JPS58140630A - Inspecting device by using nuclear magnetic resonance - Google Patents
Inspecting device by using nuclear magnetic resonanceInfo
- Publication number
- JPS58140630A JPS58140630A JP57022751A JP2275182A JPS58140630A JP S58140630 A JPS58140630 A JP S58140630A JP 57022751 A JP57022751 A JP 57022751A JP 2275182 A JP2275182 A JP 2275182A JP S58140630 A JPS58140630 A JP S58140630A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetic fields
- gradient magnetic
- ramp
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56518—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、核磁気共鳴現象を用い、対象物体中の核スビ
/の密度分布あるいは緩和時間分布などを非破壊的に求
める検査装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inspection device that uses nuclear magnetic resonance phenomena to non-destructively determine the density distribution or relaxation time distribution of nuclear streaks in a target object.
従来、人体などの内部構造を非破壊的に検査する方法と
して、X線CTや超音波撮偉装置が広く利用嘔れて来て
いる。近年、こ扛に更に、核磁気共鳴現象を利用し同様
の検査を行う試みが成功し、XMCTや超音波撮イ象装
置では得られない情報を取得でさることが明らかになっ
て@た。核磁気共鳴を用いた検査装置(以下、単に「検
査装置」という。)は、核磁気共鳴現象を利用して対象
物体中の核スピンの密度分布、緩和時間分布等を非破壊
的に求めることにより、X線CTと同様の手法で対象物
体の所望の検査部位の断面像を構成、出力するものであ
る。このような検査装置においては、検査対象物体から
の信号を該物体各部に対応させて、分離・識別する必要
がある。その1つに、検査対象物体に傾斜磁場を印加し
、物体各部の置かれた静磁場を異ならせ、こ扛により各
部の共鳴周波数を異ならせることで位置情報金得る方法
がある。第1図はその原理を説明するための図である。2. Description of the Related Art Conventionally, X-ray CT and ultrasonic imaging devices have been widely used as methods for non-destructively inspecting internal structures of human bodies and the like. In recent years, attempts to conduct similar tests using nuclear magnetic resonance phenomena have been successful, and it has become clear that information that cannot be obtained with XMCT or ultrasound imaging devices can be obtained. Inspection equipment using nuclear magnetic resonance (hereinafter simply referred to as "inspection equipment") uses the nuclear magnetic resonance phenomenon to nondestructively determine the density distribution, relaxation time distribution, etc. of nuclear spin in a target object. This system constructs and outputs a cross-sectional image of a desired inspection region of a target object using a method similar to that of X-ray CT. In such an inspection apparatus, it is necessary to separate and identify signals from an object to be inspected in correspondence with each part of the object. One method is to obtain positional information by applying a gradient magnetic field to the object to be inspected, varying the static magnetic field placed in each part of the object, and thereby varying the resonance frequency of each part. FIG. 1 is a diagram for explaining the principle.
対象物体1に傾斜磁場G、を印加すると、該傾斜磁場G
、に垂直な綴止にある核スピンからの信号を積分した信
号強度分布2が、静磁場Hの関数として得らnる。核磁
気共鳴においてはf=γH/(2π) ・・・・・・・
・・・・・(1)の関係が成立するので、前記信号強度
は共鳴周波数fの関数であるとも言える。なお、上式に
おいて、rは核磁気回転比であり、核スピンに固有の値
である。次に、傾斜磁場の印加方向を変えて傾斜磁場G
、全印加すると信号強度分布3が得られる。傾斜磁場の
印加方向を種々夏化させて同様の信号強度分布、すなわ
ち射影データを求め扛ば、Xll1lCTと同様のアル
ゴリズムを用いて検査対象物体中の核スピンの密度分布
などを再構成することができる。、ところで射影データ
を得るために印加する前記傾斜磁場は空間的に線形では
なく、非線形の領域を含んでいる。第2図中の実#+1
4は空間的に線形な傾斜磁場を示し、その時対象物体1
′から得られる射影データ全実線5とする。これに対し
、破線6のように空間的に非線形であれば、その射影デ
ータは破線7となり、歪んだ射影データが得られる。こ
のような歪んだ射影データを再構成するとボケfc像に
なり、傾斜fiB場の非線形性が大きな画像劣化をもた
らす大きな要因となっていた。しかし、傾斜磁場分布か
あらがじめ知ら扛ていれば、信号の各胸波数成分と射影
データと全正確に対応付けることが可゛能になり、前記
非線形性の悪影響を除去することができる。ところが、
このような補正を行うには、各射影毎の傾斜磁場分布を
測可し、その値を収納することが必要である。例えば、
128X128マトリツクスからなる2次元の傾斜磁場
分布を、128射影の各部について収納するためには、
少なくとも10’ワードのメモリーを要することになり
、膨大なメモリーとなってしまう欠点がめった。When a gradient magnetic field G is applied to the target object 1, the gradient magnetic field G
, a signal intensity distribution 2 is obtained by integrating the signals from the nuclear spins located perpendicular to , as a function of the static magnetic field H. In nuclear magnetic resonance, f=γH/(2π)...
