JPH03221444A - Oxidation-resistant carbon material - Google Patents

Oxidation-resistant carbon material

Info

Publication number
JPH03221444A
JPH03221444A JP1743990A JP1743990A JPH03221444A JP H03221444 A JPH03221444 A JP H03221444A JP 1743990 A JP1743990 A JP 1743990A JP 1743990 A JP1743990 A JP 1743990A JP H03221444 A JPH03221444 A JP H03221444A
Authority
JP
Japan
Prior art keywords
layer
carbon
intermediate layer
metal carbide
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1743990A
Other languages
Japanese (ja)
Other versions
JP2827387B2 (en
Inventor
Tadashi Sasa
佐々 正
Masahito Ishizaki
雅人 石崎
Yasuhiro Shigegaki
康弘 茂垣
Kaoru Miyahara
宮原 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1743990A priority Critical patent/JP2827387B2/en
Publication of JPH03221444A publication Critical patent/JPH03221444A/en
Application granted granted Critical
Publication of JP2827387B2 publication Critical patent/JP2827387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable a material to be obtained which has a high heat resistance, oxidation-resistance, and corrosion resistance by providing a metallic carbide layer on the surface of a carbon parent material via a first intermediate layer, and also providing a metallic carbide layer on the metallic carbide layer via a second intermediate layer. CONSTITUTION:On the surface of a carbon parent material 1, a first intermediate layer 2 consisting of carbon and silicon carbide is formed, and a metallic carbide layer 3 consisting of silicon carbide is provided on the first intermediate layer 2. In the next place, on the metallic carbide layer 3, a second intermediate layer 4 consisting of silicon carbide and spinels (Al2O3.MgO) is provided, and a metallic carbide layer 5 consisting of spinels is provided on the second intermediate layer 4. The composition of two components of the intermediate layers 2, 4 in this instance is made into inclination composition layers that alter successively or gradually.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばガスタービン部材、高温原子炉部材
、ジェットエンジン部材、ロケット部材、高温化学プラ
ント部材などとして使用され、高温雰囲気下で優れた耐
酸化性を有する耐酸化性炭素系材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is used as, for example, gas turbine parts, high-temperature nuclear reactor parts, jet engine parts, rocket parts, high-temperature chemical plant parts, etc., and has excellent performance under high-temperature atmospheres. The present invention relates to an oxidation-resistant carbon-based material having oxidation resistance.

〔従来の技術〕[Conventional technology]

炭素繊維強化炭素などの炭素系材料は、優れた耐熱性を
有するものの高温酸化性雰囲気下ではその表面が酸化さ
れて徐々に劣化してゆく。
Although carbon-based materials such as carbon fiber-reinforced carbon have excellent heat resistance, their surfaces are oxidized and gradually deteriorate in high-temperature oxidizing atmospheres.

このため、高温における耐酸化性を向上させる手段とし
て、炭素系材料の表面に直接アルミナ、ジルコニア、チ
タニャなどの金属酸化物からなる保護被膜をCVD広な
どによって設けることが行われている。
Therefore, as a means to improve oxidation resistance at high temperatures, a protective coating made of a metal oxide such as alumina, zirconia, titania, etc. is directly provided on the surface of a carbon-based material by CVD or the like.

しかしながら、このような金属酸化物からなる保護被膜
を設けた炭素系材料では、母材の炭素系材料と保護被膜
の金属酸化物との熱膨張率の差に基づいて、高温下での
使用に際し、保護被膜に亀裂が入ったり、保護被膜が剥
離したりすることがある。このような不都合を避けるに
は、保護被膜の厚さを数μm程度と極めて薄くせざるを
得ない。
However, carbon-based materials with protective coatings made of metal oxides cannot be used at high temperatures due to the difference in thermal expansion coefficient between the carbon-based material of the base material and the metal oxide of the protective coating. , the protective coating may crack or peel off. In order to avoid such inconveniences, the thickness of the protective coating must be extremely thin, on the order of several μm.

しかし、これでは膜厚が不足し、母材を酸化から長時間
にわたって確実に保護することができない問題かある。
However, this has the problem that the film thickness is insufficient and the base material cannot be reliably protected from oxidation for a long period of time.

