JPH03220933A - Spread spectrum signal demodulation circuit and demodulator using same - Google Patents

Spread spectrum signal demodulation circuit and demodulator using same

Info

Publication number
JPH03220933A
JPH03220933A JP2016772A JP1677290A JPH03220933A JP H03220933 A JPH03220933 A JP H03220933A JP 2016772 A JP2016772 A JP 2016772A JP 1677290 A JP1677290 A JP 1677290A JP H03220933 A JPH03220933 A JP H03220933A
Authority
JP
Japan
Prior art keywords
output
code
filter
filter means
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016772A
Other languages
Japanese (ja)
Inventor
Wataru Matsui
渉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2016772A priority Critical patent/JPH03220933A/en
Publication of JPH03220933A publication Critical patent/JPH03220933A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent mis-discrimination of synchronization by discriminating the synchronization state based on a ratio of outputs passing through a 1st filter means having a nearly equal pass band width to a band width of an information signal and a 2nd filter means having a broader band width respectively. CONSTITUTION:A 1st filter means 7 having a nearly equal pass band width to a band width of an information signal and a 2nd filter means 8 having a wider band width than the pass band width of the 1st filter means 7 are connected to an output terminal of a multiplier means 5. Then a discrimination means 11 discriminates the synchronization state based on the ratio of outputs from the 1st filter means 7 and the 2nd filter means 8. Thus, even when a fluctuation of an input level or a change in the synchronization state takes place, no mis-discrimination takes place. Moreover, since the AGC (automatic gain control) is automatically switched in response to synchronization or asynchronization, the circuit design is implemented independently and the degree of freedom of the design is enhanced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はスペクトラム拡散信号復調回路及びそれを用い
た復調装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a spread spectrum signal demodulation circuit and a demodulation device using the same.

(ロ)従来の技術 従来、情報信号より充分広いスペクトラム幅を有する1
例えば2進の疑似雑音符号(Pseudo No1se
Code)(以下、PN符号と称す)で変調されたキャ
Jアを送信し、受信側では送信側で用いたのと同一のP
N符号で受信信号を乗算することにより元の情報を復調
する、所謂スペクトラム拡散通信が知られている(例え
ば、電子科学1978年11月号参照)。
(b) Conventional technology Conventionally, the spectrum width is sufficiently wider than that of the information signal1.
For example, binary pseudo noise code (Pseudo No1se
A carrier modulated with a PN code (hereinafter referred to as a PN code) is transmitted, and the receiving side uses the same P
So-called spread spectrum communication is known in which the original information is demodulated by multiplying the received signal by an N code (see, for example, the November 1978 issue of Denshi Kagaku).

斯るスペクトラム拡散通信では、上述したように広スペ
クトラム輻を有するPN符号で情報信号を変調している
ため、情報信号を正確に復調するには受信側で生成する
符号を送信側の符号と同期させる必要がある。
In such spread spectrum communication, the information signal is modulated using a PN code with wide spectrum transmission as mentioned above, so in order to accurately demodulate the information signal, the code generated on the receiving side must be synchronized with the code on the transmitting side. It is necessary to do so.

一般的には、受信側に受信信号と受信側符号とを乗算す
る乗算器を設け、この乗算器の出力を情報信号の帯域幅
と略同じ帯域幅を有するフィルタを通過させて得られた
信号のレベルを検出し、当該信号のレベルが所定レベル
以上となった時、同期近似状態と判定する。これは、符
号位相が合致しているときの乗算出力のレベルが、不一
致時の乗算出力のレベルよりも大きくなることを利用し
ているものである。
Generally, a multiplier is provided on the receiving side to multiply the received signal by the receiving side code, and the output of this multiplier is passed through a filter having approximately the same bandwidth as the information signal. The level of the signal is detected, and when the level of the signal exceeds a predetermined level, it is determined that the state is close to synchronization. This utilizes the fact that the level of the multiplication output when the code phases match is higher than the level of the multiplication output when the code phases do not match.

尚、フィルタを通過した信号のレベルが所定レベルより
も小さいときには、受信側の符号の位相を少しずつ変化
させるようになされており、前記レベルが所定レベル以
上となるまで前記位相の変化動作は継続される。
Note that when the level of the signal that has passed through the filter is lower than a predetermined level, the phase of the code on the receiving side is changed little by little, and the phase changing operation continues until the level reaches the predetermined level or higher. be done.

