JPH0322171B2 - - Google Patents

Info

Publication number
JPH0322171B2
JPH0322171B2 JP57022749A JP2274982A JPH0322171B2 JP H0322171 B2 JPH0322171 B2 JP H0322171B2 JP 57022749 A JP57022749 A JP 57022749A JP 2274982 A JP2274982 A JP 2274982A JP H0322171 B2 JPH0322171 B2 JP H0322171B2
Authority
JP
Japan
Prior art keywords
magnetic field
gradient magnetic
coil
projection
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57022749A
Other languages
Japanese (ja)
Other versions
JPS58140628A (en
Inventor
Etsuji Yamamoto
Kensuke Sekihara
Munetaka Tsuda
Hideki Kono
Shinji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57022749A priority Critical patent/JPS58140628A/en
Publication of JPS58140628A publication Critical patent/JPS58140628A/en
Publication of JPH0322171B2 publication Critical patent/JPH0322171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/12Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、核磁気共鳴現象を用いた検査装置に
係り、特に傾斜磁場の非線形性に起因する再生像
の劣化の補正を容易にした検査装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inspection apparatus using a nuclear magnetic resonance phenomenon, and particularly to an inspection apparatus that facilitates correction of deterioration of a reproduced image caused by nonlinearity of a gradient magnetic field.

従来、人体などの内部構造を非破壊的に検査す
る方法として、X線CTや超音波撮像装置が広く
利用されて来ている。近年、これに更に、核磁気
共鳴現象を利用し同様の検査を行う試みが成功
し、X線CTや超音波撮像装置では得られない情
報を取得できることが明らかになつてきた。
Conventionally, X-ray CT and ultrasonic imaging devices have been widely used as methods for non-destructively inspecting internal structures of human bodies and the like. In recent years, attempts to perform similar tests using nuclear magnetic resonance phenomena have been successful, and it has become clear that information that cannot be obtained with X-ray CT or ultrasound imaging devices can be obtained.

核磁気共鳴を用いた検査装置(以下、単に「検
査装置」という。)は、核磁気共鳴現象を利用し
て対象物体中の核スピンの密度分布,緩和時間分
布等を非破壊的に求めることにより、X線CTと
同様の手法で対象物体の所望の検査部位の断面像
を構成・出力するものである。このような検査装
置においては、検査対象物体からの信号を核物体
各部に対応させて、分離・識別する必要がある。
その1つに、検査対象物体に傾斜磁場を印加し、
物体各部の置かれた静磁場を異ならせ、これによ
り各部の共鳴周波数を異ならせることで位置の情
報を得る方法がある。第1図はその原理を説明す
るための図である。検査対象物体1に傾斜磁場
G1を印加すると、該傾斜磁場G1に垂直な線上に
ある核スピンからの信号を積分した信号強度分布
2が、静磁場Hの関数として得られる。核磁気共
鳴においては、 =γH/(2π) の関係が成立するので、前記信号強度は共鳴周波
数fの関数であるとも言える。なお、上式におい
て、γは核磁気回転比であり、核スピンに固有の
値である。次に、傾斜磁場の印加方向を変えて傾
斜磁場G2を印加すると信号強度分布3が得られ
る。傾斜磁場の印加方向を種々変化させて同様な
信号強度分布、すなわち射影データを求めれば、
X線CTと同様のアルゴリズムを用いて検査対象
物体中の核スピンの密度分布あるいは緩和時間分
布などを再構成することができる。この原理は、
ネイチヤー(Nature)誌,第242巻,第190〜191
頁に記載されている。
Inspection equipment using nuclear magnetic resonance (hereinafter simply referred to as "inspection equipment") uses nuclear magnetic resonance phenomena to non-destructively determine the density distribution, relaxation time distribution, etc. of nuclear spins in a target object. This system constructs and outputs a cross-sectional image of a desired inspection area of a target object using a method similar to X-ray CT. In such an inspection device, it is necessary to separate and identify signals from the object to be inspected in correspondence with each part of the nuclear object.
One of them is to apply a gradient magnetic field to the object to be inspected,
There is a method of obtaining positional information by varying the static magnetic field placed on each part of an object, thereby varying the resonance frequency of each part. FIG. 1 is a diagram for explaining the principle. Gradient magnetic field applied to inspection object 1
When G 1 is applied, a signal intensity distribution 2 is obtained as a function of the static magnetic field H, which is obtained by integrating signals from nuclear spins on a line perpendicular to the gradient magnetic field G 1 . In nuclear magnetic resonance, since the following relationship holds: =γH/(2π), it can be said that the signal intensity is a function of the resonance frequency f. Note that in the above equation, γ is the nuclear gyromagnetic ratio, which is a value specific to nuclear spin. Next, by changing the direction of application of the gradient magnetic field and applying a gradient magnetic field G2 , signal intensity distribution 3 is obtained. If we obtain a similar signal intensity distribution, that is, projection data, by varying the applied direction of the gradient magnetic field,
Using an algorithm similar to that used in X-ray CT, it is possible to reconstruct the density distribution or relaxation time distribution of nuclear spins in an object to be examined. This principle is
Nature, Volume 242, Nos. 190-191
It is written on the page.

