JPH03221913A - Laser scanning optical device - Google Patents

Laser scanning optical device

Info

Publication number
JPH03221913A
JPH03221913A JP2018621A JP1862190A JPH03221913A JP H03221913 A JPH03221913 A JP H03221913A JP 2018621 A JP2018621 A JP 2018621A JP 1862190 A JP1862190 A JP 1862190A JP H03221913 A JPH03221913 A JP H03221913A
Authority
JP
Japan
Prior art keywords
scanning
synchronization
lens
image
scanning beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018621A
Other languages
Japanese (ja)
Inventor
Susumu Imagawa
今河 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2018621A priority Critical patent/JPH03221913A/en
Publication of JPH03221913A publication Critical patent/JPH03221913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Laser Beam Printer (AREA)

Abstract

PURPOSE:To improve the image quality by coupling a detecting lens for forming an image in a position on the extension line of a recorded face by a scanning beam passing through the outside of view angle of an image forming lens in the outside of image range of a scanning start side, and a synchronization detecting element positioned on its optical axis. CONSTITUTION:With respect to a synchronization detecting element 9 provided on the scanning line by a rotary polygon mirror 3 and in a synchronous position of the outside of an image range on the extension line of the recorded face 4, a detecting image forming lens 12 provided separately is combined instead of an ftheta lens 5. The lens 12 allows a scanning beam passing through the outside of a view angle of the ftheta lens 5 to form an image as a minute spot in the synchronization detecting element 9, and the synchronization detecting element 9 is placed so as to be positioned on the optical axis of the detecting image forming lens 12. According to this synchronizing system, a scanning beam for synchronization which is made incident on the synchronization detecting element 9 passes through the optical axis of the detecting image forming element 12, therefore, even if a fluctuation is generated in the oscillation wavelength of a semiconductor laser 1, no shift is generated in the scanning position on the synchronization detecting element 9. Accordingly, the synchronization detection is always executed in the position of a deflection angle theta0 even if a wavelength fluctuation is generated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザプリンタ、デジタル複写機、レーザフ
ァクシミリ等に代表される半導体レーザを光源としたプ
レオブジェクティブ型のレーザ走査光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pre-objective type laser scanning optical device using a semiconductor laser as a light source, which is typified by laser printers, digital copying machines, laser facsimiles, and the like.

従来の技術 一般に、この種のプレオブジェクティブ型のレーザ走査
光学装置は第5図に示すように構成されている。まず、
半導体1ノーザ(LD)1から射出されたレーザビーム
はコリメートルレンズ2により゛コリメートされて偏向
器、例えば回転多面鏡3の一面に入射される。この回転
多面鏡3はモータにより回転駆動されるもので、その−
面の反射により偏向走査されるレーザビームは走査ビー
ムとなって感光体等の記録面4側に向かう。この際、走
査領域をカバーし得るように形成された結像レンズとし
てのfeレンズ5を通ることにより記録面4上で微小ス
ポットとして結像される。この時、第6図に示すように
、インタフェース6を介して入力される記録情報により
画信号を生成して制御回路7、変調回路8により半導体
レーザ1を変調3− 駆動(オン・オフ)させることにより画像書込みが行な
われる。
2. Description of the Related Art In general, this type of pre-objective type laser scanning optical device is constructed as shown in FIG. first,
A laser beam emitted from a semiconductor laser (LD) 1 is collimated by a collimator lens 2 and is incident on one surface of a deflector, such as a rotating polygon mirror 3. This rotating polygon mirror 3 is rotationally driven by a motor, and its -
The laser beam deflected and scanned by reflection from the surface becomes a scanning beam and heads toward the recording surface 4 side of the photoreceptor or the like. At this time, the image is formed as a minute spot on the recording surface 4 by passing through an FE lens 5 as an imaging lens formed to cover the scanning area. At this time, as shown in FIG. 6, an image signal is generated based on the recorded information input through the interface 6, and the semiconductor laser 1 is modulated (on/off) driven by the control circuit 7 and the modulation circuit 8. As a result, image writing is performed.