Since the relationship (1) holds true, it can be said that the signal strength is a function of the resonance frequency f. Note that in the above equation, r is the nuclear gyromagnetic ratio, which is a value specific to nuclear spin. Next, the gradient magnetic field G is changed by changing the direction of application of the gradient magnetic field.
, a signal intensity distribution 3 is obtained when all the signals are applied. By varying the direction of application of the gradient magnetic field and obtaining similar signal intensity distributions, that is, projection data, it is possible to reconstruct the density distribution of nuclear spins in the object to be inspected using an algorithm similar to Xll11CT. can. However, the gradient magnetic field applied to obtain projection data is not spatially linear but includes a nonlinear region. Fruit #+1 in Figure 2
4 indicates a spatially linear gradient magnetic field, when the target object 1
The projection data obtained from ' is all solid line 5. On the other hand, if the projection data is spatially nonlinear like the broken line 6, the projection data becomes the broken line 7, and distorted projection data is obtained. Reconstruction of such distorted projection data results in a blurred fc image, and the nonlinearity of the tilted fiB field is a major factor in causing significant image deterioration. However, if the gradient magnetic field distribution is known in advance, it becomes possible to completely accurately associate each chest wave number component of the signal with the projection data, and it is possible to eliminate the adverse effects of the nonlinearity. However,
To perform such correction, it is necessary to measure the gradient magnetic field distribution for each projection and store the values. for example,
In order to store a two-dimensional gradient magnetic field distribution consisting of a 128x128 matrix for each part of 128 projections,
It requires a memory of at least 10' words, which has the disadvantage of resulting in a huge amount of memory.
本発明の目的は、互いに直交する2つあるいは3つの、
傾斜出湯発生用コイル各々の#4斜磁場分布をあらかじ
め測定しておき、その傾斜磁場分布に基づいて任意断面
上の傾斜磁場分布全算出することにより、傾斜磁場の空
間的な非線形性の補正金容易に行なえるようにした検査
装置′(F−提供することにある。The object of the present invention is to provide two or three mutually orthogonal
By measuring the #4 oblique magnetic field distribution of each of the inclined hot water generation coils in advance and calculating the entire gradient magnetic field distribution on an arbitrary cross section based on the gradient magnetic field distribution, it is possible to correct the spatial nonlinearity of the gradient magnetic field. We provide an inspection device' (F-) that facilitates the inspection.