ところで、射影データを得るために印加する前
記傾斜磁場は空間的に線形ではなく、非線形の領
域を含んでいる。
By the way, the gradient magnetic field applied to obtain projection data is not spatially linear but includes a nonlinear region.

このように、非線形な傾斜磁場を用いて射影デ
ータを得た場合、再構成される画像はボケたもの
となり、画像劣化の大きさ要因となつていた。こ
の点につき、図面を用いて、更に詳細に説明す
る。第2図中の実線4は空間的に線形な傾斜磁場
を示し、その時対象物体1′から得られる射影デ
ータを実線5とする。これに対し、破線6のよう
に空間的に非線形であれば、その射影データは破
線7となり、歪んだ射影データが得られる。この
ような歪んだ射影データを再構成するとボケた像
になり、傾斜磁場の非線形性が大きな画質劣化を
もたらす。しかしながら、この非線形性が射影の
角度によらず常に一定であれば、傾斜磁場の空間
分布をあらかじめ求めておくことで補正すること
が可能である。
In this way, when projection data is obtained using a nonlinear gradient magnetic field, the reconstructed image becomes blurred, which is a major factor in image deterioration. This point will be explained in more detail using the drawings. A solid line 4 in FIG. 2 indicates a spatially linear gradient magnetic field, and a solid line 5 represents projection data obtained from the target object 1'. On the other hand, if the projection data is spatially nonlinear like the broken line 6, the projection data becomes the broken line 7, and distorted projection data is obtained. Reconstruction of such distorted projection data results in a blurred image, and the nonlinearity of the gradient magnetic field causes significant deterioration in image quality. However, if this nonlinearity is always constant regardless of the projection angle, it can be corrected by determining the spatial distribution of the gradient magnetic field in advance.

その場合、画像が例えば128×128のマトリツク
スからなるとすれば、少なくとも16万点の補正デ
ータを必要とする。ところが、従来のように傾斜
磁場の回転を、2組のコイルに流す電流により行
なう方式では、各射影毎に非線形性が変化するた
め、補正に要するデータは、128×128×(射影数)
となり、射影数も通常128程度必要であるためメ
モリーを始め演算に要する時間も膨大なものとな
つてしまう欠点があつた。
In that case, if the image is made up of a 128x128 matrix, for example, correction data for at least 160,000 points is required. However, in the conventional method in which the gradient magnetic field is rotated by current flowing through two sets of coils, the nonlinearity changes for each projection, so the data required for correction is 128 x 128 x (number of projections).
Since the number of projections is usually around 128, the disadvantage is that the memory and calculation time required is enormous.

本発明は、かかる点に鑑みてなされたもので、
その目的とするところは従来の検査装置の上述の
如き欠点を除去し、傾斜磁場の非線形体の補正を
容易にした検査装置を提供することにある。
The present invention has been made in view of these points,
The purpose is to eliminate the above-mentioned drawbacks of conventional inspection devices and to provide an inspection device that facilitates correction of nonlinear bodies of gradient magnetic fields.