また、金属酸化物の種類によっては、保護被膜の金属酸
化物と母材の炭素系材料が高温雰囲気で直接化学反応を
起こし、保護被膜か変質し、保護機能を失うこともある
Furthermore, depending on the type of metal oxide, the metal oxide of the protective coating and the carbon-based material of the base material may undergo a direct chemical reaction in a high-temperature atmosphere, causing the protective coating to change in quality and lose its protective function.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

よって、この発明の課題は、高温雰囲気下においても亀
裂や剥離などの機械的損傷が生ずることかなく、かつ母
材との化学反応などの化学的損傷か生ずることのない耐
酸化性被膜を有する耐酸化性炭素系材料を提供すること
にある。
Therefore, it is an object of this invention to have an oxidation-resistant coating that does not cause mechanical damage such as cracking or peeling even in a high-temperature atmosphere, and does not cause chemical damage such as chemical reaction with the base material. An object of the present invention is to provide an oxidation-resistant carbon-based material.

〔課題を解決するための手段〕[Means to solve the problem]

かかる課題は、炭素系母材表面に第1の中間層を介して
金属炭化物層を設け、この金属炭化物層上に第2の中間
層を介して金属酸化物層を設け、第1の中間層を炭素と
金属炭化物とから、第2の中間層を金属炭化物と金属酸
化物とから構成した多層構造の被膜を設けることによっ
て解決される。
This problem can be solved by providing a metal carbide layer on the surface of the carbon-based base material via a first intermediate layer, providing a metal oxide layer on the metal carbide layer via a second intermediate layer, and forming the first intermediate layer. This problem can be solved by providing a multilayered coating in which the second intermediate layer is made of carbon and a metal carbide, and the second intermediate layer is made of a metal carbide and a metal oxide.

〔作 用〕[For production]

最外層か高温酸化性雰囲気下で最も安定な金属酸化物か
らなっているため、優れた耐酸化性を発揮する。また、
金属酸化物層と母材との中間には、金属酸化物および炭
素のいずれにも反応しない金属炭化物からなる層がある
ため、母材の炭素と金属酸化物との反応が防止される。
It exhibits excellent oxidation resistance because the outermost layer is made of metal oxide, which is the most stable under high-temperature oxidizing atmospheres. Also,
Between the metal oxide layer and the base material, there is a layer made of a metal carbide that does not react with either the metal oxide or carbon, thereby preventing the reaction between the carbon of the base material and the metal oxide.

さらに、第1および第2の中間層によって熱膨張係数等
の差が緩衝され、金属酸化物層および金属炭化物層の割
れや剥離が防止される。
Furthermore, the first and second intermediate layers buffer differences in thermal expansion coefficients, etc., and prevent cracking and peeling of the metal oxide layer and metal carbide layer.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、この発明の耐酸化性炭素系材料の一例を示す
もので、図中符号1は炭素系母材である。
FIG. 1 shows an example of the oxidation-resistant carbon-based material of the present invention, and reference numeral 1 in the figure indicates a carbon-based base material.

この炭素系母材1には、例えば、炭素、黒鉛あるいはこ
れらを炭素繊維で強化した炭素繊維強化炭素などが用い
られる。
As the carbon-based base material 1, for example, carbon, graphite, or carbon fiber-reinforced carbon obtained by reinforcing these with carbon fibers is used.

この炭素系母材1の表面上には第1の中間層2が設けら
れている。この第1の中間層2は、この第1の中間層2
の上に設けられる金属炭化物層3を構成する金属炭化物
と母材1の炭素とからなる層であって、好ましくは、こ
の二つの成分の組成がその厚さ方向に連続的あるいは段
階的に変化し、母材l側に這い部分ては炭素か多く、金
属炭化物層3に近い部分では金属炭化物か多いような傾
斜組成層であることか望ましい。この第1の中間層2は
、よって1層または2層以上の多層構造となることかあ
り、その全厚さは、約25〜75μm程度とされるが、
これに限られることはない。この第1の中間層2の形成
には通常のCVD法などか用いられ、組成の変化は、2
以上の気体原料の組成比あるいは気体原料の組み合わせ
およびその組成比を時間的に変化させることにまり遠戚
できる。また、炭素と金属炭化物との混合物を塗布し、
焼成する方法でもよく、この混合物の組成比を順次変化
させて多層構造の第1の中間層2を作ることかできる。
A first intermediate layer 2 is provided on the surface of this carbon-based base material 1 . This first intermediate layer 2 is
A layer consisting of metal carbide constituting the metal carbide layer 3 provided thereon and carbon of the base material 1, preferably in which the composition of these two components changes continuously or stepwise in the thickness direction. However, it is desirable that the composition be a graded composition layer in which the portion extending toward the base material l side is rich in carbon, and the portion close to the metal carbide layer 3 is rich in metal carbide. This first intermediate layer 2 may therefore have a multilayer structure of one layer or two or more layers, and its total thickness is approximately 25 to 75 μm.
It is not limited to this. A normal CVD method or the like is used to form this first intermediate layer 2, and the composition change is 2
It can be closely related to changing the composition ratio of the gaseous raw materials or the combination of gaseous raw materials and the composition ratio thereof over time. Also, applying a mixture of carbon and metal carbide,
A firing method may be used, and the first intermediate layer 2 having a multilayer structure can be formed by sequentially changing the composition ratio of this mixture.