以下、本発明の実飛例を図面に基づいて詳細に説明する
。第3図は本発明の一実施例である検査装置の概略構成
を示すものである。制御装置8は各装置へ橢々の命令を
一定のタイミングで出力する。^周波パルス発生器9の
出刃は篭カ増幅器10で増幅され、高周波磁場発生用コ
イル11t−励振する。該コイル11は同時に受信用コ
イルを兼ねており該コイルで検出された信号成分は増幅
器12を通り、検波器13で検彼後、信号処理装置14
で1儂に変換9表示さnる。高周波パルス発生器9から
の他の出力は、検波器13で直角位相検it−行う時の
基準信号として用いらnる。Z方向及びそnに直角な方
向の傾斜磁場の発生は傾斜磁場発生用コイル15.15
’ 、15“で行ない、これらのコイルに電源16.1
6’ 、16“で駆動さ扛る。また静磁場の発生は静@
場発生用コイル17で行ない、該コイル17は電源18
で駆動される。X方向の傾斜出湯発生用コイル15〃は
X方向の傾斜磁場発生用コイル15′1r:Z軸のまわ
りに90 回転させたもので互いに直交する傾斜出湯全
発生する。対象物体19i1rベツド2゜上に横たわっ
ていて、ベッド20は台20’上全移動する。第4図は
X方向の傾斜磁場発生用コイル15“の−例を示し、矢
印はt流の向きを表わす。第5図はZ方向の傾斜磁場発
生用コイル15の一例を示すものである。Hereinafter, practical examples of the present invention will be explained in detail based on the drawings. FIG. 3 shows a schematic configuration of an inspection device that is an embodiment of the present invention. The control device 8 outputs obscene commands to each device at a constant timing. The output of the frequency pulse generator 9 is amplified by the cage amplifier 10, and excites the high frequency magnetic field generating coil 11t. The coil 11 also serves as a receiving coil, and the signal component detected by the coil passes through an amplifier 12, is detected by a detector 13, and then sent to a signal processing device 14.
Convert to 1 and display 9. The other output from the high frequency pulse generator 9 is used as a reference signal when performing quadrature phase detection in the wave detector 13. Generation of gradient magnetic fields in the Z direction and directions perpendicular to the Z direction is performed using gradient magnetic field generation coils 15.15.
' , 15" and power supply 16.1 to these coils.
6' and 16". Also, the static magnetic field is generated by static @
This is done using a field generating coil 17, which is connected to a power source 18.
is driven by. The coil 15 for generating hot water at an angle in the X direction is a coil for generating a gradient magnetic field in the X direction 15'1r, which is rotated 90 degrees around the Z axis, and all the hot water is generated at an angle at right angles to each other. The object 19i1r lies on the bed 2°, and the bed 20 moves entirely on the platform 20'. FIG. 4 shows an example of the coil 15'' for generating a gradient magnetic field in the X direction, and the arrow indicates the direction of the t flow. FIG. 5 shows an example of the coil 15 for generating a gradient magnetic field in the Z direction.
先に述べたように、傾斜磁場を対象物体に印加し、その
射影データから対象物体中の核スピンの密度分布などを
精度よく得るiKは、傾斜磁場として線形性の優扛たも
のが必要である。第6図(a)は第4図に示すコイルに
より発生する傾斜磁場の一例を示す等高線図であるが、
コイルの中心から離れるに従い、線形からのずれが大さ
くなってくる。As mentioned earlier, iK, which applies a gradient magnetic field to a target object and obtains the density distribution of nuclear spins in the target object with high precision from the projection data, requires a gradient magnetic field with excellent linearity. be. FIG. 6(a) is a contour diagram showing an example of the gradient magnetic field generated by the coil shown in FIG.
The deviation from linearity increases as the distance from the center of the coil increases.
このような傾斜磁場を用いた場合の射影21は第6図(
呻に示すが、周波数f、の信号成分は等高線22に対応
する対象物体23中の核スピンからの信号の積分値とな
る。このように積分経路がわん曲している場合、あらか
じめその経路が知ら扛ていれば、射影データから元の核
スピン密度分布を再生することは可能である。例えば、
バックプロジェクション法により再生する場合、通常行
なわ扛ている直線経路ではなく、わん曲した経路にデー
タを分配すnばよい。さて、このような積分経路全知る
には傾斜磁場分布がめら力・しめ知られていることが必
要である。1つの射影データを補正するために必要な磁
場分布データは再生画像の絵素とほぼ等しい128X1
28点程度である。ところが、従来性なわnているよう
に、直交する2つの傾斜磁場分布い、両者の合成により
回転傾斜磁場を発生させる場合、各射影角度毎に磁場分
布が変化するため、補正に必要なデータも128×12
8の射影倍となる。これは2次元の場合であるが、さら
に任意の断面を得ようとすると3次元の磁場分布データ
の射影倍を必要とし、膨大なデータとなってしまう。本
発明は、互いに直交する傾斜磁場を発生する傾斜磁場発
生用コイルの各々により発生する磁場分布をあらかじめ
測定しでおき、こnらの磁場分布を用いて任意断面の磁
場分布を計算し、補正データとして用いるものである。The projection 21 when using such a gradient magnetic field is shown in Figure 6 (
As shown in the figure, the signal component of frequency f is the integral value of the signal from the nuclear spin in the target object 23 corresponding to the contour line 22. When the integral path is curved in this way, it is possible to reconstruct the original nuclear spin density distribution from projection data if the path is known in advance. for example,
When reproducing data using the back projection method, it is sufficient to distribute the data along a curved path instead of the normally done straight path. Now, in order to know all such integral paths, it is necessary that the gradient magnetic field distribution is known. The magnetic field distribution data required to correct one projection data is 128×1 which is almost equal to the picture element of the reproduced image.
It is about 28 points. However, as is conventional practice, when two orthogonal gradient magnetic field distributions are combined to generate a rotating gradient magnetic field, the magnetic field distribution changes for each projection angle, so the data required for correction is 128×12
It is the projection times 8. This is a two-dimensional case, but in order to obtain an arbitrary cross section, it is necessary to multiply the three-dimensional magnetic field distribution data by projection, resulting in a huge amount of data. The present invention measures in advance the magnetic field distribution generated by each of the gradient magnetic field generating coils that generate mutually orthogonal gradient magnetic fields, calculates and corrects the magnetic field distribution of an arbitrary cross section using these magnetic field distributions. This is used as data.
例えば、第7図に示すようにxy断面24を検査する場
合、Z軸のまわりに傾斜磁場を回転させ射影データを取
り込む。傾斜磁場の回転はx、X方向の傾斜磁場G、、
Gアの合成により行なう。いま、x、X方向の単位ベク
トル’kin jとし、G、、Gアを
で与えると、両者の合成磁場Gは
G=、β17p璽百肩7I]冒i・・曲(3)となり、
大きさに一定でその向きがθで変化する磁場となる。そ
こで、傾斜磁場G、、G、 全それぞれ発生する各傾斜
磁場発生コイル15’ 、 15”の磁場分布H,(x
、y)、Hア (x、y)會めらかじめ求めておけば%
P(x、y)における合成磁場強度H−y(X、y)
は次式により算出できる。For example, when inspecting the xy cross section 24 as shown in FIG. 7, the gradient magnetic field is rotated around the Z axis to capture projection data. The rotation of the gradient magnetic field is x, the gradient magnetic field G in the X direction,
This is done by synthesizing G. Now, let x be a unit vector 'kin j in the
It becomes a magnetic field whose magnitude is constant and whose direction changes with θ. Therefore, the magnetic field distribution H, (x
, y), H a (x, y) If we calculate the humidity of the meeting, %
Combined magnetic field strength H−y(X,y) at P(x,y)
can be calculated using the following formula.
HIIF (Xs y)=Hx(xe y)ωSθ+H
y (xs y)sinθ ・・・・・・・・・ (4
)その時の傾斜磁場は
・・・・・・・・・・・・(5)
で与えられる。従って、H,(x、y)とHア<x、y
>の2組だけの磁場分布により任意の射影角度に対する
傾斜磁場が算出できるのである。HIIF (Xs y)=Hx(xe y)ωSθ+H
y (xs y) sin θ ・・・・・・・・・ (4
) The gradient magnetic field at that time is given by (5). Therefore, H, (x, y) and H a < x, y
The gradient magnetic field for any projection angle can be calculated using only two sets of magnetic field distributions.