(ハ)発明が解決しようとする課題 ところで、一般に無線通信、とりわけ移動無線通信にお
いては、送信機と受信機との間の距離や周囲の地形等の
要因で、受信信号の振幅変動は非常に大きくなり、その
ダイナミックレンジは60〜90dB程度を見込んでお
かなければならない。
(c) Problems to be Solved by the Invention In general, in wireless communications, and in mobile wireless communications in particular, the amplitude of the received signal fluctuates significantly due to factors such as the distance between the transmitter and receiver and the surrounding topography. The dynamic range must be expected to be approximately 60 to 90 dB.

この変動を吸収する一つの手段としては、受信信号をリ
ミッタに通して定振幅化することが考えられるが、この
場合スペクトラム拡散通信の特徴の1つである耐妨害波
性能が6dB以上劣化する(例えば、ジャチック出版「
スペクトラム拡散通信方式」第236頁参照)。
One way to absorb this fluctuation is to pass the received signal through a limiter to make it constant amplitude, but in this case, the anti-jamming performance, which is one of the characteristics of spread spectrum communication, will deteriorate by more than 6 dB ( For example, Jaticic Publishing “
(See page 236 of ``Spread Spectrum Communication System'').

従って、通常は自動利得制御(A G C’Iが用いら
れるが、無線回路では増幅器1段当りの制御幅は20〜
30dB程度であるから、多段に亘ってAGCをかける
必要がある。
Therefore, automatic gain control (AGC'I) is usually used, but in wireless circuits, the control width per amplifier stage is 20~
Since it is about 30 dB, it is necessary to apply AGC in multiple stages.

また、AGCの応答性は、同期引き込み過程において、
符号位相が一致していない状態から一致した状態になっ
たときに生じる振幅の変化を検知するために、そのよう
な急激な変化には追従しない程度に遅くなければならず
、一方同期引き込み後は、速やかに信号振幅を適正化す
る程度に早いものでなければならない。
In addition, the responsiveness of AGC is determined in the synchronization pull-in process.
In order to detect the change in amplitude that occurs when the code phases go from mismatched to matched, the amplitude must be slow enough to not follow such sudden changes, while after synchronization , it must be fast enough to quickly optimize the signal amplitude.

更に、希望波が存在しないときには、妨害波や雑音が、
乗算器(相関回路)や後段の復調回路に対して過大人力
とならないようにし、希望波が存在するときには、乗算
器に入力される希望波成分のレベルが一定になるように
制御することが望ましい。
Furthermore, when there is no desired signal, interference waves and noise
It is desirable to prevent excessive manpower from being applied to the multiplier (correlation circuit) and the subsequent demodulation circuit, and to control the level of the desired wave component input to the multiplier to be constant when a desired wave is present. .

然し乍ら、上記条件を満たすAGCは溝底が非常に複雑
になると共に、当該AGCにより制御された信号の振幅
の過渡応答の予測がつきにくく、同期状態の判定のため
の乗算器出力の最適な検出レベル設定が困難となり、同
期誤判定を生じやすいものであった。
However, an AGC that satisfies the above conditions has a very complex groove bottom, and it is difficult to predict the transient response of the amplitude of the signal controlled by the AGC, making it difficult to optimally detect the multiplier output for determining the synchronization state. This made level setting difficult, and erroneous synchronization judgments were likely to occur.

