiconductor integrated circuit device, which is the field of application of the invention.
Although the case where the present invention is applied to a step projection exposure apparatus used in 4 has been described, it is not limited to this.
For example, it is widely applicable to exposure apparatuses using other projection optical systems such as reduction projection exposure apparatuses.

[発明の効果] 本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、下記のとおりで
ある。
[Effects of the Invention] Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly described below.

(1)、1光光源からの露光光が第1シャッタの開閉動
作により制御され、被露光対象パターンが光学系により
露光対象物に投影される露光装置において、露光装置に
よる実露光処理の前に主露光処理を行い、この主露光処
理を実露光処理時における開閉間隔と同じ間隔で第1シ
ャッタを開閉動作させて行うことにより、露光装置、特
に光学系が実露光処理時の温度状態に上昇して保持され
、安定化された一定の焦点位置から実露光処理を行うこ
とができるので、安定した露光精度を得ることができる
(1) In an exposure apparatus in which the exposure light from one light source is controlled by the opening/closing operation of a first shutter, and the pattern of the exposed object is projected onto the exposed object by an optical system, before the actual exposure process by the exposure apparatus. By performing main exposure processing and opening and closing the first shutter at the same intervals as the opening and closing intervals during actual exposure processing, the exposure device, especially the optical system, rises to the temperature state during actual exposure processing. Since the actual exposure process can be performed from a constant and stabilized focal position, stable exposure accuracy can be obtained.

(2)、被露光対象パターンと露光対象物との間に第2
シャッタが介在され、この第2シャッタが主露光処理時
に閉じられることにより、露光対象物への露光光の投影
が遮断されるので、主露光処理時における露光対象物へ
の影響を防止することができる。
(2) There is a second
A shutter is provided, and by closing this second shutter during main exposure processing, the projection of the exposure light onto the exposure object is blocked, so that it is possible to prevent the influence on the exposure object during the main exposure processing. can.

〔3〕、第1シャッタの開閉動作を2段階に制御し、第
1段階で実露光処理時の温度の近傍まで第1シャッタを
開いた状態に保持し、さらに第2段階で実露光処理時の
温度まで実露光処理時における開閉間隔と同じ間隔で第
1シャッタを開閉動作させることにより、光学系を実露
光処理時の温度状態に短時間で上昇させることができる
ので、主露光処理の導入による露光工程のスルーブツト
の低下を抑制することができる。
[3] The opening and closing operation of the first shutter is controlled in two stages, in which the first shutter is kept open until the temperature approaches the temperature during actual exposure processing in the first stage, and then in the second stage during actual exposure processing. By opening and closing the first shutter at the same intervals as the opening and closing intervals during the actual exposure process, the temperature of the optical system can be raised to the temperature state during the actual exposure process in a short time, so it is possible to introduce the main exposure process. It is possible to suppress a decrease in the throughput of the exposure process due to the exposure process.

(4〕、前記(1)〜〔3)により、従来のような全レ
チクルの透過率の測定および全レチクルに対応するプロ
グラムの作成が不要となるので、使用までに多大な時間
的を必要とすることのない露光装置を得ることができる
(4) With (1) to [3] above, it is no longer necessary to measure the transmittance of all reticles and create a program that corresponds to all reticles, which is required in the past, so it takes a lot of time to use. Therefore, it is possible to obtain an exposure apparatus that does not require any additional processing.

〔5〕、前記〔1〕〜(3)により、従来のようなソフ
トウェア上における焦点位置の補正によらず、露光装置
自体を最も焦点位置の安定状態において使用することが
できるので、焦点位置精度が向上され、パターン解像度
および寸法精度の向上・安定化が可能とされる露光装置
を得ることができる。
[5] According to [1] to (3) above, the exposure apparatus itself can be used in the most stable state of the focus position without having to correct the focus position on software as in the past, which improves the focus position accuracy. It is possible to obtain an exposure apparatus in which the pattern resolution and dimensional accuracy can be improved and stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である露光装置を示す概略構
成図、 第2図は従来の露光装置において補正をしない場合の焦
点変動を示す説明図である。 1・・・露光照明系、2・・・露光光学系、3・・・レ
チクル搭載系、4・・・ウェハ駆動系、5・・・シャッ
タ駆動系、6・・・露光光源、7・・・第1シャッタ、
8・・・集光レンズ、9・・・縮小投影レンズ、10・
・・レチクル、10a・・・回路パターン(被露光対象
パターン)、11・・・レチクルステージ、12・・・
モータ、13・・・ウェハステージ、14・・・ウェハ
(露光対象物)、15・・・第2シャッタ。
FIG. 1 is a schematic configuration diagram showing an exposure apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing focus fluctuation when no correction is made in a conventional exposure apparatus. DESCRIPTION OF SYMBOLS 1... Exposure illumination system, 2... Exposure optical system, 3... Reticle mounting system, 4... Wafer drive system, 5... Shutter drive system, 6... Exposure light source, 7...・First shutter,
8... Condenser lens, 9... Reduction projection lens, 10.
... Reticle, 10a... Circuit pattern (pattern to be exposed), 11... Reticle stage, 12...
Motor, 13... Wafer stage, 14... Wafer (exposure target), 15... Second shutter.