第8図は第3図に示した磁場分布の測定装置25のより
詳しい構造を示す。磁場分布の測定は、共鳴信号の生じ
る周波数から(1)式により求めることができる。共鳴
信号を生じる試料26は、アーム27の先端に収り付け
らnており、アーム27はアーム28上のレールを移動
する。アーム28はアーム29上のレール全移動し、ア
ーム29は台30上のレールを移動する。従って、試料
26はxe )’s ”の任意の方向を移動することが
できる。FIG. 8 shows a more detailed structure of the magnetic field distribution measuring device 25 shown in FIG. The magnetic field distribution can be measured using equation (1) from the frequency at which the resonance signal occurs. A sample 26 that generates a resonance signal is placed at the tip of an arm 27, and the arm 27 moves on a rail on an arm 28. The arm 28 moves entirely on the rail on the arm 29, and the arm 29 moves on the rail on the stand 30. Therefore, the sample 26 can move in any direction of xe)'s''.
アームの移動は例えば第9図に示すように、パルスモー
タ31の軸に取り付けらnたプーリー32によりベルト
33t−移動させ、ベルト33に固定されたアーム34
を移動させることにより容易に実現できる。このような
機構がアーム27,28゜29に用いられる。磁場分布
の測定は、対象物体19の検査に先立って行なわれ、測
定装置25の試料26を各傾斜磁場発生用コイル内に配
置し、パルスモータ31tl−制御装置8からの命令に
より駆動して、上記試料26を所定の平面内で間欠的に
移動させ、各位置での試料26からの共鳴信号を検出し
、信号処理装置14内のメモリに格納することにより、
上記所定平面上の@場外布を測定する。For example, as shown in FIG. 9, the arm is moved by a pulley 32 attached to the shaft of a pulse motor 31, and an arm 34 fixed to the belt 33 is moved.
This can be easily achieved by moving the . Such a mechanism is used for the arms 27, 28 and 29. The measurement of the magnetic field distribution is carried out prior to the inspection of the target object 19, by placing the sample 26 of the measuring device 25 in each gradient magnetic field generating coil, and driving the pulse motor 31tl by a command from the control device 8. By intermittently moving the sample 26 within a predetermined plane, detecting the resonance signal from the sample 26 at each position, and storing it in the memory in the signal processing device 14,
Measure the @outside cloth on the above predetermined plane.
例えば、磁場分布H,(x、y)は、X方向の傾斜磁場
発生用コイル15′を駆動しX方向の傾斜磁場G0のも
とで試料251rx y平面内で移動させることにより
、得ら扛る。For example, the magnetic field distribution H, (x, y) can be obtained by driving the gradient magnetic field generating coil 15' in the X direction and moving the sample 251 within the rxy plane under the gradient magnetic field G0 in the X direction. Ru.
第10図に本発明の他の実施例の要部を示すものであり
、磁場分布の測定に、第10図(a)のように複数個、
例えば128個の試料を1列に並べた試料35を用いる
場合である。いfy@方向に傾斜磁場G0が印加さ扛て
いるとする。このと′@第1θ図(b)のように座標y
Iにめる試料35からの共鳴信号36が得らnlその共
鳴周波数’kf+とすると、(1)式よりHI=2πf
t /γ が求まるので、1度に128点の磁場分布
を知ることができる。こnらの試料35をX方向に移動
させることでXY平面上のfB磁場分布短時間にyl1
1定でさることになる。FIG. 10 shows the main part of another embodiment of the present invention, in which a plurality of devices are used to measure the magnetic field distribution, as shown in FIG. 10(a).
For example, this is the case where sample 35 is used, in which 128 samples are arranged in one row. Assume that a gradient magnetic field G0 is applied in the fy@ direction. In this case, the coordinate y is
If the resonance signal 36 from the sample 35 placed in
Since t/γ is determined, the magnetic field distribution at 128 points can be known at one time. By moving these samples 35 in the X direction, the fB magnetic field distribution on the XY plane can be changed to yl1 in a short time.
It will be monkey at 1 fixed.
以上の説明から明らかなように、XY平面に限らず任意
の面上においても
Q、=Qocosα5IIlβei
()、:=Gosinαsinβ・j
()、=GoωSβ・k
なる形で傾斜磁場G、、Gア、G、i与えfば任意の回
転磁場を発生で@J射影データを得ることができる。こ
こで、α、βは傾斜a場ベクトルのxy平面への射影が
X軸となす角度及び傾斜磁場ベクトルが2軸となす角度
である。’E fc、’ s J *kux、y、z
軸の単位ベクトルである。この場合には、傾斜磁場G、
、Gア、G1をそnぞn単独に発生させ友ときの磁場分
布をあらかじめ測定しておけばよい。As is clear from the above explanation, not only on the XY plane but also on any plane, the gradient magnetic field G, , G a, If G and i are given f, @J projection data can be obtained by generating an arbitrary rotating magnetic field. Here, α and β are the angle that the projection of the gradient a field vector onto the xy plane makes with the X axis, and the angle that the gradient magnetic field vector makes with the two axes. 'E fc,' s J *kux, y, z
is the unit vector of the axis. In this case, the gradient magnetic field G,
, Ga, and G1 may be generated individually and the magnetic field distribution at the other end may be measured in advance.
以上説明した如く本発明によnは、x、y、z方向の傾
斜磁場全発生する各コイルの磁場分布をあらかじめ測定
しておくことにより、任意の射影角度での傾斜磁場の非
直線性を容易に補正することができ、再生画像のIt!
1lft向上に著しい効果がある。As explained above, according to the present invention, by measuring in advance the magnetic field distribution of each coil that generates all the gradient magnetic fields in the x, y, and z directions, the nonlinearity of the gradient magnetic field at any projection angle can be investigated. It can be easily corrected and the It! of the reproduced image can be easily corrected.
It has a remarkable effect on improving 1ft.
第1図は射影データ會得るための原理を示す図、第2図
は傾斜磁場の非線形の影響を説明するための図、第3図
に本発明の一実施例を示すブロック図、第4図、第5図
は傾斜磁場発生用コイルの構造を示す図、第6図(a)
、 (b)は傾@磁場の等高融と射影データとの関゛係
を示す図、第7図は傾斜磁場の合成法を説明するための
図、第8図、第9図は本発明に用いられる磁場分布測定
装置の一例を説明する図、第10図(a)、 (b)は
出湯分布測定装置の22
猶 I 目
第 212]
Y’13 図
j2
第5 図
% 61D(a) 、1lPi61ffi(b)
)PiV 図
鳩 δ 目
6
′vJ’? 目
vito 図
:[Fig. 1 is a diagram showing the principle for obtaining projection data, Fig. 2 is a diagram to explain the nonlinear influence of gradient magnetic fields, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 , Fig. 5 is a diagram showing the structure of the gradient magnetic field generation coil, Fig. 6(a)
, (b) is a diagram showing the relationship between the isotonicity of the gradient @ magnetic field and the projection data, Figure 7 is a diagram for explaining the method of synthesizing the gradient magnetic field, and Figures 8 and 9 are the diagrams of the present invention. Figures 10(a) and 10(b) are diagrams illustrating an example of a magnetic field distribution measuring device used for the hot water distribution measuring device. , 1lPi61ffi(b)
) PiV Figure Pigeon δ Eye 6 'vJ'? Vito Diagram: [
Claims (1)
場を印加して、上記検査対象からの核磁気共鳴信号を検
出してなる核磁気共鳴を用いた検査装置において、上記
傾斜磁場を発生するコイルの磁場分布を測定する測定手
段と、該測定手段によりあらかじめ測定した互いに直交
する少なくとも2組の傾斜磁場分布から、上記検査対象
の所望の断面上の傾斜磁場分布を算出する手段を具備す
ることを特徴とする核磁気共鳴を用いた検査装置。 2、上記測定手段が、試料と、該試料全所定の平面内で
移動させる移動手段とを有し、上記平面内に位置する上
記試料からの核磁気共鳴信号を検出して上記傾斜磁場分
布を測定すること全特徴とする特許請求の範囲第1項記
載の検査装置。 3、上記試料が、−列に配列された複数の試料からなる
ことを特徴とする特許請求の範囲第2項記載の検査装置
。[Scope of Claims] 1. In an inspection device using nuclear magnetic resonance, which applies each magnetic field of a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field to an inspection object and detects a nuclear magnetic resonance signal from the inspection object. , a measuring means for measuring the magnetic field distribution of a coil that generates the gradient magnetic field, and a gradient magnetic field distribution on a desired cross section of the inspection object from at least two sets of mutually orthogonal gradient magnetic field distributions measured in advance by the measuring means. An inspection device using nuclear magnetic resonance, characterized by comprising means for calculating. 