ここに、毎回の走査において記録面4の画像領域での書
込み開始位置を揃えるために同期検知が必要であるが、
一般には、走査開始側であって画像領域外の記録面延長
線上の所定位置に同期検知素子(受光素子)9を設けて
同期検知信号を出力させるようにしている。即ち、同期
検知素子9に入射した走査ビームを光電変換して同期パ
ルス(同期検知信号)を得、これを位相同期回路10に
入力させて同期パルスに同期した画素クロックを発生又
は選択させ、同期パルス発生時点から一定数の画素クロ
ックをカウントした時点を書込み開始位置とし、画素ク
ロックに同期させた画信号で半導体レーザlを変調駆動
させるものである。
Here, synchronization detection is necessary in order to align the writing start position in the image area of the recording surface 4 in each scan,
Generally, a synchronization detection element (light receiving element) 9 is provided at a predetermined position on the recording surface extension line outside the image area on the scanning start side to output a synchronization detection signal. That is, the scanning beam incident on the synchronization detection element 9 is photoelectrically converted to obtain a synchronization pulse (synchronization detection signal), and this is input to the phase synchronization circuit 10 to generate or select a pixel clock synchronized with the synchronization pulse. The writing start position is set at the time when a certain number of pixel clocks are counted from the time when the pulse is generated, and the semiconductor laser 1 is modulated and driven using an image signal synchronized with the pixel clock.

このような同期方式は、特開昭61−47922号公報
等に示される他、実際に多用されているものである。
Such a synchronization method is disclosed in Japanese Unexamined Patent Publication No. 61-47922, and is also widely used in practice.

発明が解決しようとする課題 ところが、光源として用いられる半導体レーザ1は、構
造上、その発振波長久が第7図に示すような階段状の温
度特性を持つ。よって、その特性のステップ付近の温度
で半導体レーザ1を使用した場合、わずかな温度変動に
よって発振波長λにλ。〜λ。+Δλのような変動を生
ずる。また、結像レンズとして用いるf6ルンズ5の屈
折率は波長に依存しており(これを、分散と呼ぶ)、第
8図に示すように、半導体レーザlに温度変化があった
場合、波長変動Δλによって回転多面鏡3による偏向角
θが同じであっても記録面4上での走査位置にずれδを
生ずる。この走査位置ずれδは、第9図に示すように、
偏向角Oにほぼ比例する。
Problems to be Solved by the Invention However, due to its structure, the semiconductor laser 1 used as a light source has step-like temperature characteristics in its oscillation wavelength as shown in FIG. Therefore, when the semiconductor laser 1 is used at a temperature near the characteristic step, the oscillation wavelength λ changes due to slight temperature fluctuations. ~λ. This causes a fluctuation like +Δλ. In addition, the refractive index of the f6 lens 5 used as an imaging lens depends on the wavelength (this is called dispersion), and as shown in Figure 8, if there is a temperature change in the semiconductor laser l, the wavelength will change. Due to Δλ, a deviation δ occurs in the scanning position on the recording surface 4 even if the deflection angle θ by the rotating polygon mirror 3 is the same. This scanning position deviation δ is, as shown in FIG.
It is approximately proportional to the deflection angle O.

よって、従来の同期検知方式によると、同期検知素子9
に入射する走査ビームの偏向角は、波長がλ。のときは
06、波長がλ。+ΔλのときはO6−ΔOとなる。こ
のようなビームで同期をとって記録を行なう場合(即ち
、同期検知素子9に走査ビームが入射してから一定時間
後のタイミングで記録を開始させる)、回転多面鏡3の
回転により偏向角が01だけ変化したときの偏向角Ot
+及び記録面4土での走査位置I」は次のようになる。
Therefore, according to the conventional synchronization detection method, the synchronization detection element 9
The deflection angle of the scanning beam incident on the wavelength is λ. When it is 06, the wavelength is λ. When +Δλ, it becomes O6−ΔO. When recording is performed in synchronization with such beams (that is, recording is started a certain period of time after the scanning beam is incident on the synchronization detection element 9), the deflection angle is changed by the rotation of the rotating polygon mirror 3. Deflection angle Ot when changed by 01
+ and the scanning position I on the recording surface 4 are as follows.