さ与に、焼成後に炭素および金属炭化物となる液状の前
駆体の混合物を塗布し、焼成する方法でもよく、同様に
その混合比を順次変化させて多層構造の傾斜組成層とす
ることかできる。
Alternatively, a method may be used in which a mixture of liquid precursors that become carbon and metal carbides after firing is applied and fired, and similarly, the mixture ratio can be sequentially changed to form a multilayer structure with a gradient composition layer.

また、この第1の中間層3は、多孔質であってもよく、
勿論緻密な無孔質であってもよい。
Further, this first intermediate layer 3 may be porous,
Of course, it may be dense and non-porous.

このような第1の中間層2上には、上述のように、金属
炭化物層3が設けられている。この金属炭化物層3は、
ケイ素、チタン、ジルコニウム、ハフニウム、クロム、
トリウムなどの金属の炭化物の1種または2種以上の混
合物からなるものである。この金属炭化物層3の厚さは
10〜50μm程度が好ましいが、この範囲に限られる
ものではない。金属炭化物層3の形成には、CVD法、
スバ、タ法などの他に金属炭化物粉末スラリーを塗布し
、不活性雰囲気で焼成する方法や金属炭化物の液状前駆
体を塗布し、焼成する方法などが用いられる。金属炭化
物層3は多孔質であってもよく、また2層以上の多層構
造でもよい。
As described above, the metal carbide layer 3 is provided on the first intermediate layer 2. This metal carbide layer 3 is
silicon, titanium, zirconium, hafnium, chromium,
It consists of one kind or a mixture of two or more kinds of metal carbides such as thorium. The thickness of this metal carbide layer 3 is preferably about 10 to 50 μm, but is not limited to this range. For forming the metal carbide layer 3, CVD method,
In addition to the Suba and Ta methods, a method of applying a metal carbide powder slurry and firing in an inert atmosphere, a method of applying a liquid precursor of a metal carbide, and firing, etc. are used. The metal carbide layer 3 may be porous or may have a multilayer structure of two or more layers.

さらに、この金属炭化物層3上には第2の中間層4が設
けられている。この第2の中間層4は、この層4の上に
設けられる金属酸化物層5を構成する金属酸化物と金属
炭化物層3を構成する金属炭化物とからなる層であって
、好ましくは第1の中間層2と同様に、この二成分の組
成がその厚さ方向に連続的あるいは段階的に変化し、金
属炭化物層3に近い部分では金属炭化物が多く、金属酸
化物層5に近い部分では金属酸化物が多いような傾斜組
成層であることが望ましい。この第2の中間層4の厚さ
は、約25〜75μm程度が好ましい。また、第2の中
間層4の形成方法は、第1の中間層2の形成に用いられ
た方法がそのまま適用できる。
Furthermore, a second intermediate layer 4 is provided on this metal carbide layer 3. This second intermediate layer 4 is a layer made of a metal oxide forming the metal oxide layer 5 provided on this layer 4 and a metal carbide forming the metal carbide layer 3, and preferably Similar to the intermediate layer 2, the composition of these two components changes continuously or stepwise in the thickness direction, with the portion close to the metal carbide layer 3 having a large amount of metal carbide, and the portion close to the metal oxide layer 5 having a large amount of metal carbide. It is desirable that the layer be a graded composition layer containing a large amount of metal oxide. The thickness of this second intermediate layer 4 is preferably about 25 to 75 μm. Further, as the method for forming the second intermediate layer 4, the method used for forming the first intermediate layer 2 can be applied as is.