かかる目的を達成するために本発明は、傾斜磁
場発生用コイルを各射影ごとに回転させることに
より、上記傾斜磁場の印加方向を変えることを特
徴とする。
In order to achieve this object, the present invention is characterized in that the direction of application of the gradient magnetic field is changed by rotating the gradient magnetic field generating coil for each projection.

以下、本発明の実施例を図面に基づいて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例である検査装置の概
略構成を示すものである。制御装置8は各装置へ
種々の命令を一定のタイミングで出力する。高周
波パルス発生器9の出力は電力増幅器10で増幅
され、高周波磁場発生用コイル11を励振する。
該コイル11は同時に受信用コイルを兼ねてお
り、該コイル11で検出された信号成分は増幅器
12を通り、検波器13で検波後、信号処理装置
14で画像に変換,表示される。高周波パルス発
生器9からの他の出力は、検波器13で直角位相
検波を行うときの基準信号として用いられる。Z
方向及びそれに垂直な方向の傾斜磁場の発生は傾
斜磁場発生用コイル15で行ない、該コイルは電
源16,17で駆動される。電源16はZ方向の
傾斜磁場用、電源17はZ方向に垂直な方向の傾
斜磁場用である。検査対象である人体18はベツ
ド19上に置かれ、支持台20上を移動する。静
磁場は静磁場発生用コイル21で発生させ、この
コイルは電源22で駆動される。前記傾斜磁場発
生用コイル15はベルト24を通じてモータ23
によりZ軸を中心に回転させられる。ここで、傾
斜磁場発生用コイル15の形状について詳細に説
明する。第4図はZ方向に垂直な方向の傾斜磁場
発生用コイルの1例を示しており、静磁場はZ軸
に平行に印加されているものとする。なお、Z方
向傾斜磁場用コイルは図が複雑になるので第5図
に別に示すこととする。コイルへの電流の供給は
コイルのベース25上に巻いたスリツプリング2
6,27及びそれらに接触するブラシ28,29
により行なう。このようにすれば、コイル15を
射影毎に回転させても電流の供給は容易である。
図中矢印は電流の向きを表わしており、第4図の
位置にコイルが来た時には、Y方向の傾斜磁場が
発生している。第5図は第4図に示したコイル1
5と同じものである。図を見易すくするためにZ
方向の傾斜磁場を発生するコイルのみを示してい
る。なおベルト24とモーター23は第4図と同
じなので省略してある。スリツプリング26′,
27′へ接触するブラシ28′,29′により電流
を供給する機構も第4図の場合と同様である。
FIG. 3 shows a schematic configuration of an inspection device that is an embodiment of the present invention. The control device 8 outputs various commands to each device at constant timing. The output of the high frequency pulse generator 9 is amplified by a power amplifier 10 and excites a high frequency magnetic field generating coil 11.
The coil 11 also serves as a receiving coil, and the signal component detected by the coil 11 passes through an amplifier 12, is detected by a detector 13, and is converted into an image by a signal processing device 14 and displayed. The other output from the high frequency pulse generator 9 is used as a reference signal when the detector 13 performs quadrature detection. Z
Generation of gradient magnetic fields in the direction and the direction perpendicular thereto is performed by a gradient magnetic field generation coil 15, which is driven by power supplies 16 and 17. The power source 16 is for a gradient magnetic field in the Z direction, and the power source 17 is for a gradient magnetic field in a direction perpendicular to the Z direction. A human body 18 to be examined is placed on a bed 19 and moved on a support stand 20. The static magnetic field is generated by a static magnetic field generating coil 21, and this coil is driven by a power source 22. The gradient magnetic field generating coil 15 is connected to the motor 23 through the belt 24.
can be rotated around the Z axis. Here, the shape of the gradient magnetic field generating coil 15 will be explained in detail. FIG. 4 shows an example of a coil for generating a gradient magnetic field in a direction perpendicular to the Z direction, and assumes that the static magnetic field is applied parallel to the Z axis. Note that the Z-direction gradient magnetic field coil is shown separately in FIG. 5 because the diagram is complicated. Current is supplied to the coil by a slip ring 2 wound on the base 25 of the coil.
6, 27 and brushes 28, 29 in contact with them
This is done by In this way, it is easy to supply current even if the coil 15 is rotated for each projection.
The arrows in the figure indicate the direction of the current, and when the coil comes to the position shown in FIG. 4, a gradient magnetic field in the Y direction is generated. Figure 5 shows the coil 1 shown in Figure 4.
It is the same as 5. Z to make the diagram easier to read
Only the coils that generate directional gradient magnetic fields are shown. Note that the belt 24 and motor 23 are the same as in FIG. 4, so they are omitted. Slip ring 26',
The mechanism for supplying current by means of brushes 28' and 29' contacting 27' is also similar to that shown in FIG.

第6図にコイルの回転と射影データの取り込み
のタイミングを示す。モータ23としてパルスモ
ータを用い制御装置8からのパルスaにより1射
影毎に180/N度回転する。ここでNは射影の数
となる。回転数τ時間経過し、コイルが完全に停
止した時点で、制御装置8からのパルスbにより
信号検出が開始される。
FIG. 6 shows the timing of the rotation of the coil and the acquisition of projection data. A pulse motor is used as the motor 23, and is rotated by 180/N degrees for each projection by the pulse a from the control device 8. Here, N is the number of projections. When the rotation speed τ time has elapsed and the coil has completely stopped, signal detection is started by a pulse b from the control device 8.

ここでコイル15を回転させる理由について少
し詳しく述べる。先に述べたように、傾斜磁場を
対象物体に印加し、その射影データから対象物体
中の核スピンの密度分布などを精度よく得るに
は、傾斜磁場として線形性の優れたものが必要で
ある。第7図aは第4図に示すコイルにより発生
する傾斜磁場の一例を示す等高線図であるが、コ
イルの中心から離れるに従い線形からのずれが大
きくなつている。このような傾斜磁場を用いた場
合の射影32は第7図bに示すが、周波数1の信
号成分は等高線30に対応する対射物体31中の
核スピンからの信号の積分値となる。このように
積分経路がわん曲している場合、あらかじめその
経路が知られていれば、射影データから元の核ス
ピン密度分布を再生することは可能である。例え
ば、バツクプロジエクシヨン法により再生する場
合、通常行なわれている直線経路ではなくわん曲
した経路にデータを分配すればよい。いまxy面
を128×128に分割して像再生を行うとする。それ
に必要な傾斜磁場分布データへ約16000点となる。
これらのデータは1つの射影に必要な補正データ
であるが、従来のように傾斜磁場の回転を電気的
に行なおうとすると、各射影毎にこれらの補正デ
ータが必要となり、メモリーや演算時間が膨大と
なる。傾斜磁場を電気的に回転させるためには、
第4図に示すコイルの他に、それをZ軸を中心に
90゜回転させたコイルを用い、両者の電流値をI1
I2とした時、次式を満足するようにすればよい。
Here, the reason for rotating the coil 15 will be described in a little more detail. As mentioned earlier, in order to apply a gradient magnetic field to a target object and obtain accurate information such as the density distribution of nuclear spins in the target object from the projection data, a gradient magnetic field with excellent linearity is required. . FIG. 7a is a contour diagram showing an example of the gradient magnetic field generated by the coil shown in FIG. 4, and the deviation from the linear shape increases as the distance from the center of the coil increases. The projection 32 in the case of using such a gradient magnetic field is shown in FIG . When the integral path is curved in this way, it is possible to reproduce the original nuclear spin density distribution from projection data if the path is known in advance. For example, when reproducing data using the back projection method, data may be distributed along a curved path instead of the normally used straight path. Let us now assume that the xy plane is divided into 128 x 128 parts and image reconstruction is performed. Approximately 16,000 points of gradient magnetic field distribution data are required for this purpose.
These data are correction data necessary for one projection, but if we tried to electrically rotate the gradient magnetic field as in the past, these correction data would be required for each projection, which would increase memory and calculation time. It becomes huge. To electrically rotate the gradient magnetic field,
In addition to the coil shown in Figure 4, it is
Using a coil rotated 90 degrees, the current values of both are I 1 ,
When I 2 , the following formula should be satisfied.

I1=I0cosθ I2=I0sinθ ここでθは傾斜磁場の回転角度である。各々の
コイルにより発生する傾斜磁場をG1,G2とし、
x,y方向の単位ベクトルをi,jとすると、両
者の合成磁場Gは G=G1j+G2i=K(I1j+I2i) =KI0(cosθj+sinθi) となる。ここでKは比例定数であり、コイルの形
状と巻数により決まる値である。従つて、 |G|=KI0 となり、傾斜の大きさは常に一定で、その向きだ
けが変わる磁場が得られる。ところが第7図aに
示すように各々のコイルにより発生する傾斜磁場
は非線形であるため、θが変われば合成磁場の等
高線も変化することになる。像再生を行なう時に
わん曲した経路を補正データとして用いるために
は、以上の理由により各射影毎のデータが必要と
なるのである。しかし、本発明のように射影角度
と対応させて傾斜磁場発生用コイルを回転させれ
ば、その補正データは1つの射影だけのものでよ
く、2桁程度に減少するという利点が生じる。そ
れ故電気的な回転に比べより精度の高い補正も可
能となり、良質な再生像が得られるわけである。
I 1 = I 0 cosθ I 2 = I 0 sinθ Here, θ is the rotation angle of the gradient magnetic field. Let the gradient magnetic fields generated by each coil be G 1 and G 2 ,
If the unit vectors in the x and y directions are i and j, their combined magnetic field G is as follows: G=G 1 j+G 2 i=K(I 1 j+I 2 i)=KI 0 (cos θj+sin θi). Here, K is a proportionality constant, and is a value determined by the shape of the coil and the number of turns. Therefore, |G|=KI 0 , and a magnetic field is obtained in which the magnitude of the gradient is always constant and only its direction changes. However, as shown in FIG. 7a, since the gradient magnetic field generated by each coil is nonlinear, if θ changes, the contour lines of the composite magnetic field will also change. In order to use a curved path as correction data when performing image reconstruction, data for each projection is required for the reasons mentioned above. However, if the gradient magnetic field generating coil is rotated in correspondence with the projection angle as in the present invention, the correction data need only be for one projection, and there is an advantage that the correction data can be reduced to about two orders of magnitude. Therefore, it is possible to perform corrections with higher precision than with electrical rotation, and a high-quality reconstructed image can be obtained.

以上説明した如く本発明によれば、傾斜磁場の
空間的非線形性に起因する再生像の劣化を、1つ
の射影角度における補正データだけで全射影デー
タを補正することが可能となり、著しく再生像を
向上させる効果がある。さらに、電気的に傾斜磁
場を回転させる場合に比べコイル数が1組減るの
で、コイルの製作も高精度で行なえるという利点
もある。
As explained above, according to the present invention, it is possible to correct the deterioration of the reconstructed image due to the spatial nonlinearity of the gradient magnetic field using only the correction data at one projection angle, and the reconstructed image can be significantly improved. It has the effect of improving Furthermore, since the number of coils is reduced by one compared to the case where the gradient magnetic field is electrically rotated, there is also the advantage that the coils can be manufactured with high precision.

なお、実施例には示さなかつたが、コイルを回
転させる機構としては、コイルボビンに歯車で力
を伝達させることも可能なことは勿論である。い
ずれの場合にも伝達機構には非磁性体を用いるこ
とが必要である。
Although not shown in the embodiments, it is of course possible to transmit force to the coil bobbin using gears as a mechanism for rotating the coil. In either case, it is necessary to use a non-magnetic material for the transmission mechanism.

また、第3図の実施例ではZ方向の傾斜磁場を
発生するコイルも回転させていたが、このコイル
はZ方向のスライスを決めるためのものであり、
必ずしも回転させる必要はない。
In addition, in the embodiment shown in Fig. 3, a coil that generates a gradient magnetic field in the Z direction is also rotated, but this coil is for determining the slice in the Z direction.
It is not necessarily necessary to rotate it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は射影データを得るための原理を説明す
るための図、第2図は傾斜磁場の非線形性と射影
データとの関係を示す図、第3図は本発明の一実
施例を示すブロツク図、第4,5図は傾斜磁場発
生用コイルの構造を示す図、第6図はコイルの回
転と信号検出の関係を示すタイムチヤート、第7
図a,bは傾斜磁場の等高線と射影データとの関
係を示す図である。
Fig. 1 is a diagram for explaining the principle of obtaining projection data, Fig. 2 is a diagram showing the relationship between the nonlinearity of a gradient magnetic field and projection data, and Fig. 3 is a block diagram showing an embodiment of the present invention. Figures 4 and 5 are diagrams showing the structure of the gradient magnetic field generating coil, Figure 6 is a time chart showing the relationship between coil rotation and signal detection, and Figure 7 is a time chart showing the relationship between coil rotation and signal detection.
Figures a and b are diagrams showing the relationship between contour lines of a gradient magnetic field and projection data.

Claims (1)

【特許請求の範囲】[Claims] 1 検査対象に静磁場,傾斜磁場および高周波磁
場の各磁場を印加して、上記検査対象からの核磁
気共鳴信号を検出してなる核磁気共鳴を用いた検
査装置において、上記傾斜磁場を発生するコイル
を各射影ごとに回転させる手段を設けてなること
を特徴とする核磁気共鳴を用いた検査装置。
1. In an inspection device using nuclear magnetic resonance, which applies each of a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field to an inspection object and detects a nuclear magnetic resonance signal from the inspection object, the gradient magnetic field is generated. An inspection device using nuclear magnetic resonance, characterized in that it is provided with means for rotating a coil for each projection.
JP57022749A 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance Granted JPS58140628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022749A JPS58140628A (en) 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022749A JPS58140628A (en) 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JPS58140628A JPS58140628A (en) 1983-08-20
JPH0322171B2 true JPH0322171B2 (en) 1991-03-26

Family

ID=12091335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022749A Granted JPS58140628A (en) 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS58140628A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693429B2 (en) * 1987-02-27 1997-12-24 株式会社東芝 Magnetic resonance imaging equipment
JP2683381B2 (en) * 1988-09-19 1997-11-26 東芝機械株式会社 How to draw multiple array figures
DE10356219A1 (en) * 2003-11-25 2005-06-30 Rustemeyer, Peter, Dr. Nuclear magnetic resonance method for treatment of e.g. tumor in heart, involves changing antigen structure of tumor tissue by electromagnetic stimulation that depends on field intensity and direction of magnetic field gradients
EP3047292B1 (en) * 2013-09-17 2021-06-30 Synaptive Medical Inc. Coil assembly for magnetic resonance imaging

Also Published As

Publication number Publication date
JPS58140628A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
US4625171A (en) Imaging apparatus using nuclear magnetic resonance
JP2001505811A (en) Method and apparatus for measuring temperature distribution of an object by magnetic resonance
US4581581A (en) Method of projection reconstruction imaging with reduced sensitivity to motion-related artifacts
JPS61194338A (en) Method for correcting phase and shading of nuclear magnetic resonance image pick-up apparatus
JPH0747023B2 (en) Inspection device using nuclear magnetic resonance
JPH0322171B2 (en)
JPS58223048A (en) Method and apparatus for collecting projection data in nmr-ct device
JPH03224538A (en) Mri device provided with process for correcting primary magnetostatic field ununiformity and executing measurement
JP2021515648A (en) MR image formation by spiral acquisition
JPS6031069A (en) Examination apparatus using nuclear magnetic resonance
JP2585278B2 (en) Inspection equipment using nuclear magnetic resonance
JPS62103554A (en) Nmr imaging apparatus
JP2607466B2 (en) Inspection equipment using nuclear magnetic resonance
JPS58140630A (en) Inspecting device by using nuclear magnetic resonance
JPS63109847A (en) Nuclear magnetic resonance imaging apparatus
EP0153703A2 (en) NMR imaging apparatus
JPH0453537B2 (en)
JPH0244219B2 (en)
JPH06254063A (en) Magnetic resonance imaging system
JP3332951B2 (en) Magnetic resonance imaging equipment
JPS62240040A (en) Magnetic resonance imaging apparatus
JP3708135B2 (en) Magnetic resonance imaging system
JP3322695B2 (en) Magnetic resonance imaging equipment
JP3317552B2 (en) MRI equipment
JP2647066B2 (en) Inspection equipment using nuclear magnetic resonance