(ニ)課題を解決するための手段 上記の点に鑑み、本発明は受信スペクトラム拡散信号と
符号発生手段から出力された符号とを乗算手段にて乗算
することにより前記受信スペクトラム拡散信号のスペク
トラムを逆拡散するスペクトラム拡散信号復調回路であ
って、前記乗算手段の出力端に接続され、情報信号の帯
域幅と略等しい通過帯域幅を有する第1フィルタ手段と
、同じく前記乗算手段の出力端に接続され、前記第1フ
ィルタ手段の帯域幅よりも広い帯域幅を有する第2フィ
ルタ手段と、前記第1フィルタ手段と前記第2フィルタ
手段を夫々通過した出力が供給され、両出力の大きさの
比に基づき同期状態を判定する判定手段と、前記第1フ
ィルタ手段の出力が供給され、前記判定手段から同期状
態にあることを示す信号が供給されたとき、前記第1フ
ィルタ手段の出力に基づき前記符号発生手段から出力さ
れる符号の出力位相を修正する符号位相修正信号を前記
符号発生手段に供給する制御手段とを設けたことを特徴
とする。
(d) Means for Solving the Problems In view of the above points, the present invention multiplies the received spread spectrum signal and the code output from the code generation means by the multiplication means, thereby changing the spectrum of the received spread spectrum signal. a spread spectrum signal demodulation circuit for despreading, the first filter means being connected to the output end of the multiplication means and having a passband width substantially equal to the bandwidth of the information signal; and also connected to the output end of the multiplication means. and a second filter means having a bandwidth wider than the bandwidth of the first filter means, and outputs that have passed through the first filter means and the second filter means are supplied, and the ratio of the magnitudes of both outputs is supplied. determining means for determining the synchronization state based on the output of the first filter means; and when the output of the first filter means is supplied, and a signal indicating that the synchronization state is present is supplied from the determination means, the determination means determines the synchronization state based on the output of the first filter means. The present invention is characterized by further comprising a control means for supplying to the code generation means a code phase correction signal for correcting the output phase of the code output from the code generation means.

また、本発明は能動素子を含み、スペクトラム拡散信号
を受信する受信手段と、この受信手段にて受信された受
信スペクトラム拡散信号と符号発生手段から出力された
符号とを乗算する乗算手段と、前記乗算手段の出力端に
接続され、情報信号の帯域幅と略等しい通過帯域幅を有
する第1フィルタ手段と、同じく前記乗算手段の出力端
に接続され、前記第1フィルタ手段の帯域幅よりも広い
帯域幅を有する第2フィルタ手段と、前記乗算手段及び
第1フィルタ手段の出力が供給され、前記乗算手段若し
くは第1フィルタ手段の出力に基づき前記受信手段の能
動素子に利得制御信号を供給する自動利得制御手段と、
前記第1フィルタ手段と前記第2フィルタ手段を夫々通
過した出力が供給され、両出力の大きさの比に基づき同
期状態を判定する判定手段と、前記第1フィルタ手段の
出力が供給され、前記判定手段から同期状態にあること
を示す信号が供給されたとき、前記第1フィルタ手段の
出力に基づき前記符号発生手段から出力される符号の出
力位相を修正する符号位相修正信号を前記符号発生手段
に供給すると共に、前記第1フィルタ手段の出力に基づ
く自動利得制御動作を行うべく、制御信号を前記自動利
得制御手段に供給する制御手段とを設けたことを特徴と
する。
Further, the present invention includes a receiving means that includes an active element and receives a spread spectrum signal, a multiplication means that multiplies the received spread spectrum signal received by the receiving means and a code output from the code generating means, and a first filter means connected to the output end of the multiplication means and having a passband width substantially equal to the bandwidth of the information signal; and also connected to the output end of the multiplication means and wider than the bandwidth of the first filter means. second filter means having a bandwidth; and an automatic means for providing a gain control signal to the active element of the receiving means based on the output of the multiplier means or the first filter means; gain control means;
outputs that have passed through the first filter means and the second filter means are supplied, and determination means for determining a synchronization state based on the ratio of the magnitudes of both outputs; When a signal indicating a synchronized state is supplied from the determining means, the code generating means generates a code phase correction signal for correcting the output phase of the code output from the code generating means based on the output of the first filter means. and control means for supplying a control signal to the automatic gain control means in order to perform an automatic gain control operation based on the output of the first filter means.

(ホ)作用 本発明に依れば、乗算手段の出力端に情報信号の帯域幅
と略等しい通過帯域幅を有する第1フィルタ手段とこの
第1フィルタ手段の通過帯域幅よりも広い帯域幅を有す
る第2フィルタ手段とを接続し、第1フィルタ手段から
の出力と第2フィルタ手段からの出力との大きさの比に
応じて同期状態を判定する。
(E) Effect According to the present invention, the first filter means having a pass band width substantially equal to the bandwidth of the information signal and a bandwidth wider than the pass band width of the first filter means are provided at the output end of the multiplication means. The synchronization state is determined according to the ratio of the magnitude of the output from the first filter means and the output from the second filter means.

