JPH03221832A - Method and marker for measuring displacement of soil grain - Google Patents

Method and marker for measuring displacement of soil grain

Info

Publication number
JPH03221832A
JPH03221832A JP1640990A JP1640990A JPH03221832A JP H03221832 A JPH03221832 A JP H03221832A JP 1640990 A JP1640990 A JP 1640990A JP 1640990 A JP1640990 A JP 1640990A JP H03221832 A JPH03221832 A JP H03221832A
Authority
JP
Japan
Prior art keywords
soil
marker
displacement
markers
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1640990A
Other languages
Japanese (ja)
Inventor
Yukinori Nose
能勢 行則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Heavy Industries Ltd
Original Assignee
Sakai Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Heavy Industries Ltd filed Critical Sakai Heavy Industries Ltd
Priority to JP1640990A priority Critical patent/JPH03221832A/en
Publication of JPH03221832A publication Critical patent/JPH03221832A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To highly accurately measure the displacement of soil grains by forming transparent plates on one side of a soil tank, sticking plural markers to the insides of the transparent plates so as to optionally slide them, filling the tank with soil, and when pressure is impressed to the upper surfaces of the soil, measuring the displace ment of soil grains by the movement of the markers. CONSTITUTION:Acrylic plates 2a to 2c are engaged with one side of the soil tank 1 whose upper face is opened and plural markers 3 are slidably and regularly stuck to the insides of the plates 2a to 2c. Each marker 3 forms a cross mark on the surface 3b of a circle main body 3a and ruggedness 3d is formed on its rear face 3c. On the other hand, reference fixed points 4 for measuring the movement of the markers 3 are provided on the plates 2a to 2c. The tank 1 is filled with soil E, and while pressing the upper face by a pressing roll 5, the marker 3 is photographed from the front face. Since the markers 3 are moved following the displacement of soil grains based upon the difference of frictional resistance between the front and rear faces of the plates 3a to 3c, relation between the driving state of the roll 5 and the hardening of the soil E can be grasped from the movement of the markers 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、土槽に充填された土の上面に圧力を加えた
場合の土槽内の土粒子の変位を測定する方法、及び、土
粒子の変位を測定するのに好適なマーカに関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for measuring the displacement of soil particles in a soil tank when pressure is applied to the top surface of the soil filled in the soil tank, and The present invention relates to a marker suitable for measuring displacement of particles.

〔従来の技術〕[Conventional technology]

例えば土木工事における路面の締め固め作業等にあって
は、路面内部の締め固め状態は、工事中の路面を掘り起
こして検査するわけにはいかないから、路面上から判断
しなければならない。
For example, when compacting a road surface in civil engineering work, the compaction state inside the road surface cannot be inspected by digging up the road surface under construction, so it must be determined from the road surface.

このため、内部の締め固め状態を正確に把握できるよう
に、路面上における締め固め作業と、路面内部の締め固
め状態との関係を実験によって調べておく必要がある。
Therefore, in order to accurately grasp the internal compaction state, it is necessary to investigate the relationship between the compaction work on the road surface and the compaction state inside the road surface through experiments.

そこで、従来から、実験用の土槽に充填された土の上面
で例えば転圧ロールを作動させ、その時の土槽内の土粒
子の変位を測定し、その測定結果に基づいて、土槽内の
土の歪み或いは変形等を調べる実験が行われている。
Therefore, conventionally, for example, a compaction roll is operated on the top surface of the soil filled in a soil tank for experiments, and the displacement of soil particles in the soil tank at that time is measured, and based on the measurement results, the Experiments are being conducted to investigate the distortion or deformation of the soil.

しかし、土粒子の変位は、転圧ロールの駆動状態に応じ
て細かく調べる必要があるから、実験においても、土を
掘り返して土粒子の変位を調べるわけにはいかず、やは
り、外部から測定しなければならない。
However, the displacement of soil particles needs to be investigated in detail according to the driving status of the compaction roll, so even in experiments, it is not possible to dig up the soil and examine the displacement of soil particles, and it must be measured externally. Must be.