Claims (1)

【特許請求の範囲】 1、露光光源からの露光光が第1シャッタの開閉動作に
より制御され、被露光対象パターンが光学系により露光
対象物に投影される露光装置であって、前記露光装置に
よる実露光処理の前に空露光処理を行い、該空露光処理
を前記実露光処理時における開閉間隔と同じ間隔で前記
第1シャッタを開閉動作させて行うことを特徴とする露
光装置。 2、前記被露光対象パターンと前記露光対象物との間に
第2シャッタが介在され、該第2シャッタが前記空露光
処理時に閉じられて前記露光対象物の露光が防止される
ことを特徴とする請求項1記載の露光装置。 3、前記第1シャッタの開閉動作を2段階に制御し、第
1段階で前記実露光処理時の温度の近傍まで前記第1シ
ャッタを開いた状態に保持し、さらに第2段階で前記実
露光処理時の温度まで前記実露光処理時における開閉間
隔と同じ間隔で前記第1シャッタを開閉動作させること
を特徴とする請求項1または2記載の露光装置に用いら
れる空露光方法。
[Scope of Claims] 1. An exposure apparatus in which exposure light from an exposure light source is controlled by opening and closing operations of a first shutter, and a pattern of an exposed object is projected onto the exposed object by an optical system, the exposure apparatus comprising: An exposure apparatus characterized in that a blank exposure process is performed before the actual exposure process, and the blank exposure process is performed by opening and closing the first shutter at the same intervals as opening and closing intervals during the actual exposure process. 2. A second shutter is interposed between the pattern to be exposed and the object to be exposed, and the second shutter is closed during the blank exposure process to prevent the object to be exposed from being exposed. The exposure apparatus according to claim 1. 3. The opening/closing operation of the first shutter is controlled in two stages, and in the first stage the first shutter is kept open until the temperature approaches the temperature during the actual exposure process, and in the second stage the actual exposure process is continued. 3. The blank exposure method for use in an exposure apparatus according to claim 1, wherein the first shutter is opened and closed at the same intervals as the opening and closing intervals during the actual exposure processing up to a temperature during processing.
JP2019587A 1990-01-29 1990-01-29 Aligner and blind exposure method used therefor Pending JPH03222405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019587A JPH03222405A (en) 1990-01-29 1990-01-29 Aligner and blind exposure method used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019587A JPH03222405A (en) 1990-01-29 1990-01-29 Aligner and blind exposure method used therefor

Publications (1)

Publication Number Publication Date
JPH03222405A true JPH03222405A (en) 1991-10-01

Family

ID=12003387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019587A Pending JPH03222405A (en) 1990-01-29 1990-01-29 Aligner and blind exposure method used therefor

Country Status (1)

Country Link
JP (1) JPH03222405A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246164A (en) * 2008-03-31 2009-10-22 Dainippon Screen Mfg Co Ltd Exposure apparatus
US8363207B2 (en) 2009-01-06 2013-01-29 Canon Kabushiki Kaisha Exposure apparatus, and method of manufacturing device using same
US20140307241A1 (en) * 2008-12-08 2014-10-16 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US11009801B2 (en) * 2019-02-25 2021-05-18 Applied Materials, Inc. Dynamic cooling control for thermal stabilization for lithography system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246164A (en) * 2008-03-31 2009-10-22 Dainippon Screen Mfg Co Ltd Exposure apparatus
US20140307241A1 (en) * 2008-12-08 2014-10-16 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US9535335B2 (en) * 2008-12-08 2017-01-03 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US8363207B2 (en) 2009-01-06 2013-01-29 Canon Kabushiki Kaisha Exposure apparatus, and method of manufacturing device using same
US11009801B2 (en) * 2019-02-25 2021-05-18 Applied Materials, Inc. Dynamic cooling control for thermal stabilization for lithography system

Similar Documents

Publication Publication Date Title
JP3910065B2 (en) Method and apparatus for detecting aberrations in optical systems
JP3186011B2 (en) Projection exposure apparatus and device manufacturing method
US20070182946A1 (en) Method of manufacturing a device, device manufactured thereby, computer program and lithographic apparatus
US20060238749A1 (en) Flare measuring method and flare measuring apparatus, exposure method and exposure apparatus, and exposure apparatus adjusting method
KR100268639B1 (en) Method of detecting comma of projection optical system
JP2002015997A (en) Operation method of lithographic projection system
JPWO2006085626A1 (en) Exposure method and apparatus, and device manufacturing method
JP4299262B2 (en) Lithographic apparatus and device manufacturing method
JP2001274080A (en) Scanning projection aligner and positioning method thereof
US20050005257A1 (en) Device manufacturing method, mask set for use in the method, data set for controlling a programmable patterning device, method of generating a mask pattern and a computer program
JP2002203786A (en) Lithography device, method of manufacturing integrated circuit device and integrated circuit device which is manufactured by the same method as aforementioned method
JP3200244B2 (en) Scanning exposure equipment
WO1999031716A1 (en) Aligner, exposure method and method of manufacturing device
US20020102476A1 (en) Method of manufacturing photomask and method of manufacturing semiconductor integrated circuit device
JP2001244183A (en) Projection exposure system
US6721033B1 (en) Exposure apparatus and exposure method
JPH03222405A (en) Aligner and blind exposure method used therefor
US20030043352A1 (en) Exposure apparatus and a device manufacturing method which keep temperature of a diaphragm of a projection optical system substantially constant
US7924405B2 (en) Compensation of reticle flatness on focus deviation in optical lithography
US6195155B1 (en) Scanning type exposure method
JP2010181861A (en) Exposure apparatus and device manufacturing method using the same
JP3563936B2 (en) Semiconductor exposure apparatus and semiconductor device manufacturing process using the same
JP2000114164A (en) Scanning projection aligner and manufacture of device using the same
JPH10294272A (en) Aligner and exposure method
JPH11233419A (en) Light quantity inspection method, etching rate measuring method, mask for inspection, and mask for manufacturing