(へ)実施例 第1図は本発明の一実施例を示す図である。第1図にお
いて、(1)はアンテナ、(2)はアンテナ(1)から
の高周波信号を所定の中間周波信号に変換するフロント
エンドで、高周波信号を増幅するための能動素子を含ん
でいる。(3)は中間周波信号を増幅するための能動素
子を含む中間周波増幅回路、(4)は通過帯域幅Wのバ
ンドパスフィルタ、(5)はバンドパスフィルタ(4)
を通過した信号と符号発生器(6)からの符号とを乗算
する乗算器、(7)は乗算器(5)の出力端に接続され
、情報信号の帯域幅と略等しい通過帯域幅F)lを有す
る第1フイルタ、(8)は同じく乗算器(5)の出力端
に接続され、第1フイルタ(7)の通過帯域幅FNより
も広い帯域幅Fwを有する第2フイルタ、(9)は第1
フイルタ(7)の出力をエンベロープ検波する第1検波
器、(10)は第2フイルタ(8)の出力をエンベロー
プ検波する第2検波器、(11)は第1検波器(9)か
らの出力と第2検波器(10)がらの出力とが供給され
、両出力の大きさの比に基づき同期状態を判定する判定
回路、(12)は第1フイルタ(7)の出力端に接続さ
れた復調回路、(13)は第1フイルタ(7)の出力が
供給され、前記判定回路(11)から同期状態にあるこ
とを示す信号が供給されたとき、第1フイルタ(7)の
出力に基づき符号発生器(6)から出力される符号の出
力位相を修正する符号位相修正信号を符号発生器(6)
に供給すると共に、前記判定回路(11)から同期状態
にあることを示す信号が供給されないとき、符号発生器
(6)から出力される符号の出力位相を順次変化させる
第2の符号位相修正信号を符号発生器(6)に供給する
制御回路、(14)は乗算器(5)の出力及び第1フイ
ルタ(7)の出力が供給され、制御回路(13)からの
制御信号に基づき乗算器(5)の出力に基づくAGC又
は第1フイルタ(7)の出力に基づ<AGCを選択する
AGC回路で、AGC出力にてフロントエンド(2)及
び中間周波増幅回路(3)の能動素子の利得を制御する
(F) Embodiment FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, (1) is an antenna, and (2) is a front end that converts a high frequency signal from the antenna (1) into a predetermined intermediate frequency signal, and includes an active element for amplifying the high frequency signal. (3) is an intermediate frequency amplification circuit including an active element for amplifying an intermediate frequency signal, (4) is a bandpass filter with a passband width W, and (5) is a bandpass filter (4).
A multiplier (7) for multiplying the signal passed through by the code from the code generator (6) is connected to the output terminal of the multiplier (5) and has a passband width F) which is approximately equal to the bandwidth of the information signal. A first filter, (8) with l is also connected to the output of the multiplier (5) and a second filter, (9) has a bandwidth Fw wider than the passband width FN of the first filter (7). is the first
The first detector performs envelope detection on the output of the filter (7), the second detector (10) performs envelope detection on the output of the second filter (8), and the output from the first detector (9) (11) and the output of the second wave detector (10), and a determination circuit (12) that determines the synchronization state based on the ratio of the magnitudes of both outputs is connected to the output end of the first filter (7). The demodulation circuit (13) is supplied with the output of the first filter (7), and when the determination circuit (11) supplies a signal indicating that the synchronization state is present, the demodulation circuit (13) operates based on the output of the first filter (7). A code phase correction signal that corrects the output phase of the code output from the code generator (6) is sent to the code generator (6).
a second code phase correction signal that sequentially changes the output phase of the code output from the code generator (6) when the determination circuit (11) does not supply a signal indicating that the synchronization state is present; A control circuit (14) supplies the output of the multiplier (5) and the output of the first filter (7) to the code generator (6), and operates the multiplier based on the control signal from the control circuit (13). The AGC circuit selects AGC based on the output of (5) or <AGC based on the output of the first filter (7), and the active elements of the front end (2) and intermediate frequency amplification circuit (3) are Control gain.

次に、本発明の原理について第2図を参照して説明する
Next, the principle of the present invention will be explained with reference to FIG.