ただし、fOレンズ5の焦点距離をf、偏向角θえのと
きの波長λ。とλ。十Δλとの差による走査位置のずれ
を61 とする。まず、同期位置での波長をλ。とじた
とき、偏向角OKはe、、=e。
However, the focal length of the fO lens 5 is f, and the wavelength λ when the deflection angle is θ. and λ. The deviation of the scanning position due to the difference from 10Δλ is assumed to be 61. First, the wavelength at the synchronization position is λ. When closed, the deflection angle is e, , = e.

θ となり、走査位置Hは記録時波長がλ。であればf
(θ。−01)となり、記録時波長がλ。+Δλであれ
ばf (O,−0,)+61 となる。また、同期位置
での波長をλ。+Δλ としたとき、偏向角θえはθK
 ” e a−Δ0−0.となり、走査位置Hは記録時
波長がλ。であればf(θ。−Δ61− O,)となり
、記録時波長がλ。+Δλてあればf (e0ΔO−0
)+δ、となる。このように波長λ。。
θ, and the scanning position H has a recording wavelength of λ. If f
(θ.-01), and the recording wavelength is λ. +Δλ, then f (O, -0,)+61. Also, the wavelength at the synchronization position is λ. +Δλ, the deflection angle θ is θK
"e a-Δ0-0.The scanning position H is f(θ.-Δ61-O,) if the recording wavelength is λ.If the recording wavelength is λ.+Δλ, then f(e0ΔO-0
) + δ. In this way the wavelength λ. .

λ。+Δλの変動によって、偏向角OKにおける走査位
置ト■は」1記の4つの値をとり得ることになる。
λ. Depending on the variation of +Δλ, the scanning position T at the deflection angle OK can take on the four values listed in 1.

この中で、走査位置のずれが最大となるのは、同期位置
での波長がλ。で記録時の波長がλ。+△λの場合と、
同期位置での波長がλ。+Δλで記録時の波長がλ。の
場合であり、ずれδ1.は、δ、=f(On−e、)+
δ、−f(0゜−Δθ−〇l)=δ +f・Δθ となる。このような半導体レーザ1の発振波長変動に起
因する走査位置ずれにより、縦線等の画像11は第10
図に示すようにゆらぎを持ってしまい、画像品質が非常
に劣化してしまう。
Among these, the wavelength at the synchronization position is λ when the scanning position deviation is maximum. The wavelength at the time of recording is λ. In the case of +△λ,
The wavelength at the synchronized position is λ. +Δλ means the recording wavelength is λ. In this case, the deviation δ1. is δ,=f(On-e,)+
δ, -f(0°-Δθ-〇l)=δ +f・Δθ. Due to the scanning position shift caused by such fluctuations in the oscillation wavelength of the semiconductor laser 1, the image 11 such as vertical lines is
As shown in the figure, there will be fluctuations, and the image quality will deteriorate significantly.