さらに、この第2の中間層2上に最外層となる金属酸化
物層5が設けられている。この金属酸化物層5は、アル
ミニウム、ケイ素、マグネシウム、チタン、/ハフニウ
ム、ハフニウム、クロム、トリウムなどの金属の酸化物
の1種または2種以上の混合物からなるものである。金
属酸化物層5の厚さは、要求される耐酸化性の度合によ
っても異なるか、通常は10〜100μm程度とされる
Furthermore, a metal oxide layer 5 serving as the outermost layer is provided on the second intermediate layer 2. The metal oxide layer 5 is made of one or a mixture of two or more metal oxides such as aluminum, silicon, magnesium, titanium, hafnium, hafnium, chromium, and thorium. The thickness of the metal oxide layer 5 varies depending on the degree of oxidation resistance required, and is usually about 10 to 100 μm.

金属酸化物層5の形成は、金属炭化物層3の形成方法と
同様の方法か用いられる。
The metal oxide layer 5 is formed using the same method as the metal carbide layer 3.

このような構成の耐酸化性炭素系材料にあっては、最外
層の金属酸化物層5によって、高い耐酸化性か得られる
。また金属酸化物層5と母材1との中間には金属炭化物
層3が存在することにより、高温での母材1の炭素と金
属酸化物層5の金属酸化物との反応が防止される。さら
に、第1および第2の中間層2,4か存在することによ
り、熱膨張係数等の差が緩衝され、割れ、剥離か生ずる
ことがなく、かつ母材lと金属炭化物層3とのおよび金
属炭化物層3と金属酸化物層5との接合強度も高いもの
となる。
In the oxidation-resistant carbon-based material having such a configuration, high oxidation resistance can be obtained by the outermost metal oxide layer 5. Furthermore, the presence of the metal carbide layer 3 between the metal oxide layer 5 and the base material 1 prevents the reaction between the carbon of the base material 1 and the metal oxide of the metal oxide layer 5 at high temperatures. . Furthermore, the presence of the first and second intermediate layers 2 and 4 buffers the difference in coefficients of thermal expansion, etc., prevents cracking and peeling, and also prevents the difference between the base material l and the metal carbide layer 3. The bonding strength between the metal carbide layer 3 and the metal oxide layer 5 is also high.

〔実施例〕〔Example〕

炭素系母材lとして、径7μmの炭素繊維からなる二次
元織物を複数枚積層しこの積層物の空隙(約45体積%
)に炭素を充填した炭素繊維強化炭素を用いた。この炭
素系母材1の表面に、炭素と炭化ケイ素からなる第1の
中間層2を形成した。
As the carbon-based matrix l, a plurality of two-dimensional fabrics made of carbon fibers with a diameter of 7 μm are laminated, and the voids (approximately 45% by volume) of this laminate are
) using carbon fiber-reinforced carbon filled with carbon. A first intermediate layer 2 made of carbon and silicon carbide was formed on the surface of this carbon-based base material 1.

これの形成にはCVD法を用い、気体原料として初めは
メタン、水素比(体積比)か10:90のものを用い、
その組成を経時的に、連続的に変化させ最後にはメタン
 四塩化ケイ素 水素比が515:80のものを用いる
ことによって膜組成が連続的に変化するようにした。処
理温度は1400°Cてあり、膜厚は50μm、気孔率
O%であった。
The CVD method is used to form this, and initially methane and hydrogen ratio (volume ratio) of 10:90 is used as the gaseous raw material.
The composition was changed continuously over time, and finally, by using a film having a methane:silicon tetrachloride:hydrogen ratio of 515:80, the film composition was made to change continuously. The treatment temperature was 1400°C, the film thickness was 50 μm, and the porosity was 0%.

この第1の中間層2上に炭化ケイ素からなる厚さ20μ
mの金属炭化物層3を設けた。この金属炭化物層3の形
成は、第1の中間層2の形成後、そのままの条件で延長
することで行われた。気孔率0%。
A thickness of 20 μm made of silicon carbide is formed on this first intermediate layer 2.
A metal carbide layer 3 of m was provided. The metal carbide layer 3 was formed by extending the first intermediate layer 2 under the same conditions after the formation of the first intermediate layer 2. Porosity: 0%.