今、情報信号のスペクトラムが第2図(a)に示す如く
帯域幅Bを有する方形であり、これを送信側において帯
域幅W=ηB(ηは拡散率で、η〉1−である)の方形
のスペクトラムに拡散されるものとする。
Now, the spectrum of the information signal is a rectangle with a bandwidth B as shown in Fig. 2(a), and this is transmitted to the transmitting side with a bandwidth W=ηB (η is the spreading factor and η>1−). It is assumed that the signal is spread over a rectangular spectrum.

さて、第2図(b)に示す如く希望波信号のみが受信さ
れた場合、受信側の符号位相が送信側の符号位相と一致
していれば、第1フイルタ(7)を通過した信号の大き
さと第2フイルタ(8)を通過した信号の大きさが等し
くなるため、その比rは1となる。
Now, when only the desired wave signal is received as shown in FIG. 2(b), if the code phase on the receiving side matches the code phase on the transmitting side, the signal passing through the first filter (7) Since the magnitude of the signal passing through the second filter (8) is equal to the magnitude of the signal passing through the second filter (8), the ratio r becomes 1.

一方、符号位相が一致していなければ、二重に拡散され
た平坦に近いスペクトラムとなるため、第2フイルタ(
8)の通過帯域幅FwをFw= a F。
On the other hand, if the code phases do not match, the spectrum will be doubly spread and nearly flat, so the second filter (
8) passband width Fw is Fw=aF.

(α〉1)とすると、比rは大略α(但し、αがあまり
大きくない場合)となる。
If (α>1), the ratio r will be approximately α (provided that α is not very large).

また、他の符号にて拡散された信号を受信した場合〔第
2図(c)参照〕、白色ランダム雑音の場合〔第2図(
d)参照〕、狭帯域妨害波を受信した場合〔第2図(e
)参照〕等にも前述した場合と同様に比rは大略αとな
る。
In addition, when receiving a signal spread with another code [see Figure 2 (c)], and when receiving a white random noise [see Figure 2 (c)],
d)], when a narrowband interference wave is received [see Figure 2 (e)
), etc., the ratio r is approximately α as in the case described above.

ところで、第2図(f)に示す如く希望波が同期して受
信されると共に複数の妨害波や雑音が含まれている場合
には、妨害波や雑音の大きさに応じて比rは1から大き
くなっていく。復調回路(12)には、第1フイルタ(
7)を通過した信号が入力されるが、その信号には搬送
波のに倍までの雑音が許容されるものとすると、最悪条
件において比rはr =(1+K a )/ (1+ 
K)となる。但し、第1フイルタ(7)の通過帯域FN
の中で乗算後のスペクトラムは、情報信号を除いて略平
坦であると仮定した。また、1<(1+にα)/(1+
K)<αの関係が成立するものとする。
By the way, when the desired wave is received synchronously and multiple interference waves and noises are included as shown in FIG. 2(f), the ratio r becomes 1 depending on the magnitude of the interference waves and noises. It grows from The demodulation circuit (12) includes a first filter (
7) is input, but assuming that noise up to twice as much as the carrier wave is allowed in that signal, the ratio r under the worst condition is r = (1+K a )/(1+
K). However, the passband FN of the first filter (7)
It is assumed that the spectrum after multiplication is approximately flat except for the information signal. Also, 1<(α to 1+)/(1+
It is assumed that the relationship K)<α holds true.

而して、rに対して(1+にα)/(1+K)とαとの
間に適当な閾値を設ければ、希望波が同期状態で受信で
きている時とそれ以外の時とを判別することかできる。
Therefore, by setting an appropriate threshold between (1+α)/(1+K) and α for r, it is possible to determine when the desired wave is being received in a synchronous state and when it is not. I can do something.

次に、第1図の回路の動作について説明する。Next, the operation of the circuit shown in FIG. 1 will be explained.

アンテナ(1)にて受信された信号は、フロントエンド
(2)及び中間周波増幅回路(3)を経て、乗算器(5
)の一方の入力に供給され、斯る乗算器(5)において
符号発生器(6)からの符号と乗算される。
The signal received by the antenna (1) passes through a front end (2) and an intermediate frequency amplification circuit (3), and then is sent to a multiplier (5).
) and is multiplied by the code from the code generator (6) in such a multiplier (5).

斯る乗算出力は、第1フイルタ(7)及び第2フイルタ
(8)に供給された後、夫々エンベロープ検波され、判
定回路(11)に供給される。判定回路(11)では、
前述した原理に基づき同期状態の判定を行なう。
The multiplication outputs are supplied to a first filter (7) and a second filter (8), then subjected to envelope detection, respectively, and supplied to a determination circuit (11). In the determination circuit (11),
The synchronization state is determined based on the principle described above.

斯る判定の結果、同期状態になければ、当該状態を示す
信号を制御回路(13)に供給し、制御回路(13)は
この信号に基づき符号位相を順次変化させる第2の符号
位相修正信号を符号発生器(6)に出力する。
As a result of such a determination, if the synchronization state is not established, a signal indicating the state is supplied to the control circuit (13), and the control circuit (13) generates a second code phase correction signal that sequentially changes the code phase based on this signal. is output to the code generator (6).

斯る第2の符号位相修正信号の供給は、判定回路(11
)が同期状態を判定するまで継続される。
The second code phase correction signal is supplied to the determination circuit (11
) continues until the synchronization status is determined.

然る後、判定回路(11)が同期状態にあることを判定
すると、当該状態を示す信号を制御回路(13)に供給
し、制御回路(13)はこの信号に基づき第1フイルタ
(7)の出力に基づく符号位相修正信号を符号発生器(
6)に供給し、同期状態を維持する。
After that, when the determination circuit (11) determines that it is in the synchronous state, it supplies a signal indicating the state to the control circuit (13), and the control circuit (13) controls the first filter (7) based on this signal. The code phase correction signal based on the output of the code generator (
6) to maintain synchronization.

また、AGC回路(14)は、非同期状態のときには、
乗算器(5〉の出力に基づきフロントエンド(2)及び
中間周波増幅回路(3)の利得を制御し、同期状態のと
きには、制御回路(13)からの制御信号に基づき第1
フイルタ(7)の出力に基づきフロントエンド(2)及
び中間周波増幅回路(3)の利得を制御する状態に切換
えられる。
Moreover, when the AGC circuit (14) is in an asynchronous state,
The gain of the front end (2) and intermediate frequency amplification circuit (3) is controlled based on the output of the multiplier (5>), and when in the synchronized state, the gain of the first one is controlled based on the control signal from the control circuit (13).
The state is switched to control the gains of the front end (2) and intermediate frequency amplification circuit (3) based on the output of the filter (7).

尚、判定回路(11)における判定動作は、エンベロー
プ出力を直接利用するアナログ方式及び−旦デジタル信
号に変換して処理するデジタル方式のいずれでも良く、
また回路構成も種々考えられるが、マイクロコンピュー
タを用いれば容易に実現できる。
Note that the determination operation in the determination circuit (11) may be either an analog method that directly uses the envelope output or a digital method that first converts it into a digital signal and processes it.
Although various circuit configurations can be considered, it can be easily realized using a microcomputer.

(ト)発明の効果 本発明に依れば、入力レベルの変動や同期状態の変化が
生じたとしても誤判定をすることがない。
(G) Effects of the Invention According to the present invention, there is no possibility of erroneous determination even if the input level fluctuates or the synchronization state changes.

また、AGCを同期・非同期に応じて自動的に切換える
ことができるので、回路設計を独立して行なうことが出
来、設計の自由度が向上する。
Furthermore, since the AGC can be automatically switched depending on whether it is synchronous or asynchronous, circuit design can be done independently, increasing the degree of freedom in design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図(a)〜(
f)は本発明原理を説明するための図である。 (1,)(2)(3)・・・受信手段となるアンテナ、
フロントエンド及び中間周波増幅回路、(5)・・・乗
算器、(6)・・・符号発生器、(7)・・・第1フイ
ルタ、(8)・・・第2フイルタ、(11)・・・判定
回路、(12)・・・復調回路、(13)・・・制御回
路、(14)・・・AGC回路。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 (a) to (
f) is a diagram for explaining the principle of the present invention. (1,)(2)(3)... An antenna serving as a receiving means,
Front end and intermediate frequency amplification circuit, (5)...multiplier, (6)...code generator, (7)...first filter, (8)...second filter, (11) ...determination circuit, (12) ... demodulation circuit, (13) ... control circuit, (14) ... AGC circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)受信スペクトラム拡散信号と符号発生手段から出
力された符号とを乗算手段にて乗算することにより前記
受信スペクトラム拡散信号のスペクトラムを逆拡散する
スペクトラム拡散信号復調回路であって、 前記乗算手段の出力端に接続され、情報信号の帯域幅と
略等しい通過帯域幅を有する第1フィルタ手段と、同じ
く前記乗算手段の出力端に接続され、前記第1フィルタ
手段の帯域幅よりも広い帯域幅を有する第2フィルター
手段と、前記第1フィルタ手段と前記第2フィルタ手段
を夫々通過した出力が供給され、両出力の大きさの比に
基づき同期状態を判定する判定手段と、前記第1フィル
タ手段の出力が供給され、前記判定手段から同期状態に
あることを示す信号が供給されたとき、前記第1フィル
タ手段の出力に基づき前記符号発生手段から出力される
符号の出力位相を修正する符号位相修正信号を前記符号
発生手段に供給する制御手段とを設けたことを特徴とす
るスペクトラム拡散信号復調回路。
(1) A spread spectrum signal demodulation circuit that despreads the spectrum of the received spread spectrum signal by multiplying the received spread spectrum signal and the code output from the code generation means by the multiplication means, the multiplication means comprising: a first filter means connected to the output end and having a pass band width substantially equal to the bandwidth of the information signal; and a first filter means also connected to the output end of the multiplication means and having a bandwidth wider than the bandwidth of the first filter means a second filter means having a second filter means, a determining means to which outputs having passed through the first filter means and the second filter means are supplied, and for determining a synchronization state based on a ratio of the magnitudes of both outputs; a code phase for correcting the output phase of the code output from the code generation means based on the output of the first filter means when the output of the first filter means is supplied and a signal indicating a synchronized state is supplied from the determination means. A spread spectrum signal demodulation circuit comprising: control means for supplying a modified signal to the code generation means.
(2)前記制御手段は、前記判定手段から同期状態にあ
ることを示す信号が供給されていないとき、前記符号発
生手段から出力される符号の出力位相を順次変化させる
第2の符号位相修正信号を前記符号発生手段に供給する
ようになされていることを特徴とする請求項1記載のス
ペクトラム拡散信号復調回路。
(2) The control means generates a second code phase correction signal that sequentially changes the output phase of the code output from the code generation means when a signal indicating that the synchronization state is not supplied from the determination means. 2. The spread spectrum signal demodulation circuit according to claim 1, wherein said spread spectrum signal demodulation circuit is configured to supply said code generation means to said code generation means.
(3)能動素子を含み、スペクトラム拡散信号を受信す
る受信手段と、この受信手段にて受信された受信スペク
トラム拡散信号と符号発生手段から出力された符号とを
乗算する乗算手段と、前記乗算手段の出力端に接続され
、情報信号の帯域幅と略等しい通過帯域幅を有する第1
フィルタ手段と、同じく前記乗算手段の出力端に接続さ
れ、前記第1フイルタ手段の帯域幅よりも広い帯域幅を
有する第2フィルタ手段と、前記乗算手段及び第1フィ
ルタ手段の出力が供給され、前記乗算手段若しくは第1
フィルタ手段の出力に基づき前記受信手段の能動素子に
利得制御信号を供給する自動利得制御手段と、前記第1
フィルタ手段と前記第2フィルタ手段を夫々通過した出
力が供給され、両出力の大きさの比に基づき同期状態を
判定する判定手段と、前記第1フィルタ手段の出力が供
給され、前記判定手段から同期状態にあることを示す信
号が供給されたとき、前記第1フィルタ手段の出力に基
づき前記符号発生手段から出力される符号の出力位相を
修正する符号位相修正信号を前記符号発生手段に供給す
ると共に、前記第1フィルタ手段の出力に基づく自動利
得制御動作を行うべく、制御信号を前記自動利得制御手
段に供給する制御手段とを設けたことを特徴とするスペ
クトラム拡散信号復調装置。
(3) receiving means that includes an active element and receives a spread spectrum signal; multiplication means that multiplies the received spread spectrum signal received by the receiving means by the code output from the code generation means; and the multiplication means a first one connected to the output end of the first
filter means, second filter means also connected to the output of the multiplication means and having a wider bandwidth than the bandwidth of the first filter means, the outputs of the multiplication means and the first filter means being supplied; The multiplication means or the first
automatic gain control means for supplying a gain control signal to the active element of the receiving means based on the output of the filter means;
a determining means that is supplied with the outputs that have passed through the filter means and the second filter means, and determines a synchronization state based on the ratio of the magnitudes of both outputs; and a determining means that is supplied with the output of the first filter means; When a signal indicating a synchronized state is supplied, a code phase correction signal for correcting the output phase of the code output from the code generation means based on the output of the first filter means is supplied to the code generation means. A spread spectrum signal demodulating apparatus, further comprising: control means for supplying a control signal to the automatic gain control means in order to perform an automatic gain control operation based on the output of the first filter means.
(4)前記制御手段は、前記判定手段から同期状態にあ
ることを示す信号が供給されていないとき、前記符号発
生手段から出力される符号の出力位相を順次変化させる
第2の符号位相修正信号を前記符号発生手段に供給する
ようになされていることを特徴とする請求項3記載のス
ペクトラム拡散信号復調装置。
(4) The control means includes a second code phase correction signal that sequentially changes the output phase of the code output from the code generation means when a signal indicating that the synchronization state is not supplied from the determination means. 4. The spread spectrum signal demodulating device according to claim 3, wherein said spread spectrum signal demodulating device is configured to supply said code generating means to said code generating means.
JP2016772A 1990-01-26 1990-01-26 Spread spectrum signal demodulation circuit and demodulator using same Pending JPH03220933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016772A JPH03220933A (en) 1990-01-26 1990-01-26 Spread spectrum signal demodulation circuit and demodulator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016772A JPH03220933A (en) 1990-01-26 1990-01-26 Spread spectrum signal demodulation circuit and demodulator using same

Publications (1)

Publication Number Publication Date
JPH03220933A true JPH03220933A (en) 1991-09-30

Family

ID=11925504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016772A Pending JPH03220933A (en) 1990-01-26 1990-01-26 Spread spectrum signal demodulation circuit and demodulator using same

Country Status (1)

Country Link
JP (1) JPH03220933A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220542A (en) * 1988-02-26 1989-09-04 Mitsubishi Electric Corp Spread spectrum synchronizing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220542A (en) * 1988-02-26 1989-09-04 Mitsubishi Electric Corp Spread spectrum synchronizing system

Similar Documents

Publication Publication Date Title
US5132985A (en) Spread spectrum receiver
JPH0292035A (en) Delay lock loop circuit in diffused spectrum receiver
WO1995005038A1 (en) Apparatus for automatically controlling gain, communication apparatus, and method for automatically controlling gain
JP2006311584A (en) Mobile subscriber station suitable for adaptive power control system of transmitter for spread-spectrum communication
JPS63306727A (en) Spread spectrum communication equipment
US5199045A (en) Communication apparatus
US5668829A (en) Spread spectrum communication apparatus
US7418027B2 (en) Method and apparatus for ultra wideband communications system employing a spread spectrum technique transmitting a baseband signal over a wide frequency band
JPH03220933A (en) Spread spectrum signal demodulation circuit and demodulator using same
JPH08288881A (en) Automatic gain control system
JPH08213932A (en) Receiver
JPS5839137A (en) Synchronous detection system
JP2705428B2 (en) Spread spectrum communication receiver
JPH0779176A (en) Spread spectrum radio equipment
JP3694201B2 (en) Demodulator for spread spectrum communication
JPH0681078B2 (en) Spread spectrum signal automatic gain control system and device
JPH09247046A (en) Receiver for spread spectrum communication
JP3258944B2 (en) Mobile radio receiver
JPH10173626A (en) Receiver for direct diffusion cdma transmission system
JPH01154613A (en) Automatic gain control amplifier circuit
JPS58197935A (en) Spread spectrum receiver
JPH0344125A (en) Power line carrier communication equipment
JPS59196641A (en) Receiver of spread spectrum communication system
JPH05175939A (en) Automatic gain control circuit for receiving spread spectrum signal
JPH04124926A (en) Correlator