2. The measuring means includes a sample and a moving means for moving the entire sample within a predetermined plane, and detects a nuclear magnetic resonance signal from the sample located within the plane to determine the gradient magnetic field distribution. 2. An inspection device according to claim 1, characterized in that the inspection device performs measurement. 3. The inspection device according to claim 2, wherein the sample is composed of a plurality of samples arranged in a row.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57022751A JPS58140630A (en) | 1982-02-17 | 1982-02-17 | Inspecting device by using nuclear magnetic resonance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57022751A JPS58140630A (en) | 1982-02-17 | 1982-02-17 | Inspecting device by using nuclear magnetic resonance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58140630A true JPS58140630A (en) | 1983-08-20 |
Family
ID=12091389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57022751A Pending JPS58140630A (en) | 1982-02-17 | 1982-02-17 | Inspecting device by using nuclear magnetic resonance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58140630A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01120816U (en) * | 1988-02-08 | 1989-08-16 | ||
JP2009010190A (en) * | 2007-06-28 | 2009-01-15 | Daihen Corp | Inductor |
JP2018514324A (en) * | 2015-05-12 | 2018-06-07 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Magnetic resonance inspection system using field probe |
-
1982
- 1982-02-17 JP JP57022751A patent/JPS58140630A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01120816U (en) * | 1988-02-08 | 1989-08-16 | ||
JPH0511848Y2 (en) * | 1988-02-08 | 1993-03-25 | ||
JP2009010190A (en) * | 2007-06-28 | 2009-01-15 | Daihen Corp | Inductor |
JP2018514324A (en) * | 2015-05-12 | 2018-06-07 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Magnetic resonance inspection system using field probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4672320A (en) | Imaging apparatus and method using nuclear magnetic resonance | |
JP4106053B2 (en) | Magnetic resonance imaging apparatus and eddy current compensation derivation method | |
JPH0236260B2 (en) | ||
JPH0747023B2 (en) | Inspection device using nuclear magnetic resonance | |
JPH0685768B2 (en) | Inspection method using nuclear magnetic resonance | |
JPS58140630A (en) | Inspecting device by using nuclear magnetic resonance | |
JPS6148752A (en) | Inspecting device using nuclear magnetic resonance | |
JP3345527B2 (en) | Nuclear magnetic resonance equipment | |
JPH0556140B2 (en) | ||
JPH0454448B2 (en) | ||
JP2585278B2 (en) | Inspection equipment using nuclear magnetic resonance | |
JPS62148658A (en) | Examination method using nuclear magnetic resonance | |
JP2607466B2 (en) | Inspection equipment using nuclear magnetic resonance | |
JPS58140628A (en) | Inspecting device using nuclear magnetic resonance | |
JPS6039539A (en) | Inspecting device using nuclear magnetic resonance | |
JPS61226648A (en) | Inspecting device using nuclear magnetic resonance | |
JPS62246356A (en) | Examination apparatus using nuclear magnetic resonance | |
JP2647066B2 (en) | Inspection equipment using nuclear magnetic resonance | |
US5065097A (en) | Testing method and apparatus by use of nmr | |
JPS61269052A (en) | Examination method using nuclear magnetic resonance | |
JPH0244219B2 (en) | ||
JPS60185146A (en) | Examination apparatus using nuclear magnetic resonance | |
JPS63216551A (en) | Nuclear magnetic resonance imaging apparatus | |
JPS61258152A (en) | Inspecting device using nuclear magnetic resonance | |
JP2602226B2 (en) | Nuclear magnetic resonance imaging equipment |