そして、従来から、土槽内の土粒子の変位を外部から測
定する方法として、例えば下記のような種々の技術が提
案・実施されている。
Conventionally, various techniques such as those described below have been proposed and implemented as methods for externally measuring the displacement of soil particles in a soil tank.

第1従来例:土槽の一側面を透明な板とするとともに、
その透明な板の内面に、格子模様が描かれた薄い(0,
2mm程度)のゴム膜を、格子模様を外側に向けてグリ
ース等を介して張り付けた後に、土槽内に土を充填する
。そして、土の表面に圧力を加えると、土粒子の変位が
ゴム膜に伝わり、その格子模様が変形するから、透明な
板を通して見える格子模様の変形に基づいて、土粒子の
変位が測定される。
First conventional example: One side of the earthen tank is made of a transparent plate, and
A thin checkered pattern is drawn on the inner surface of the transparent plate (0,
After pasting a rubber membrane (approximately 2 mm thick) with the lattice pattern facing outward using grease or the like, the soil tank is filled with soil. Then, when pressure is applied to the soil surface, the displacement of the soil particles is transmitted to the rubber membrane and the grid pattern is deformed, so the displacement of the soil particles can be measured based on the deformation of the grid pattern visible through the transparent plate. .

第2従来例:土槽内の土中に複数の小径の鉛工を埋め込
んでおき、それら鉛工の位置を放射線で照射撮影するこ
とにより把握して、土粒子の変位を測定する。
Second conventional example: A plurality of small-diameter lead works are embedded in the soil in a soil tank, and the positions of the lead works are determined by irradiation with radiation and photographed, and the displacement of soil particles is measured.

第3従来例:土槽内に土を充填した後に、土槽の透明な
側壁を取り外し、露出した土の表面に直接マークを描き
、再度側壁を取り付ける。そして、透明板を通して判る
マークの移動により土粒子の変位を測定する。
Third conventional example: After filling the earth tank with soil, the transparent side wall of the earth tank is removed, marks are drawn directly on the exposed soil surface, and the side wall is reattached. Then, the displacement of the soil particles is measured by the movement of the mark visible through the transparent plate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の技術には、下記のような問題
点がある。
However, the above conventional technology has the following problems.

即ち、第1従来例にあっては、土の上面に加えていた圧
力を解除してしまうと、−旦変形したゴム膜が自身の弾
性力によって復元してしまうので、転圧ロールが通過し
た部分では、土粒子の変位量とゴム膜の変形量との間に
大きなずれが生してしまうという問題点がある。
That is, in the first conventional example, when the pressure applied to the top surface of the soil is released, the deformed rubber membrane restores itself due to its own elastic force, so that the compaction roll passes through the soil. There is a problem in that there is a large discrepancy between the amount of displacement of the soil particles and the amount of deformation of the rubber membrane.

そして、ゴム膜は側壁板との摩擦が大きく、潤滑のため
にグリース等を介して透明な板に張り付ける必要がある
ので、グリースの剪断抵抗が妨げとなって、土粒子の変
位にゴム膜の変形が精度良く追従することができないし
、さらには、グリースは温度等によって粘性が変化する
ので、実験にあたっては温度管理も行わなければならな
いという不具合がある。
The rubber film has a large friction with the side wall plate, and it is necessary to attach it to a transparent plate through grease etc. for lubrication, so the shear resistance of the grease becomes an obstacle, and the rubber film prevents the displacement of soil particles. It is not possible to accurately follow the deformation of the grease, and furthermore, the viscosity of grease changes depending on the temperature, etc., so there is a problem that temperature control must be carried out during experiments.

また、第2従来例にあっては、放射線を使用するため、
人体に悪影響を与える恐れがあり、取扱に資格が必要で
あるし、装置も高価なものとなってしまう。そして、土
と鉛工との比重差が大きいので、土粒子の変位と鉛工の
変位との間に大きなずれが生じてしまい、測定値の信頼
性が低いという問題点があるし、また、鉛工が多数にな
ると、土の強度が変わってしまうという欠点もある。
In addition, in the second conventional example, since radiation is used,
It may have an adverse effect on the human body, requires a qualification to handle it, and the equipment is expensive. Since the difference in specific gravity between the soil and the lead work is large, there is a problem that a large discrepancy occurs between the displacement of the soil particles and the displacement of the lead work, and the reliability of the measured value is low. There is also the disadvantage that the strength of the soil changes when there are a large number of lead works.