課題を解決するための手段 半導体レーザから射出させたレーザビームをコリメート
レンズによりコリメ・−トし、偏向器により偏向走査さ
せた走査ビームを結像レンズを通して記録面上で微小ス
ボッI・とじて結像させるようにしたプレオブジェクテ
ィブ型のレーザ走査光学装置において、請求項1記載の
発明では、走査量7− 始側の画像範囲外で前記結像レンズの画角外を通る走査
ビームを記録面延長線上位置に結像させる検知用結像レ
ンズを設け、この検知用結像レンズの光軸」二で記録面
延長線上位置に配設されて走査ビーム受光により書込み
開始位置を決定するための同期検知信号を出力する同期
検知素子を設け、請求項2記載の発明では、走査開始側
の画像範囲外で前記結像レンズの一部を透過した走査ビ
ームを記録面延長線上等価位置に回折させる回折格子を
設け、この回折格子により回折される走査ビームの受光
位置に配設されて走査ビーム受光により書込み開始位置
を決定するための同期検知信号を出力する同期検知素子
を設けた。
Means for Solving the Problem The laser beam emitted from the semiconductor laser is collimated by a collimating lens, and the scanning beam deflected and scanned by a deflector is focused on the recording surface by converging it into a minute slit I through an imaging lens. In the pre-objective type laser scanning optical device configured to image, in the invention according to claim 1, the scanning beam passing outside the image range on the starting side and outside the field angle of the imaging lens is extended on the recording surface. A detection imaging lens is provided to form an image at a position on the line, and the optical axis of the detection imaging lens is located on the extension line of the recording surface, and synchronized detection is performed to determine the writing start position by receiving the scanning beam. In the invention according to claim 2, a synchronous detection element that outputs a signal is provided, and a diffraction grating that diffracts the scanning beam that has passed through a part of the imaging lens outside the image range on the scanning start side to an equivalent position on the extension line of the recording surface. A synchronization detection element is disposed at a light receiving position of the scanning beam diffracted by the diffraction grating and outputs a synchronization detection signal for determining a writing start position by receiving the scanning beam.

作用 請求項1記載の発明によれば、同期検知素子に入射する
走査ビームは検知用結像レンズの光軸を通るので、半導
体レーザの発振波長変動があっても走査位置ずれのない
同期検知が可能となり、書込み開始位置のゆらぎが低減
され、画像品質が向上する。
According to the invention described in claim 1, since the scanning beam incident on the synchronous detection element passes through the optical axis of the imaging lens for detection, synchronous detection without scanning position deviation is possible even when the oscillation wavelength of the semiconductor laser varies. This makes it possible to reduce fluctuations in the writing start position and improve image quality.

また、請求項2記載の発明によれば、半導体レーザの発
振波長変動による同期検知素子位置での走査位置ずれが
回折格子により補正されるため、やはり、走査位置ずれ
のない同期検知が可能となり、書込み開始位置のゆらぎ
が低減され、画像品質が向上する。
Further, according to the invention as claimed in claim 2, since the scanning position shift at the synchronous detection element position due to the fluctuation of the oscillation wavelength of the semiconductor laser is corrected by the diffraction grating, it is possible to perform synchronous detection without scanning position shift. Fluctuations in the writing start position are reduced and image quality is improved.

実施例 請求項1記載の発明の一実施例を第1図に基づいて説明
する。第5図及び第6図で示した部分と同一部分は同一
符号を用いて示す。基本的には、回転多面鏡3による走
査線上であって記録面4延長線上の画像範囲外(走査開
始側)の同期位置に配設させた同期検知素子9に対して
、feレンズ5ではなく別個に設けた検知用結像レンズ
12を組合せたものである。ここに、検知用結像レンズ
12はfOレンズ5の画角外を通る走査ビームを同期検
知素子9に微小スポットとして結像させるもので、同期
検知素子9が検知用結像レンズ12の光軸上に位置する
ように配置される。
Embodiment An embodiment of the invention set forth in claim 1 will be described based on FIG. The same parts as those shown in FIGS. 5 and 6 are indicated using the same reference numerals. Basically, the synchronization detection element 9 is placed at a synchronization position on the scanning line of the rotating polygon mirror 3 and outside the image range (scanning start side) on the extension line of the recording surface 4, instead of using the FE lens 5. This is a combination of separately provided detection imaging lenses 12. Here, the detection imaging lens 12 images the scanning beam passing outside the field angle of the fO lens 5 as a minute spot on the synchronous detection element 9, and the synchronous detection element 9 aligns with the optical axis of the detection imaging lens 12. placed at the top.

このような同期方式によれば、同期検知素子9に入射す
る同期用の走査ビームは検知用結像素子12の光軸を通
るため、半導体1ノーザ1の発振波長に変動が生じても
同期検知素子9上での走査位置にずれδを生じない。よ
って、同期検知は、波長変動があっても常に偏向角O0
の位置で行なわれることになる。この結果、画像範囲内
での走査位置Hは、同期位置での波長をλ。とじたとき
、偏向角OKはθえ=eo−o、となり、走査位置トI
は記録時波長がλ。であればf (O,−0,)となり
、記録時波長がλ。+Δλ であればf (O,−11
,)+δ となる。これは、同期位置での波長をλ。+
Δλとしたときも同じであり、偏向角OKはOK二〇。
According to such a synchronization method, the synchronization scanning beam incident on the synchronization detection element 9 passes through the optical axis of the detection imaging element 12, so even if the oscillation wavelength of the semiconductor 1 noser 1 changes, synchronization detection is possible. No deviation δ occurs in the scanning position on the element 9. Therefore, synchronous detection always maintains the deflection angle O0 even if there are wavelength fluctuations.
It will be held at the location of As a result, the scanning position H within the image range has a wavelength at the synchronization position of λ. When it is closed, the deflection angle is θ=eo−o, and the scanning position is
The recording wavelength is λ. If so, it becomes f (O, -0,), and the recording wavelength is λ. +Δλ then f (O, −11
,)+δ. This determines the wavelength at the synchronization position as λ. +
The same is true when Δλ is set, and the deflection angle is OK 20.

−〇 となり、走査位置Hは記録時波長がλ。-〇 , and the scanning position H has a recording wavelength of λ.

であればf (O,−61,)となり、記録時波長がλ
。+Δλであればf (θ。−01)+δ、となる。
If so, then f (O, -61,), and the recording wavelength is λ
. +Δλ, then f (θ.-01)+δ.

よって、走査位置Hの最大のずれδ、は、δ、= f 
(θ、−(11,)+δ、−f(O,−〇1)=δ。
Therefore, the maximum deviation δ of the scanning position H is δ, = f
(θ, −(11,)+δ, −f(O, −〇1)=δ.

となる。従来方式と比べると、f・Δθ (即ち、同期
位置での波長変動Δλにより発生する走査位置ずれに相
当)分だけ走査位置ずれが軽減され、画像品質が向上す
るものとなる。
becomes. Compared to the conventional method, the scanning position deviation is reduced by f·Δθ (that is, equivalent to the scanning position deviation caused by the wavelength fluctuation Δλ at the synchronization position), and the image quality is improved.

つづいて、請求項2記載の発明の一実施例を第2図及び
第3図により説明する。本実施例は、従来と同様にfO
レンズ5の一部(走査開始側であって、画像範囲外)を
透過する走査ビームを同期検知用とするが、この走査ビ
ームを回折格子13を介して同期検知素子9へ入射させ
るようにしたものである。まず、回折格子13は反射型
のものであり、fOレンズ5の一部を通り波長変動によ
り走査位置ずれを伴う走査ビームの光路内に配設されて
いる。そして、この回折格子13による回 11− 折反躬側の位置に同期検知素子9が配設されている。こ
の位置は、記録面4上で考えると、その延長線上の同期
位置と等偏位置とされている。回折格子13はこのよう
な配設の同期検知素子9に対して走査ビームを入射させ
得るように、位置、格子条件等が設定されている。例え
ば、第3図を参照すると、mを次数(=±l、±2.・
・・、±N)、dを格子定数(=格子ピッチ)とすると
、回折格子13に入射した走査ビームは、その波長λ。
Next, an embodiment of the invention according to claim 2 will be described with reference to FIGS. 2 and 3. In this embodiment, fO
The scanning beam that passes through a part of the lens 5 (on the scanning start side and outside the image range) is used for synchronization detection, and this scanning beam is made to enter the synchronization detection element 9 via the diffraction grating 13. It is something. First, the diffraction grating 13 is of a reflective type, and is disposed in the optical path of a scanning beam that passes through a part of the fO lens 5 and is subject to scanning position deviation due to wavelength fluctuations. A synchronization detection element 9 is disposed at a position on the side where the diffraction grating 13 folds. When considered on the recording surface 4, this position is equidistant from the synchronization position on its extension. The position, grating conditions, etc. of the diffraction grating 13 are set so that the scanning beam can be incident on the synchronous detection element 9 arranged in this manner. For example, referring to Figure 3, let m be the order (=±l, ±2.
..., ±N), and d is a grating constant (= grating pitch), then the scanning beam incident on the diffraction grating 13 has a wavelength λ.

。 λ。+Δλに応じて下記の式 a、波長λ。のビームの場合 す、波長λ。+Δλ のビームの場合 を満足する角度ψ1′、ψ2′で回折される。よって、
角度ψ1.ψ2及び格子定数dを適正に設定することに
より走査位置ずれを補正して同期検知素12− 子9に入射させることができる。この結果、半導体レー
ザ1の発振波長に変動があっても同期検知を常に偏向角
θ。の位置で行なわせることができる。この場合の画像
範囲内での走査位置ずれの低減量は前記実施例で示した
量f・Δθとなる。
. λ. According to +Δλ, the following formula a, wavelength λ. For a beam with wavelength λ. It is diffracted at angles ψ1' and ψ2' that satisfy the case of a beam of +Δλ. Therefore,
Angle ψ1. By appropriately setting ψ2 and the lattice constant d, the scanning position shift can be corrected and the beam can be made incident on the synchronous detection element 12-9. As a result, even if the oscillation wavelength of the semiconductor laser 1 fluctuates, synchronous detection is always performed at the deflection angle θ. It can be performed at the position of In this case, the amount of reduction of the scanning position shift within the image range is the amount f·Δθ shown in the above embodiment.

なお、回折格子としては反射型に限らず、例えば第4図
に示すように透過型の回折格子14を用いてもよい。こ
の場合は、同期検知素子9を従来通りの同期位置に配置
させておけばよい。
Note that the diffraction grating is not limited to a reflection type, and for example, a transmission type diffraction grating 14 as shown in FIG. 4 may be used. In this case, the synchronization detection element 9 may be placed at the conventional synchronization position.

発明の効果 本発明は、上述したように、請求項1記載の発明では、
走査開始側の画像範囲外で結像レンズの画角外を通る走
査ビームを記録面延長線上位置に結像させる検知用結像
レンズと、その光軸上に位置させた同期検知素子とを組
合せたので、同期検知素子に入射する走査ビームは検知
用結像レンズの光軸を通ることになり、半導体レーザの
発振波長変動があっても走査位置ずれのない同期検知が
可能となり、書込み開始位置のゆらぎを低減させて、画
像品質を向上させることができ、また、請求項2記載の
発明では、走査開始側の画像範囲外で結像レンズの一部
を透過した走査ビームを記録面延長線上等価位置に回折
させる回折格子と、この回折格子により回折される走査
ビームの受光位置に配設された同期検知素子とを組合せ
たので、半導体レーザの発振波長変動による同期検知素
子位置での走査位置ずれが回折格子により補正されるこ
とになり、やはり、走査位置ずれのない同期検知が可能
となり、書込み開始位置のゆらぎを低減させ、画像品質
を向上させることができる。
Effects of the Invention As described above, in the invention according to claim 1, the present invention has the following features:
A combination of a detection imaging lens that focuses a scanning beam that passes outside the image range on the scanning start side and outside the field of view of the imaging lens onto a position on the extension line of the recording surface, and a synchronization detection element located on the optical axis. Therefore, the scanning beam incident on the synchronous detection element passes through the optical axis of the imaging lens for detection, and even if the oscillation wavelength of the semiconductor laser varies, synchronous detection without scanning position deviation is possible, and the writing start position Further, in the invention according to claim 2, the scanning beam that has passed through a part of the imaging lens outside the image range on the scanning start side is directed onto the recording surface extension line. By combining a diffraction grating that diffracts the beam to an equivalent position and a synchronous detection element placed at the receiving position of the scanning beam diffracted by this diffraction grating, the scanning position at the synchronous detection element position is determined by fluctuations in the oscillation wavelength of the semiconductor laser. Since the deviation is corrected by the diffraction grating, synchronous detection without scanning position deviation is possible, and fluctuations in the writing start position can be reduced and image quality can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項1記載の発明の一実施例を示す平面図、
第2図は請求項2記載の発明の一実施例を示す平面図、
第3図はその回折格子を拡大して示す平面図、第4図は
変形例を示す平面図、第5図は従来例を示す平面図、第
6図はブロック図、第7図は半導体レーザの発振波長の
温度特性図、第8図は走査位置ずれを示す説明図、第9
図は偏向角−走査位置ずれ特性図、第1O図はゆらぎを
伴う印字例を示す説明図である。 l・・・半導体レーザ、2・・・コリメートレンズ、3
・・・偏向器、4・・・記録面、5・・・結像レンズ、
9・・・同期検知素子、12・・・検知用結像レンズ、
13.14・・・回折格子 出 願 人   株式会社   リ コ 一15− (Nつ 8−
FIG. 1 is a plan view showing an embodiment of the invention as claimed in claim 1;
FIG. 2 is a plan view showing an embodiment of the invention as claimed in claim 2;
Fig. 3 is a plan view showing an enlarged view of the diffraction grating, Fig. 4 is a plan view showing a modified example, Fig. 5 is a plan view showing a conventional example, Fig. 6 is a block diagram, and Fig. 7 is a semiconductor laser. Figure 8 is an explanatory diagram showing scanning position deviation, Figure 9 is a temperature characteristic diagram of the oscillation wavelength of
The figure is a deflection angle-scanning position deviation characteristic diagram, and Figure 1O is an explanatory diagram showing an example of printing accompanied by fluctuations. l... Semiconductor laser, 2... Collimator lens, 3
... Deflector, 4... Recording surface, 5... Imaging lens,
9... Synchronous detection element, 12... Imaging lens for detection,
13.14... Diffraction grating applicant Rico Co., Ltd. 115- (N8-

Claims (1)