この金属炭化物層3上に、炭化ケイ素とスピネル(A 
(lto 3 ・M g○)とからなる厚さ50μmの
第2の中間層4を設けた。この第2の中間層4は、三層
構造で、金属炭化物層3側から、順に炭化ケイ素とスピ
ネルの混合比が3:1,1:11.3の組成となってい
る。この層の形成方法は炭化ケイ素とスピネルとの混合
粉を塗布し、アルゴン雰囲気中で焼成する方法によった
。よって、この層は約20〜40体積%の気孔率を有す
る多孔質層である。
On this metal carbide layer 3, silicon carbide and spinel (A
A second intermediate layer 4 having a thickness of 50 μm and consisting of (lto 3 ·M g○) was provided. This second intermediate layer 4 has a three-layer structure, and has a composition in which the mixing ratio of silicon carbide and spinel is 3:1 and 1:11.3 in order from the metal carbide layer 3 side. This layer was formed by applying a mixed powder of silicon carbide and spinel and firing it in an argon atmosphere. This layer is thus a porous layer with a porosity of approximately 20-40% by volume.

最゛後に、この第2の中間層4上にスピネルからなる厚
さ30μmの金属酸化物層5を設けた。この層5は二層
構造となっており、下層はスピネル粉末を塗布し、アル
コン中で焼成することで形成し、上層はアルミニウムゾ
ルとマグネシウムゾルとの混合物を塗布し、焼成するこ
とで緻密な膜とした。
Finally, a metal oxide layer 5 made of spinel and having a thickness of 30 μm was provided on the second intermediate layer 4. This layer 5 has a two-layer structure; the lower layer is formed by applying spinel powder and firing in Alcon, and the upper layer is formed by applying a mixture of aluminum sol and magnesium sol and firing to form a dense layer. It was made into a film.

このようにして得られた炭素系材料の被膜表面を、高速
火炎で表面温度1800℃まで加熱する操作を20サイ
クル繰り返したが、最外層の金属酸化物層5には剥離、
割れの発生が認められず、酸化も受けなかった。
The coating surface of the carbon-based material obtained in this way was heated to a surface temperature of 1800°C using a high-velocity flame for 20 cycles, but the outermost metal oxide layer 5 did not peel off.
No cracking was observed and no oxidation occurred.

これに対して、同様の炭素系母材1上に直接金属酸化物
層5を同様の方法で設けようとしたが、亀裂か入った膜
しか形成てきなかった。また、同様の加熱テストを行っ
たところ、金属酸化物層5が完全に剥離し、母材表面が
著しい酸化を受けた。
In contrast, an attempt was made to form a metal oxide layer 5 directly on a similar carbon-based base material 1 using a similar method, but only a film with cracks was formed. Further, when a similar heating test was conducted, the metal oxide layer 5 was completely peeled off and the surface of the base material was significantly oxidized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の耐酸化性炭素系材料は
炭素系母材表面に第1の中間層を介して金属炭化物層が
設けられ、この金属炭化物層上に第2の中間層を介して
金属酸化物層か設けられてなり、第1の中間層が炭素と
金属炭化物とからなり、第2の中間層か金属炭化物と金
属酸化物とからなるものであるので、高温下においても
亀裂や剥離などか生じることがなく、かつ母材との化学
反応などが生じることのない耐酸化性被膜を有するもの
となり、高い耐熱性、耐酸化性、耐食性を兼ね備えた材
料となる。
As explained above, in the oxidation-resistant carbon-based material of the present invention, a metal carbide layer is provided on the surface of the carbon-based base material with a first intermediate layer interposed therebetween, and a second intermediate layer is provided on the metal carbide layer. Since the first intermediate layer is made of carbon and metal carbide, and the second intermediate layer is made of metal carbide and metal oxide, there will be no cracking even at high temperatures. The material has an oxidation-resistant coating that does not cause peeling or peeling, and does not cause chemical reactions with the base material, resulting in a material that has high heat resistance, oxidation resistance, and corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の耐酸化性炭素系材料の一例を示す
概略断面図である。 1・・・・・・炭素系母材、2・・・・第1の中間層、
3・・・・金属炭素物層、4 ・・・・第2の屯間層、
5・・・金属酸化物層。
FIG. 1 is a schematic cross-sectional view showing an example of the oxidation-resistant carbon-based material of the present invention. 1... Carbon-based base material, 2... First intermediate layer,
3...Metal carbon layer, 4...Second Tonma layer,
5...Metal oxide layer.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素系母材表面に第1の中間層を介して金属炭化
物層が設けられ、この金属炭化物層上に第2の中間層を
介して金属酸化物層が設けられてなり、第1の中間層が
炭素と金属炭化物とからなり、第2の中間層が金属炭化
物と金属酸化物とからなることを特徴とする耐酸化性炭
素系材料。
(1) A metal carbide layer is provided on the surface of the carbon-based base material via a first intermediate layer, and a metal oxide layer is provided on the metal carbide layer via a second intermediate layer, and the first An oxidation-resistant carbon-based material characterized in that the intermediate layer is made of carbon and a metal carbide, and the second intermediate layer is made of a metal carbide and a metal oxide.
(2)第1および第2の中間層は、その組成が連続的あ
るいは段階的に変化する傾斜組成層であることを特徴と
する請求項(1)記載の耐酸化性炭素系材料。
(2) The oxidation-resistant carbon-based material according to claim (1), wherein the first and second intermediate layers are gradient composition layers whose compositions change continuously or stepwise.
JP1743990A 1990-01-26 1990-01-26 Oxidation resistant carbon-based materials Expired - Fee Related JP2827387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1743990A JP2827387B2 (en) 1990-01-26 1990-01-26 Oxidation resistant carbon-based materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1743990A JP2827387B2 (en) 1990-01-26 1990-01-26 Oxidation resistant carbon-based materials

