JPH03220707A - Manufacture of switching transformer - Google Patents

Manufacture of switching transformer

Info

Publication number
JPH03220707A
JPH03220707A JP2015541A JP1554190A JPH03220707A JP H03220707 A JPH03220707 A JP H03220707A JP 2015541 A JP2015541 A JP 2015541A JP 1554190 A JP1554190 A JP 1554190A JP H03220707 A JPH03220707 A JP H03220707A
Authority
JP
Japan
Prior art keywords
transformer
ferrite core
insulating resin
mineral filler
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015541A
Other languages
Japanese (ja)
Inventor
Toshiaki Shimamoto
島本 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2015541A priority Critical patent/JPH03220707A/en
Publication of JPH03220707A publication Critical patent/JPH03220707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a variation in a hysteresis loop and an increase in an iron loss by incorporating a transformer in an outer case, filling ore filler in the case, then pouring liquidlike insulation oil, and heating to cure the resin. CONSTITUTION:After a transformer 5 formed of a coil wound on a spool and a ferrite core is contained in a case 6, it is preheated, dried and metered ore filler 27 is filled in the case. On the other hand, debubbled and metered main agent 28 and curing agent 29 are mixed, vacuum-filled to invade into gaps of the particles of the agent 27, and then thermally cured. Thus, since a stress to the core is reduced, reverse effect of magnetostrictive ferrite core is eliminated and both the core and the coil can be buried in the insulation resin, thereby reducing temperature rise of the switching transformer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種機械、装置の電源機器として用いられるス
イッチングレギュレータの構成部品であるスイッチング
トランスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a switching transformer that is a component of a switching regulator used as a power source for various machines and devices.

従来の技術 近年、電源機器として小型、軽量、高効率を特27゜ 徴とするスイッチングレギュレータの普及が著しい。Conventional technology In recent years, small, lightweight, and highly efficient power supplies have been developed. Switching regulators, which have a characteristic of

従来、このスイッチングレギュレータに用いらレルスイ
ッチングトランスはボビンにマグネットワイヤーを巻線
してコイpとしフェライトコアを挿入して組み立てたも
の、あるいはそのトランスのコイpのみをケースに収納
して絶縁性樹脂を注入、加熱硬化し、フェライトコアを
ケースの外に出して組み立てたものがあった。前者はバ
ーツナNコンピュータ、ワードプロセッサ、ファクシミ
リ、複写機等の内部装置に24V 、 12V 、5V
等の直流電圧を供給するスイッチングレギュレータに多
く用いられ、又後者は複写機のコロトロンに直流あるい
は交流の高電圧を供給する高圧電源装置あるいはテレビ
ジョン受像機のフライバックトランスに多く用いられて
いた。以下、その構成について第8図〜第16図を参照
しながら説明する。
Conventionally, the switching transformer used in this switching regulator was assembled by winding a magnet wire around a bobbin and inserting a ferrite core as a coil P, or by storing only the coil P of the transformer in a case and encasing it in an insulating resin. There was one in which the ferrite core was injected, heated and hardened, and then assembled by taking the ferrite core out of the case. The former is 24V, 12V, 5V for internal devices such as BHT computers, word processors, facsimile machines, copying machines, etc.
The latter was often used in high-voltage power supplies that supplied high DC or AC voltage to corotrons in copying machines, or in flyback transformers in television receivers. The configuration will be described below with reference to FIGS. 8 to 16.

第11図a、b1は従来のスイッチングトランスの正面
図および側面図である。第12図はそのフ3.8.。
FIGS. 11a and 11b are a front view and a side view of a conventional switching transformer. Figure 12 shows the flow 3.8. .

エライトコア1であり、ボビン3に巻線したコイル2に
フェライトコア1を挿入して組立てたトランス5金プリ
ント基板(図示せず)に搭載し、端子4を通じてプリン
ト基板上の回路と電気的に接Sする。このスイッチング
1−ランスの最も大きな問題は鉄損と銅損による熱の発
生であり、又構造上、フェライトコア1とコイル2間釦
よびコイル2内に多くの空間が存在するため、放熱が悪
いという問題があった。
The ferrite core 1 is assembled by inserting the ferrite core 1 into a coil 2 wound around a bobbin 3, and is mounted on a 5-metal gold printed circuit board (not shown), and is electrically connected to the circuit on the printed circuit board through a terminal 4. Do S. The biggest problem with this switching 1-lance is the generation of heat due to iron loss and copper loss, and due to the structure, there is a lot of space between the ferrite core 1 and the coil 2 button and inside the coil 2, so heat dissipation is poor. There was a problem.

このため、トランス6ばその温度上昇を低くするために
大きな形状となっていた。第13図a。
Therefore, the transformer 6 has a large shape in order to reduce the temperature rise therein. Figure 13a.

bはトランス内の空間を埋めて熱伝導率を上げ同時に放
熱面積を大きくすることを目的としてトランス6をケー
ス6内に収納しケース6内に絶縁性樹脂7を注入(真空
注入又は常圧注入)して加熱硬化したものであるが、フ
ェライトコア1の磁歪の逆効果現象によってヒステリシ
スル−プカ大キく変化し、その結果、鉄損が増大してし
まう。磁歪の逆効果現象とはフェライトコア1が線膨張
率の異なる絶縁性樹脂7で周囲を覆われた状態で温度が
変化すると寸法変化の違いによってフェライトコア1に
応力が加わりフェライトコア1の磁化特性が変化するこ
とである。第8図と第10図はこの状態の特性を示した
一例である。第8図は絶縁性樹脂注入硬化の前後に釦け
るヒステリシスループを比較したものであり、注入硬化
後、著しくル−プの傾斜(インダクタンスに比例する)
が小さくなり、面積が大きくなって鉄損が増大する。
In b, the transformer 6 is housed in the case 6 and an insulating resin 7 is injected into the case 6 (vacuum injection or normal pressure injection) in order to fill the space inside the transformer and increase the thermal conductivity and at the same time increase the heat dissipation area. ), but due to the reverse effect of magnetostriction of the ferrite core 1, the hysteresis loop changes greatly, resulting in an increase in iron loss. What is the reverse effect phenomenon of magnetostriction? When a ferrite core 1 is surrounded by an insulating resin 7 with a different coefficient of linear expansion and the temperature changes, stress is applied to the ferrite core 1 due to the difference in dimensions, which affects the magnetization characteristics of the ferrite core 1. is to change. FIG. 8 and FIG. 10 are examples showing the characteristics of this state. Figure 8 compares the hysteresis loops that occur before and after insulating resin injection and curing.
becomes smaller, the area becomes larger, and iron loss increases.

又第1o図は鉄損の温度特性を示す。各温度共(特に温
度が下がる程)注入硬化後の鉄損の増大が著しい。この
ように鉄損の増大が著しいと絶縁性樹脂7により放熱効
果が向上してもそれ以上に発熱が大きくなり又効率も低
下する等はとんど実用化できない。もちろん、コイル2
のみの注型であれば磁歪の逆効果現象はないが温度上昇
低減効果もあ1り期待できない。
Also, Figure 1o shows the temperature characteristics of iron loss. At each temperature (especially as the temperature decreases), the iron loss after injection hardening increases significantly. If the iron loss increases significantly as described above, even if the heat dissipation effect is improved by the insulating resin 7, the heat generation will become even larger and the efficiency will decrease, making it almost impossible to put it into practical use. Of course, coil 2
If it is only cast, there will be no adverse effect of magnetostriction, but the effect of reducing temperature rise cannot be expected at all.