さらに、第3従来例にあっては、土粒子の変位を大まか
に測定するのには問題はないが、細かな変位を測定する
のには適していないので、高精度の解析に使用するよう
なデータを得ることはできない。
Furthermore, although there is no problem with the third conventional example for roughly measuring the displacement of soil particles, it is not suitable for measuring fine displacements, so it is recommended that it be used for high-precision analysis. It is not possible to obtain accurate data.

そこで本発明は、このような従来の技術が有する未解決
の課題に着目してなされたものであり、大幅なコスト上
昇を招くことなく、土槽内の土粒子の変位を高精度に測
定することができる方法、及び、その測定に好適な土粒
子変位測定用マーカを提供することを目的としている。
Therefore, the present invention was made by focusing on the unresolved problems of the conventional technology, and is an object of the present invention to measure the displacement of soil particles in a soil tank with high precision without causing a significant increase in cost. The purpose of the present invention is to provide a method for measuring soil particle displacement, and a marker for measuring soil particle displacement suitable for the measurement.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、請求項(1)記載の土粒子
変位測定方法は、土槽の少なくとも一側面を透明板で構
成し、前記透明板の内面に摺動自在に複数のマーカを張
り付け、次いで、前記土槽内に土を充填し、そして、そ
の土槽に充填された土の上面に圧力を加えた場合の土槽
内の土粒子の変位を、前記マーカの挙動に基づいて測定
する。
In order to achieve the above object, the method for measuring displacement of soil particles according to claim (1) comprises forming at least one side of a soil tank with a transparent plate, and attaching a plurality of markers to the inner surface of the transparent plate in a slidable manner. Then, fill the soil tank with soil, and measure the displacement of the soil particles in the soil tank based on the behavior of the marker when pressure is applied to the top surface of the soil filled in the soil tank. do.

また、請求項(2)記載の土粒子変位測定用マーカは、
上記請求項(1)記載の土粒子変位測定方法に用いられ
るマーカであって、透明板側を向き且つ滑らかな表面に
は目印が印刷され、上側を向く裏面には凹凸が形成され
ているシートからなる。
In addition, the soil particle displacement measurement marker according to claim (2) includes:
A marker used in the method for measuring soil particle displacement according to claim (1) above, wherein the sheet faces the transparent plate and has a mark printed on its smooth surface, and has unevenness formed on its back surface facing upward. Consisting of

さらに、請求項(3)記載の土粒子変位測定方法は、上
記請求項(1)記載の土粒子変位測定方法において、透
明板側を向き且つ滑らかな表面には目印が印刷され、上
側を向く裏面には凹凸が形成されたシーI・からなるマ
ーカを使用するとともに、そのマーカを、水を介して前
記透明板の内面に張り付ける。
Furthermore, the soil particle displacement measuring method according to claim (3) is the soil particle displacement measuring method according to claim (1), wherein marks are printed on the smooth surface facing the transparent plate side and facing upward. A marker made of C.I. with unevenness formed on the back surface is used, and the marker is attached to the inner surface of the transparent plate through water.

〔作用〕[Effect]

請求項(1)記載の発明にあっては、土の上面に加えら
れた圧力によって土粒子が変位すると、透明板の内面に
張り付けられた複数のマ・−力が移動するから、それら
マーカの移動に基づいて、土粒子の変位が測定される。
In the invention set forth in claim (1), when the soil particles are displaced by the pressure applied to the upper surface of the soil, the plurality of forces attached to the inner surface of the transparent plate are moved, so that the markers are Based on the movement, the displacement of the soil particles is measured.

そして、個々のマーカの挙動は、他のマーカの挙動とは
独立しているから、土の上面に加えていた圧力を解除し
ても、マーカの位置が復元してしまうようなことがない
Since the behavior of each marker is independent of the behavior of other markers, even if the pressure applied to the top surface of the soil is released, the position of the marker will not be restored.

また、請求項(2)記載の発明では、マーカの表面は滑
らかであるから、マーカと透明板との間の摩擦抵抗は極
小さいし、マーカの裏面には凹凸が形成されているから
、土とマーカとが噛み合うようになって土粒子の変位が
精度良くマーカに伝わるので、マーカは、土粒子の変位
に精度良く追従して移動する。そして、マーカは、シー
ト状であるから、土の強度に影響を与える恐れがなく、
高い粘着力を有するグリース等を介さなくても張り付け
ることが可能であるし、マーカの表面に印刷された目印
はマーカの変位の測定を容易にする。
Furthermore, in the invention described in claim (2), since the surface of the marker is smooth, the frictional resistance between the marker and the transparent plate is extremely small, and since the back surface of the marker is uneven, it is possible to avoid dirt. and the marker mesh with each other, and the displacement of the soil particles is transmitted to the marker with high accuracy, so that the marker moves to accurately follow the displacement of the soil particles. And since the marker is in sheet form, there is no risk of affecting the strength of the soil.
It is possible to attach the marker without the use of highly adhesive grease or the like, and the mark printed on the surface of the marker makes it easy to measure the displacement of the marker.

そして、請求項(3)記載の発明では、上記請求項(1
)及び(2)に記載の発明と同等の作用が得られるとと
もに、マーカと透明板との間に介在する水は、粘性が小
さ(、土槽に土を充填している間に多くが蒸発してしま
うから、凍り付くようなことがない限り、マーカの移動
の妨げにはならない。
In the invention described in claim (3), the above claim (1)
) and (2), and the water interposed between the marker and the transparent plate has a low viscosity (most of it evaporates while filling the soil tank with soil). Therefore, as long as there is no freezing, it will not interfere with the movement of the marker.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図及び第2図は、本発明の一実施例を示す図である
FIG. 1 and FIG. 2 are diagrams showing one embodiment of the present invention.

即ち、第1図に示すように、上面が開口した箱型の土槽
1は、その−側面の一部分に透明のアクリル板2a、2
b及び2cが嵌め込まれていて、その内部が外側から見
えるようになっている。
That is, as shown in FIG. 1, a box-shaped earthen tank 1 with an open upper surface has transparent acrylic plates 2a, 2 on a part of its lower side.
b and 2c are fitted so that the inside can be seen from the outside.

なお、アクリル板2a〜2cは、土槽1内の土の圧力を
受け、たわみや破損の恐れがあるので、充分な強度が得
られる厚さ(30mm程度)に成形する。
Note that the acrylic plates 2a to 2c are susceptible to bending or breakage due to the pressure of the soil in the soil tank 1, so they are formed to a thickness (about 30 mm) that provides sufficient strength.

そして、各アクリル板2a〜2Cの内面(土槽1の内側
を向く面)には、複数のマーカ3が、摺動可能に規則的
に張り付けられている。なお、本実施例において、マー
カ3の配置密度を上側のアクリル板程高くしたのは、土
槽1内の土の上面に圧力を加えた場合、上面に近い程圧
力の影響を受けて土粒子が複雑に変位するからである。
A plurality of markers 3 are regularly and slidably attached to the inner surface of each acrylic plate 2a to 2C (the surface facing the inside of the earthen tank 1). In addition, in this example, the arrangement density of the markers 3 was made higher as the upper acrylic plate is placed.When pressure is applied to the upper surface of the soil in the soil tank 1, the closer to the upper surface the soil particles are affected by the pressure. This is because the displacement is complicated.

また、各アクリル板2a〜2Cの所定位置には、マーカ
3の挙動を計測するための移動不可能な基準固定点4が
設けである。
Moreover, an immovable reference fixed point 4 for measuring the behavior of the marker 3 is provided at a predetermined position on each of the acrylic plates 2a to 2C.

ここで、マーカ3は、その正面図である第2図(a)及
び側面図である第2図(b)に示すように、円形シート
状の本体3aを有し、その本体3aの滑らかな表面3b
に目印としての十印が印刷され、裏面3Cに凹凸3dが
形成されている。
Here, as shown in FIG. 2(a) which is a front view and FIG. 2(b) which is a side view, the marker 3 has a circular sheet-like main body 3a, and the main body 3a has a smooth surface. surface 3b
A cross mark is printed on the back side 3C, and unevenness 3d is formed on the back side 3C.

また、本体3aが固すぎると、アクリル板2a〜2cへ
のマーカ3の密着性が悪くなって張り付けが困難になる
し、逆に、本体3aが軟らかすぎると、後述する土粒子
の移動によってアクリル板2a〜2cからマーカ3が剥
がれ落ちる恐れがあるから、これらを考慮して本体3の
固さを決定する。
Furthermore, if the main body 3a is too hard, the adhesion of the markers 3 to the acrylic plates 2a to 2c will deteriorate, making it difficult to stick them.On the other hand, if the main body 3a is too soft, the movement of soil particles, which will be described later, will cause the markers 3 to stick to the acrylic plates 2a to 2c. Since there is a possibility that the marker 3 may peel off from the plates 2a to 2c, the hardness of the main body 3 is determined in consideration of these factors.

従って、本体3aは、例えば、ポリエステル、或いはテ
トロン等から成形するのが好ましいが、他の素材であっ
てもよい。
Therefore, the main body 3a is preferably molded from polyester or Tetron, for example, but may be made of other materials.

なお、本発明者等の実験によれば、本体3aは、直径5
〜8M、厚さ0.03mm程度の寸法に成形することが
、張り付は時の作業効率や、土粒子の変位に対する追従
性等の面から最も良好な結果が得られた。
According to experiments conducted by the present inventors, the main body 3a has a diameter of 5
Forming to a size of ~8M and a thickness of about 0.03mm yielded the best results in terms of work efficiency during sticking and ability to follow the displacement of soil particles.

また、凹凸3dは、本体3aの裏面3cに予め接着剤を
薄く塗布しておき、その接着剤を利用して、例えば、土
粒子等を裏面3Cに積層して形成することができる。
Further, the unevenness 3d can be formed by applying a thin layer of adhesive to the back surface 3c of the main body 3a in advance, and using the adhesive to laminate, for example, soil particles or the like on the back surface 3C.

そして、マーカ3は、水を介し、本体3aの表面3bを
アクリル板2a〜2cに向けて張り付けられている。
The marker 3 is attached with the surface 3b of the main body 3a facing the acrylic plates 2a to 2c via water.

即ち、水は、その表面張力によってマーカ3をアクリル
板2a〜2cに張り付けているが、剪断方向の抵抗は極
めて小さく、土を充填する間に蒸発するし、本体3aの
表面3bは滑らかであるので、マーカ3は、張り付けら
れたアクリル板2a〜2Cの裏面上を自在に移動するこ
とができる。
That is, water sticks the markers 3 to the acrylic plates 2a to 2c due to its surface tension, but the resistance in the shearing direction is extremely small and evaporates while filling with soil, and the surface 3b of the main body 3a is smooth. Therefore, the marker 3 can freely move on the back surfaces of the attached acrylic plates 2a to 2C.

なお、マーカ3は非常に軽量であるため、微小な外力に
対しても移動する。
Note that since the marker 3 is extremely lightweight, it moves even in response to minute external forces.

なお、マーカ3は、水以外(例えば、グリース等)を介
して張り付けても構わないが、余り粘性が大きいものを
介して張り付けると、土粒子の変位に対するマーカ3の
追従性が劣ってしまい、土粒子の変位を正確に測定でき
なくなる。
Note that the marker 3 may be attached using a material other than water (for example, grease, etc.), but if it is attached using a material that is too viscous, the ability of the marker 3 to follow the displacement of soil particles will be poor. , it becomes impossible to accurately measure the displacement of soil particles.

さらに、土槽1内には土Eが充填されている。Furthermore, the soil tank 1 is filled with soil E.

ただし、土Eは、アクリル板2a〜2cの裏面にマーカ
3を張り付けた後に充填する。
However, the soil E is filled after the markers 3 are pasted on the back surfaces of the acrylic plates 2a to 2c.

そして、第1図に示すように、転圧ロール5を駆動させ
て土Eの上面を転圧し、転圧ロール5が所定の進行をす
る毎に、アクリル板2a〜2’cを通してマーカ3を正
面から写真撮影する。
Then, as shown in FIG. 1, the compaction roll 5 is driven to compact the upper surface of the soil E, and each time the compaction roll 5 advances a predetermined distance, the marker 3 is inserted through the acrylic plates 2a to 2'c. Take a photo from the front.

ここで、転圧ロール5が転動すると、土Eの上面が加圧
されるため、内部の土粒子が変位し、土Eが徐々に締め
固まっていく。
Here, when the compaction roll 5 rolls, the upper surface of the soil E is pressurized, so that the soil particles inside are displaced and the soil E is gradually compacted.

そして、土Eの土粒子が変位すると、マーカ3の裏面3
cに形成された凹凸3dが土Eの土粒子と噛み合ってい
るし、上述したようにアクリル板2a〜2cとマーカ3
の表面3bと間の摩擦抵抗は極小さいので、土粒子の変
位に追従して、マーカ3が移動する。
Then, when the soil particles of soil E are displaced, the back surface 3 of marker 3
The unevenness 3d formed on the soil E engages with the soil particles of the soil E, and as mentioned above, the acrylic plates 2a to 2c and the marker 3
Since the frictional resistance between the marker and the surface 3b is extremely small, the marker 3 moves following the displacement of the soil particles.

従って、転圧ロール5の進行に伴って撮影された写真に
写っているマーカ3の挙動から、転圧ロール5の駆動状
態と、土Eの締め固まりとの関係が把握できる。
Therefore, the relationship between the driving state of the compaction roll 5 and the compaction of the soil E can be grasped from the behavior of the marker 3 shown in the photograph taken as the compaction roll 5 advances.

そこで、撮影された写真に写っているマーカ3の移動の
様子を、コンピュータ等からなる解析装置に読み込ませ
る。
Therefore, the movement of the marker 3 shown in the photograph is read into an analysis device such as a computer.

読み込み方法としては、例えば、撮影された写真を、撮
影された順に、−枚ずつXY移動テーブル上に設置し、
その写真をビデオカメラ等によってモニタに拡大表示す
る。そして、作業者は、モニタを監視しつつコントロー
ラを操作して、XYl 移動テーブル上の写真を移動させ、写真に写っているマ
ーカ3の十印の座標を、写っている基準固定点4を基準
点として順次読み取って、その座標値を解析装置に送信
し、これを、撮影した全ての写真について行い、各マー
カ3の挙動をデータ列として解析装置に記録させればよ
い。
For example, the reading method is to place the photos one by one on an XY moving table in the order in which they were taken.
The photograph is enlarged and displayed on a monitor using a video camera or the like. Then, the worker operates the controller while monitoring the monitor to move the photo on the XYl moving table, and sets the coordinates of the cross mark of marker 3 in the photo with reference to the reference fixed point 4 in the photo. It is sufficient to sequentially read the markers 3 as points, transmit their coordinate values to the analysis device, do this for all the photographs taken, and have the analysis device record the behavior of each marker 3 as a data string.

解析装置は、得られたデータ列を用い、所定の処理手順
に従い、例えば有限要素法で用いる解析手法を利用して
、土E内の応力分布や歪みを解析する。
The analysis device analyzes the stress distribution and strain within the soil E using the obtained data string and according to a predetermined processing procedure, for example, using an analysis method used in the finite element method.

その結果、転圧ロール5の駆動状況とミ土Eの締め固め
状態との関係を、定量的に把握することができる。
As a result, the relationship between the driving status of the compaction roll 5 and the compaction status of the soil E can be quantitatively grasped.

そして、上記実施例にあっては、個々のマーカ3は、他
のマーカ3との間に引力や斥力が働いていないから、転
圧ロール5が通過しても、移動前の位置に復元してしま
うようなことがないし、上述したように、土粒子の変位
に対して正確に追従するので、土粒子の変位を高精度に
測定することができる。
In the above embodiment, since no attractive force or repulsive force is exerted between each marker 3 and other markers 3, even when the compaction roll 5 passes, the individual marker 3 does not return to the position before movement. As mentioned above, since the displacement of the soil particles is accurately followed, the displacement of the soil particles can be measured with high precision.