Publications (2)

Publication Number Publication Date
JPH03221444A true JPH03221444A (en) 1991-09-30
JP2827387B2 JP2827387B2 (en) 1998-11-25

Family

ID=11944059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1743990A Expired - Fee Related JP2827387B2 (en) 1990-01-26 1990-01-26 Oxidation resistant carbon-based materials

Country Status (1)

Country Link
JP (1) JP2827387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023278A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Product,especially a gas turbine component, withe a ceramic heat insulating layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884550B1 (en) * 2005-04-15 2010-09-17 Snecma Moteurs PIECE FOR PROTECTING THE EDGE OF A BLADE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023278A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Product,especially a gas turbine component, withe a ceramic heat insulating layer

Also Published As

Publication number Publication date
JP2827387B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US5283109A (en) High temperature resistant structure
US9340460B2 (en) Ultra-refractory material that is stable in a wet environment, and process for manufacturing same
JP3136385B2 (en) Heat-resistant oxidation-resistant high-strength member and method for producing the same
US6517960B1 (en) Ceramic with zircon coating
JPH0510309B2 (en)
US3061482A (en) Ceramic coated metal bodies
US5110771A (en) Method of forming a precracked fiber coating for toughening ceramic fiber-matrix composites
JPH05238859A (en) Coated member of ceramic
Li et al. Ablation behaviour of the CVD-(ZrC/SiC) 3 alternate coating on C/C composites under oxyacetylene torch with different heat fluxes
JPH01123991A (en) Heat-insulating structure of internal heat type high-temperature high-pressure device
Galasso et al. Observations of laser interactions with ceramics
Garshin et al. Main areas for improving refractory fiber-reinforced ceramic matrix composite corrosion and heat resistance
JPH03221444A (en) Oxidation-resistant carbon material
EP0459865B1 (en) Method of protecting ceramic surfaces
US6485791B1 (en) Method for improving the performance of oxidizable ceramic materials in oxidizing environments
JP3224601B2 (en) Oxidation resistant carbon-based materials
EP3819276B1 (en) Microstructured fiber interface coatings for composites
CN114773075A (en) Ultrahigh-temperature ceramic-based composite material with La/Y doped ZrC-SiC coating and preparation method thereof
JP2867536B2 (en) Corrosion and oxidation resistant materials
JP2002173376A (en) Oxide-based ceramic fiber/oxide-based ceramic composite material and method of producing the same
Semchenko et al. Protection of graphite and graphite-containing materials from oxidation.
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JP6649115B2 (en) Laminated structure
JP3031853B2 (en) Heat and oxidation resistant carbon materials
Patterson Oxidation Resitant HfC-TaC Rocket Thruster for High Performance Propellants

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees