JPH03221354A - Abnormality predicting device for rolling bearing - Google Patents

Abnormality predicting device for rolling bearing

Info

Publication number
JPH03221354A
JPH03221354A JP2011829A JP1182990A JPH03221354A JP H03221354 A JPH03221354 A JP H03221354A JP 2011829 A JP2011829 A JP 2011829A JP 1182990 A JP1182990 A JP 1182990A JP H03221354 A JPH03221354 A JP H03221354A
Authority
JP
Japan
Prior art keywords
power spectrum
rolling bearing
determined
reference data
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011829A
Other languages
Japanese (ja)
Inventor
Katsumi Nakamura
克己 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011829A priority Critical patent/JPH03221354A/en
Publication of JPH03221354A publication Critical patent/JPH03221354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To invariably monitor a machine in continuous operation by removing the same frequency component as the reference data from the automatic power spectrum of the measured data which are the output signals of an acceleration sensor, then determining the maximum value to obtain the quantitative abnormal ity predicting danger signal. CONSTITUTION:When the rolling bearing of a machine is in the normal state, a no-load operation is performed at the constant rotating speed (n) rpm of a main spindle 1, and the acceleration signal is sampled N times at the interval DELTAt sec to obtain the automatic power spectrum Poo(i). The maximum value P'oo(i) is calculated by considering errors such as the main spindle rotating speed error and temperature error and stored in the memory of a computer 8 as the reference data. The acceleration signal is detected by quite the same method as the method to obtain the reference data at the time of abnormality monitoring, the automatic power spectrum Pxx(i) is determined, the performance function is determined to remove the same frequency component as the reference data from it, and its maximum value S is determined and quantitatively outputted as the abnormality predicting danger signal of the rolling bearing.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は転がり軸受の異常予知装置に関し、各種の工作
機械に適用して有用なものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an abnormality prediction device for rolling bearings, and is useful when applied to various machine tools.

〈従来の技術〉 転がり軸受の異常診断は加速度センサを用いた振動解析
により行なわれていた。更に評言すると、従来技術にお
ける異常診断は、前記加速度センサの出力信号である加
速度信号をコンピュータ内に取込んで所定の信号処理を
行ない、その結果であるオートパワースペクトルをCR
Tに表示させ、この表示を作業員が監視することにより
行なっていた。
<Conventional technology> Diagnosis of abnormalities in rolling bearings has been performed by vibration analysis using acceleration sensors. To further comment, the abnormality diagnosis in the conventional technology involves importing the acceleration signal, which is the output signal of the acceleration sensor, into a computer, performing predetermined signal processing, and converting the resulting auto power spectrum into a CR.
This was done by displaying the information on the T and having the worker monitor this display.

〈発明が解決しようとする課題〉 上記従来技術においてはコンピュータの信号処理結果を
専門知識を有する作業員が見て判断しなければならない
。その為、連続運転を実施する機械で、転がり軸受の異
常を常時監視しようとすると、専門知識を有する作業員
がCRT上の処理結果を常時監視して判断しなければな
らず、これは事実上不可能である。
<Problems to be Solved by the Invention> In the above-mentioned prior art, a worker with specialized knowledge must view and make a judgment on the signal processing results of the computer. Therefore, in order to constantly monitor abnormalities in rolling bearings in machines that operate continuously, workers with specialized knowledge must constantly monitor and judge the processing results on the CRT, which is virtually impossible. It's impossible.

本発明は、上記従来技術に鑑み、人間の判断を介さずに
コンピュータ内処理で転がり軸受の異常有無判定を行う
ことにより連続運転中の機械の常時監視を可能にする転
がり軸受の異常予知装置を提供することを目的とする。
In view of the above-mentioned prior art, the present invention provides a rolling bearing abnormality prediction device that enables constant monitoring of machines in continuous operation by determining the presence or absence of abnormalities in rolling bearings through computer processing without human judgment. The purpose is to provide.

<WIWIiを解決するための手段〉 上記目的を達成する本発明の構成は、転がり軸受を格納
する軸受箱に固定され、軸受箱の振動を検出する加速度
センサと、 転がり軸受が正常状態のとき検出した加速度センサの出
力信号である加速度信号を一定lk[で所定個数サンプ
リングして得られたデータよりそのデータのオートパワ
ースペクトルを求めて記憶する一方、運転中の加速度セ
ンサの出力信号である実測データのオートパワースペク
トルを求め、更にこのオートパワースペクトルから前記
基準データと同じ周波数成分を除去した後、その最大値
を求めて数量的な異常予知危険信号とするコンピュータ
とを有することを特徴とする。
<Means for solving WIWIi> The configuration of the present invention that achieves the above object includes an acceleration sensor fixed to a bearing box housing a rolling bearing and detecting vibration of the bearing box, and an acceleration sensor that detects when the rolling bearing is in a normal state. The auto power spectrum of the data obtained by sampling a predetermined number of acceleration signals, which are the output signals of the acceleration sensor during driving, is determined and stored, while the actual measurement data, which is the output signal of the acceleration sensor during driving The present invention is characterized in that it has a computer that obtains an auto power spectrum of , further removes the same frequency component as the reference data from this auto power spectrum, and then obtains the maximum value thereof and uses it as a quantitative abnormality prediction danger signal.

く作   用〉 上記構成の本発明によれば、異常予知危険信号が基準デ
ータを測定した正常時の振動と異なる周波数成分のピー
クを表わす信号となる。そこで、異常予知危険信号は転
がり軸受の異常の程度によりその大きさが異なる信号と
なる。
Effects> According to the present invention having the above configuration, the abnormality prediction danger signal becomes a signal representing a peak of a frequency component different from normal vibration when the reference data is measured. Therefore, the abnormality prediction danger signal is a signal whose magnitude differs depending on the degree of abnormality in the rolling bearing.

〈実 施 例〉 以下本発明の実施例を図面に基づき詳細に説明する。<Example> Embodiments of the present invention will be described in detail below based on the drawings.

第1図に示すように、工作機械(本体は図示せず)の主
軸1は軸受箱2内に収納された転がり軸受に回転可能に
支持するとともに、モータ3で回転駆動するようになっ
ている。
As shown in FIG. 1, a main shaft 1 of a machine tool (the main body is not shown) is rotatably supported by a rolling bearing housed in a bearing box 2, and is rotationally driven by a motor 3. .

加速度センサ4は軸受箱2に固定してあり、軸受箱2の
振動を反映する加速度信号を送出する。この加速度信号
はチャージアンプ5を介してバンドパスフィルタ6に供
給され、このバンドパスフィルタ6て不要の周波数成分
をカットした後、A/D変換器7を介してコンピュータ
8に供給される。コンピュータ8ては次の様なアルゴリ
ズムで表現される信号処理を行なう。
The acceleration sensor 4 is fixed to the bearing box 2 and sends out an acceleration signal that reflects vibrations of the bearing box 2. This acceleration signal is supplied to a bandpass filter 6 via a charge amplifier 5, which cuts unnecessary frequency components, and then supplied to a computer 8 via an A/D converter 7. The computer 8 performs signal processing expressed by the following algorithm.

まず、当該機械の転がり軸受が正常な状態の時、主軸1
の回転数(nrpm)一定で無負荷運転を行い、その時
の加速度信号をΔを秒間隔でN個すンプリングする。こ
れにより得うれtニデータよりオートパワースペクトル
P0゜(i)を求めろ。たたしi=1.2,3゜本実施
例では後に測定するデータと正常時のデータとを比較す
ることにより異常予知判定をさせようとするものである
が、後に測定した時との主軸回転速度誤差及び温度差等
の誤差を8!!して、P。。filに対して次の変換を
行いP′。。(1)を算出する。
First, when the rolling bearings of the machine are in normal condition, the main shaft 1
No-load operation is performed at a constant rotational speed (nrpm), and N acceleration signals of Δ are sampled at intervals of seconds. Find the auto power spectrum P0° (i) from the t data obtained from this. Tatami i = 1.2, 3゜In this example, abnormality prediction is determined by comparing data measured later with normal data, but the main axis is the difference between the data measured later and the data measured later. 8 errors such as rotation speed error and temperature difference! ! Then, P. . Perform the following transformation on fil and get P'. . Calculate (1).

(変 換) こうして求められた最大値P′。。(1)を基準データ
としてコンピュータ8のメモリ内に記憶しておく。
(Conversion) Maximum value P' thus obtained. . (1) is stored in the memory of the computer 8 as reference data.

異常監視時、基準データを得る方法と全く同じ方法で加
速度信号を検出する。つまり、主軸回転数n  rpm
一定で無負荷運転を行い、その時の加速度信号をΔを秒
間隔でN個すンプリングする。乙の結果得られたデータ
よりオートパワースペクトルP、、(i)を求める。た
だしi=1.2,3゜ 次に、このP。8(1)から基準データと同じ周波数成
分を取除く為に評価関数P、、X(i)をP、、Jil
−P、、4i1−P’。。(i+により求めろ。
When monitoring an abnormality, an acceleration signal is detected using exactly the same method used to obtain reference data. In other words, the spindle rotation speed n rpm
A constant no-load operation is performed, and N acceleration signals of Δ are sampled at intervals of seconds. The auto power spectrum P, , (i) is determined from the data obtained as a result of B. However, i=1.2,3° Next, this P. In order to remove the same frequency components as the reference data from 8(1), the evaluation function P,,X(i) is changed to P,,Jil
-P,,4i1-P'. . (Find it using i+.

次にこの評価関数P、、(ilの最大値を求め、これを
Sとする。このSは、基準データを測定した正常時の振
動と異なる周波数成分のピークの大きさを表わす。
Next, the maximum value of the evaluation function P, .

コンピュータ8は、転がり軸受の異常予知危険度信号と
して、このSを数量的に出力する。
The computer 8 quantitatively outputs this S as a rolling bearing abnormality prediction risk signal.

機械側のコントローラ9は、コンピュータ8が出力する
数量的異常予知危険度信号を受けて、機械減速や停止と
いった危険度に応じた処置をモータ3を制御することに
より自動的に遂行する。
The controller 9 on the machine side receives the quantitative abnormality prediction risk level signal output from the computer 8 and automatically performs measures according to the risk level, such as decelerating or stopping the machine, by controlling the motor 3.

〈発明の効果〉 以上実施例とともに具体的に説明したように、本考案に
よれば、人間の判断を介さずに自動的に異常を予知し、
自動的に機械減速や停止等の処置を講じることができろ
。また、機械保守作業員は、機械を完全に停止せざるを
得ない様な異常状態となる前に異常予知できる為、交換
部品の手配などの早期対策を行うことができ、トラブル
による機械停止期間を短縮することができる。
<Effects of the Invention> As specifically explained above with the embodiments, according to the present invention, an abnormality can be automatically predicted without human judgment,
It should be possible to take measures such as automatically slowing down or stopping the machine. In addition, machine maintenance workers can predict abnormalities before they reach an abnormal state that requires a complete stop of the machine, allowing them to take early measures such as arranging replacement parts, and reducing the amount of time the machine will be stopped due to trouble. can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック線図である。 図 面 中、 1は主軸、 2は軸受箱、 3はモータ、 4は加速度センサ、 8はコンピュータである。 FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is the main axis, 2 is the bearing box, 3 is the motor, 4 is an acceleration sensor, 8 is a computer.

Claims (1)

【特許請求の範囲】 転がり軸受を格納する軸受箱に固定され、軸受箱の振動
を検出する加速度センサと、 転がり軸受が正常状態のとき検出した加速度センサの出
力信号である加速度信号を一定間隔で所定個数サンプリ
ングして得られたデータよりそのデータのオートパワー
スペクトルを求めて記憶する一方、運転中の加速度セン
サの出力信号である実測データのオートパワースペクト
ルを求め、更にこのオートパワースペクトルから前記基
準データと同じ周波数成分を除去した後、その最大値を
求めて数量的な異常予知危険信号とするコンピュータと
を有することを特徴とする転がり軸受の異常予知装置。
[Claims] An acceleration sensor fixed to a bearing box housing a rolling bearing and detecting vibrations of the bearing box; and an acceleration signal that is an output signal of the acceleration sensor detected when the rolling bearing is in a normal state are transmitted at regular intervals. The auto power spectrum of the data obtained by sampling a predetermined number of items is determined and stored, while the auto power spectrum of the actual measurement data, which is the output signal of the acceleration sensor during driving, is determined, and the above-mentioned standard is further determined from this auto power spectrum. 1. An abnormality prediction device for a rolling bearing, comprising: a computer that removes frequency components that are the same as the data, then obtains the maximum value thereof and uses it as a quantitative abnormality prediction danger signal.
JP2011829A 1990-01-23 1990-01-23 Abnormality predicting device for rolling bearing Pending JPH03221354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011829A JPH03221354A (en) 1990-01-23 1990-01-23 Abnormality predicting device for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011829A JPH03221354A (en) 1990-01-23 1990-01-23 Abnormality predicting device for rolling bearing

Publications (1)

Publication Number Publication Date
JPH03221354A true JPH03221354A (en) 1991-09-30

Family

ID=11788650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011829A Pending JPH03221354A (en) 1990-01-23 1990-01-23 Abnormality predicting device for rolling bearing

Country Status (1)

Country Link
JP (1) JPH03221354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285875A (en) * 2006-04-17 2007-11-01 Nsk Ltd Anomaly diagnosis apparatus and anomaly diagnosis method
JP2010181151A (en) * 2009-02-03 2010-08-19 Okuma Corp Method and device for determining lubricated state of rolling bearing
CN110977614A (en) * 2019-12-18 2020-04-10 常州机电职业技术学院 Health diagnosis method for numerical control machine tool
WO2021134253A1 (en) * 2019-12-30 2021-07-08 江苏南高智能装备创新中心有限公司 Fault prediction system based on sensor data on numerical control machine tool and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285875A (en) * 2006-04-17 2007-11-01 Nsk Ltd Anomaly diagnosis apparatus and anomaly diagnosis method
JP2010181151A (en) * 2009-02-03 2010-08-19 Okuma Corp Method and device for determining lubricated state of rolling bearing
CN110977614A (en) * 2019-12-18 2020-04-10 常州机电职业技术学院 Health diagnosis method for numerical control machine tool
WO2021134253A1 (en) * 2019-12-30 2021-07-08 江苏南高智能装备创新中心有限公司 Fault prediction system based on sensor data on numerical control machine tool and method therefor

Similar Documents

Publication Publication Date Title
US7571022B2 (en) System and method for monitoring machine health
JP2008503811A (en) Intelligent drive
CN101354578A (en) Numeric control device of machine tool
JPS58500605A (en) Method and device for monitoring tool status of a machine tool that performs periodic machining
JP2018205213A (en) Composite processing machine with defect anticipating function
CN110874084B (en) Machining environment estimating device
JP2005074545A (en) Condition monitoring device for machine tool
EP1186975A2 (en) Machine tool maintenance system
JPH03221354A (en) Abnormality predicting device for rolling bearing
US6158286A (en) Process and devices for the determination of the vibrations of the rotor of a rotary machine
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP2001205545A (en) Tool replacement timing judging system
JPH0731007Y2 (en) Power transmission monitoring device
JP2018044892A (en) Method for diagnosing abnormality in bearing of rotary shaft device and rotary shaft device
JPH08193879A (en) Method for detecting grinding abnormality of roll grinder
JP3659891B2 (en) Lubrication target part diagnosis system and lubrication target part diagnosis method
JPH068774B2 (en) Bearing remaining life estimation method
JP2000162035A (en) Method and device for determining abnormality in rotating equipment
JP2003271212A (en) Inspection device of machine tool
JPH01270623A (en) Apparatus for diagnosing vibration of rotary machine
JP2000146771A (en) Simple abnormality diagnostic method for acceleration/ deceleration type rotary machine equipment
WO2023063435A1 (en) Working machine bearing quality determining method and system
JPH054618B2 (en)
JPS6330983Y2 (en)
CN113631311A (en) Method for producing or machining a toothing