Z さらに、マーカ3は、薄いシート状であるとともに、そ
の裏面3cに形成した凹凸3dも極端に厚くする必要も
ないので、土Eの強度に影響を与える恐れもない。
Z Furthermore, since the marker 3 is in the form of a thin sheet and the unevenness 3d formed on the back surface 3c does not need to be extremely thick, there is no fear that it will affect the strength of the soil E.

また、放射線照射装置のような高価な装置を必要としな
いから、大幅なコスト上昇を招くこともない。
Furthermore, since an expensive device such as a radiation irradiation device is not required, there is no need for a significant increase in cost.

なお、上記実施例では、マーカ3を円形とした場合につ
いて説明したが、他の形状であってもよいことば勿論で
あるし、その表面に印刷する目印も十印に限定されるも
のではない。
In the above embodiment, the case where the marker 3 is circular has been described, but it goes without saying that it may have another shape, and the mark printed on the surface thereof is not limited to the 10 mark.

また、上記実施例では、マーカ3の裏面3cに接着材を
介して土粒子等を積層して凹凸3dを形成する場合につ
いて説明したが、要は、土粒子と噛み合う程度の凹凸3
dが形成されればよいから、他の手段であってもよい。
Furthermore, in the above embodiment, a case has been described in which the unevenness 3d is formed by laminating soil particles etc. on the back surface 3c of the marker 3 via an adhesive.
Other means may be used as long as d is formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、請求項(1)記載の発明によれば
、土槽内の土粒子の変位を、摺動自在に透明な板に張り
付けた複数のマーカの挙動に基づいて4 測定するようにしたため、土粒子の変位を高精度に測定
できるという効果がある。
As explained above, according to the invention set forth in claim (1), the displacement of soil particles in a soil tank is measured based on the behavior of a plurality of markers attached to a slidably transparent plate. This has the effect of making it possible to measure the displacement of soil particles with high precision.

そして、請求項(2)及び(3)記載の発明によれば、
マーカは、土粒子の変位に精度良く追従するので、土粒
子の変位をさらに高精度に測定することができる。
According to the invention described in claims (2) and (3),
Since the marker follows the displacement of the soil particles with high precision, the displacement of the soil particles can be measured with even higher precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成国、第2図(a)は本
実施例に適用したマーカの正面図、第2図(b)ば同マ
ーカのイ則面図である。
FIG. 1 shows the constituent countries of an embodiment of the present invention, FIG. 2(a) is a front view of a marker applied to this embodiment, and FIG. 2(b) is a plane view of the same marker.

Claims (3)

【特許請求の範囲】[Claims] (1)土槽の少なくとも一側面を透明板で構成し、前記
透明板の内面に摺動自在に複数のマーカを張り付け、次
いで、前記土槽内に土を充填し、そして、その土槽に充
填された土の上面に圧力を加えた場合の土槽内の土粒子
の変位を、前記マーカの挙動に基づいて測定することを
特徴とする土粒子変位測定方法。
(1) At least one side of the soil tank is made up of a transparent plate, a plurality of markers are slidably pasted on the inner surface of the transparent plate, and then the soil tank is filled with soil, and the soil tank is filled with soil. A method for measuring displacement of soil particles, the method comprising measuring the displacement of soil particles in a soil tank based on the behavior of the marker when pressure is applied to the top surface of the filled soil.
(2)透明板側を向き且つ滑らかな表面には目印が印刷
され、上側を向く裏面には凹凸が形成されているシート
からなることを特徴とする請求項(1)記載の土粒子変
位測定方法に用いられる土粒子変位測定用マーカ。
(2) The soil particle displacement measurement according to claim (1), characterized in that the sheet is made of a sheet having a mark printed on the smooth surface facing the transparent plate side and unevenness formed on the back surface facing upward. A marker for measuring soil particle displacement used in the method.
(3)透明板側を向き且つ滑らかな表面には目印が印刷
され、上側を向く裏面には凹凸が形成されたシートから
なるマーカを使用するとともに、そのマーカを、水を介
して前記透明板の内面に張り付ける請求項(1)記載の
土粒子変位測定方法。
(3) Use a marker made of a sheet with a mark printed on the smooth surface facing the transparent plate and an uneven surface on the back side facing upward, and apply the marker to the transparent plate through water. The soil particle displacement measuring method according to claim (1), wherein the method is applied to an inner surface of a soil particle.
JP1640990A 1990-01-26 1990-01-26 Method and marker for measuring displacement of soil grain Pending JPH03221832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1640990A JPH03221832A (en) 1990-01-26 1990-01-26 Method and marker for measuring displacement of soil grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1640990A JPH03221832A (en) 1990-01-26 1990-01-26 Method and marker for measuring displacement of soil grain