【特許請求の範囲】 1、半導体レーザから射出させたレーザビームをコリメ
ートレンズによりコリメートし、偏向器により偏向走査
させた走査ビームを結像レンズを通して記録面上で微小
スポットとして結像させるようにしたプレオブジェクテ
ィブ型のレーザ走査光学装置において、走査開始側の画
像範囲外で前記結像レンズの画角外を通る走査ビームを
記録面延長線上位置に結像させる検知用結像レンズを設
け、この検知用結像レンズの光軸上で記録面延長線上位
置に配設されて走査ビーム受光により書込み開始位置を
決定するための同期検知信号を出力する同期検知素子を
設けたことを特徴とするレーザ走査光学装置。 2、半導体レーザから射出させたレーザビームをコリメ
ートレンズによりコリメートし、偏向器により偏向走査
させた走査ビームを結像レンズを通して記録面上で微小
スポットとして結像させるようにしたプレオブジェクテ
ィブ型のレーザ走査光学装置において、走査開始側の画
像範囲外で前記結像レンズの一部を透過した走査ビーム
を記録面延長線上等価位置に回折させる回折格子を設け
、この回折格子により回折される走査ビームの受光位置
に配設されて走査ビーム受光により書込み開始位置を決
定するための同期検知信号を出力する同期検知素子を設
けたことを特徴とするレーザ走査光学装置。
[Claims] 1. A laser beam emitted from a semiconductor laser is collimated by a collimating lens, and a scanning beam deflected and scanned by a deflector is imaged as a minute spot on a recording surface through an imaging lens. In a pre-objective type laser scanning optical device, a detection imaging lens is provided to image a scanning beam that passes outside the image range of the scanning start side and outside the field angle of the imaging lens at a position on the extension line of the recording surface. A synchronous detection element is disposed on the optical axis of an imaging lens for use on a recording surface extension line and outputs a synchronous detection signal for determining a writing start position by receiving a scanning beam. optical equipment. 2. Pre-objective laser scanning in which the laser beam emitted from the semiconductor laser is collimated by a collimating lens, and the scanning beam is deflected and scanned by a deflector and is imaged as a minute spot on the recording surface through an imaging lens. In the optical device, a diffraction grating is provided that diffracts the scanning beam that has passed through a part of the imaging lens outside the image range on the scanning start side to an equivalent position on the extension line of the recording surface, and the scanning beam diffracted by the diffraction grating is received. 1. A laser scanning optical device comprising: a synchronization detection element which is disposed at a position and outputs a synchronization detection signal for determining a writing start position by receiving a scanning beam.
JP2018621A 1990-01-29 1990-01-29 Laser scanning optical device Pending JPH03221913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018621A JPH03221913A (en) 1990-01-29 1990-01-29 Laser scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018621A JPH03221913A (en) 1990-01-29 1990-01-29 Laser scanning optical device

Publications (1)

Publication Number Publication Date
JPH03221913A true JPH03221913A (en) 1991-09-30

Family

ID=11976698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018621A Pending JPH03221913A (en) 1990-01-29 1990-01-29 Laser scanning optical device

Country Status (1)

Country Link
JP (1) JPH03221913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233425B2 (en) 2000-05-19 2007-06-19 Ricoh Company, Ltd. Multi-beam scanner, multi-beam scanning method, synchronizing beam detecting method and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233425B2 (en) 2000-05-19 2007-06-19 Ricoh Company, Ltd. Multi-beam scanner, multi-beam scanning method, synchronizing beam detecting method and image forming apparatus
US7372604B2 (en) 2000-05-19 2008-05-13 Ricoh Company, Ltd. Multi-beam scanner, multi-beam scanning method, synchronizing beam detecting method and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2580933B2 (en) Optical scanning device having jitter amount measuring means
CN1677159B (en) Optical multi-beam scanning device and image forming apparatus
JP4015249B2 (en) Multi-beam exposure system
US5929979A (en) Scanning exposure device
US4130339A (en) Scanning optical system including optical system for detecting an information beam
JPH04146409A (en) Optical scanning device
JPH05215981A (en) Optical scanning device
US4848863A (en) Multi-wavelength scanning system
JPH03221913A (en) Laser scanning optical device
US5270849A (en) Prevention of stray light reflections in a raster output scanner (ROS) using an overfilled polygon design
JP3358420B2 (en) Optical scanning device
JPS63307418A (en) Image recorder
JPH1058743A (en) Scanner apparatus with array-shaped light source and image-recording apparatus
JPS5911083B2 (en) Scanning optical system with information beam detection optical system
JP3283683B2 (en) Dual laser beam scanning optical system
JPH0772402A (en) Optical scanner
JP2005062871A (en) Optical scanner
JPH1058740A (en) Multibeam scan type image-forming apparatus-method for detecting scan line pitch and apparatus for detecting scan line pitch
JP2000255097A (en) Imaging apparatus
JP2505593B2 (en) Synchronous signal detection device for optical scanning device
JPH0772403A (en) Optical scanner
JPH07181412A (en) Multibeam scanner
JP2000241727A (en) Optical scanner
JPS6167817A (en) Semiconductor laser light scanner
JPH0450912A (en) Scanning optical device