Publications (1)

Publication Number Publication Date
JPH03221832A true JPH03221832A (en) 1991-09-30

Family

ID=11915443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1640990A Pending JPH03221832A (en) 1990-01-26 1990-01-26 Method and marker for measuring displacement of soil grain

Country Status (1)

Country Link
JP (1) JPH03221832A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976164A (en) * 2017-11-16 2018-05-01 温州大学 Measure the bath scaled model experimental device and its measuring method of displacement model in high-moisture stream silt particle well consolidation process under vacuum pressure
CN109186418A (en) * 2018-08-20 2019-01-11 彩虹集团(邵阳)特种玻璃有限公司 A kind of overflow formed glass cuts the measuring device and method of quality

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976164A (en) * 2017-11-16 2018-05-01 温州大学 Measure the bath scaled model experimental device and its measuring method of displacement model in high-moisture stream silt particle well consolidation process under vacuum pressure
CN109186418A (en) * 2018-08-20 2019-01-11 彩虹集团(邵阳)特种玻璃有限公司 A kind of overflow formed glass cuts the measuring device and method of quality
CN109186418B (en) * 2018-08-20 2021-11-05 彩虹集团(邵阳)特种玻璃有限公司 Device and method for measuring cutting quality of overflow formed glass

Similar Documents

Publication Publication Date Title
Paikowsky et al. A dual interface apparatus for testing unrestricted friction of soil along solid surfaces
Allen The effects of non-constant lateral pressures on the resilient response of granular materials.
Viswanadham et al. Studies on scaling and instrumentation of a geogrid
Gibson The analytical method in soil mechanics
Gill et al. Soil dynamics in tillage and traction
Prashant et al. Effect of intermediate principal stress on overconsolidated kaolin clay
Hedayat et al. Multi-modal monitoring of slip along frictional discontinuities
JPH03221832A (en) Method and marker for measuring displacement of soil grain
KR100813497B1 (en) Method of transcripting and restoring stratum
CN107942038A (en) Slope retaining model assay systems and test method
CN207780015U (en) Slope retaining model assay systems
O'Neill Undrained strength anisotropy of an overconsolidated thixotropic clay
CN211401942U (en) Finite cohesive soil active and passive soil pressure model test device behind foundation pit flexible retaining wall
Woodland et al. Paint Speckle Application Recommendations for Digital Image Correlation Analysis of Brazilian Tensile Strength Tests on Low-Porosity Rocks
Dwyer-Joyce et al. Some experiments on the micro-indentation of digital audio tape
Bolton et al. Design and performance of earth retaining structures
CN105953954B (en) A kind of assembled steel bridge board interface base material toe of weld fatigue hot spot stress test method
JP2002310871A (en) Cutting workability observing device for sheet-like object and cutting workability observing method for sheet-like object
CN108254257A (en) Field Stratified Rock Slope rock mass bending damage experimental rig and test method
JP3959413B2 (en) Film thickness measuring method and film thickness meter by nondestructive inspection of elastic coating film
Abrantes Three-dimensional stress-strain behavior of cohesionless material subjected to high strain rate
CN217277452U (en) Poisson's ratio measuring system for rock-soil body
Ball Indentation of Deformable Plastic Layers
Singh et al. In-situ normal stiffness of rock mass
Marr Advances and retreats in geotechnical measurements