一方、第14図と第15図はコイルが非常な高電圧とな
るため絶縁性樹脂の注入硬化を必須条件トシているスイ
ッチングI・ランスである。曾ず第14図はカラーテレ
ビジョン受像機や白黒テレビ5べ−7 ジョン受像機等に用いられるフライバックトランスであ
る。1次ボビン8に1次コイル9を巻線し、2次ボビン
1oに2次コイル11を巻線して嵌合シケース12に収
納した後フェライトコア13をコイル9.11に挿入し
て組み立てる。ここで重要なことはフェライトコア13
がケース12の外に出ていることである。この状態で絶
縁性樹脂14を注入硬化する。尚フライバックトランス
の2次コイル11には白黒テレビジョン受像機で約12
〜14KV、カラーテレビジぢン受像機で約25〜30
KVの高周波電巴が発生する。第15図は複写機用の高
圧電源に用いられるスイッチング1−ランスである。1
次ボビン16に1次コイル16を巻線し、2次ボビン1
7に2次コイ/L/18を巻線して嵌合し、一方で高圧
電気部品19を搭載したプリント基板20に端子21を
介してコイル16゜18を電気的に接続した後、ケース
22に収納する。フェライトコア23をコイル16,1
Bに挿入して組立てた後、ケース22内に絶縁性樹脂2
4を注入し硬化させる。ここでもフェライトコア23は
ケース22の外に出ているため、絶縁性對脂24がフェ
ライトコア23を覆うことはない。
On the other hand, FIGS. 14 and 15 show switching lances in which insulating resin is injected and hardened as a necessary condition because the coil is subjected to extremely high voltage. Figure 14 shows a flyback transformer used in color television receivers, black and white television receivers, etc. A primary coil 9 is wound around the primary bobbin 8, a secondary coil 11 is wound around the secondary bobbin 1o, and the coils are housed in a fitting case 12, and then the ferrite core 13 is inserted into the coil 9.11 to assemble. The important thing here is ferrite core 13
is outside Case 12. In this state, the insulating resin 14 is injected and hardened. In addition, the secondary coil 11 of the flyback transformer has approximately 12
~14KV, about 25-30KV for color television receiver
A high-frequency electric field of KV is generated. FIG. 15 shows a switching lance used in a high voltage power supply for a copying machine. 1
The primary coil 16 is wound around the next bobbin 16, and the secondary bobbin 1
After winding and fitting the secondary coil L/18 to the case 22, the coil 16°18 is electrically connected via the terminal 21 to the printed circuit board 20 on which the high-voltage electric component 19 is mounted. Store it in. Ferrite core 23 to coil 16,1
After inserting it into B and assembling it, insert the insulating resin 2 into the case 22.
Inject 4 and harden. Here, too, since the ferrite core 23 is exposed outside the case 22, the insulating resin 24 does not cover the ferrite core 23.

2次コイル18には約15KVO高周波高電圧が発生す
る。第14図に釦けるフライバックトランス釦よび第1
6図にむける複写機円高E電源のスイッチングトランス
は共にフェライトコアをケースの外に出して絶縁性樹脂
がフェライトコアを覆わないようにしているがその理由
は前述のフェライトコアの磁歪の逆効果現象を防止して
いるためであるが、ここに一つの大きな問題がある。す
なわち、フェライトコアが外に出るとケースとフェライ
トコアの間に空間25ができる。この空間25はケース
12 、22釦よび絶縁性樹脂14゜240誘電率の約
1/4の誘電率であり相対的にそれらに比べかなり電界
強度が太きくなるのでコロナ放電(空気の部分的放電)
を防ぐために空間25の寸法Ai非常に大きくとらねば
ならずフェライトコア釦よびトランスの大型化を招いて
いた。
A high frequency high voltage of about 15 KVO is generated in the secondary coil 18. Figure 14 shows the flyback transformer button and the first button.
The switching transformers for the copier Yen High E power supply shown in Figure 6 both have their ferrite cores placed outside the case to prevent the insulating resin from covering the ferrite cores, but the reason for this is the above-mentioned adverse effect of the magnetostriction of the ferrite cores. This is to prevent the phenomenon, but there is one big problem here. That is, when the ferrite core comes out, a space 25 is created between the case and the ferrite core. This space 25 has a dielectric constant that is approximately 1/4 of that of the cases 12, 22 buttons, and the insulating resin 14°240, and the electric field strength is relatively large compared to those, so corona discharge (partial discharge of air) occurs. )
In order to prevent this, the dimension Ai of the space 25 must be made very large, resulting in an increase in the size of the ferrite core button and the transformer.

尚、コロナ放電はノイズの発生源であると同時にケース
、絶縁性樹脂、ボビン等の絶縁劣化の原因となる。
Note that corona discharge is a source of noise, and at the same time causes deterioration of the insulation of the case, insulating resin, bobbin, etc.

以上述べてきた絶縁性樹脂の注入訟よび硬化の従来の方
法を第16図に示す。鉱物性充填物27を乾燥し計量し
た後、同じく計量済の主剤28と硬化剤29とともに混
合してコンパウンド3oとする(鉱物性充填物27を乾
燥して計量後、同じく計量済の主剤28とのみ混合した
後、あらためて硬化剤29を計量して混合させる方法も
あり、一般的にはこの方が多い。)。一方でケース入9
トランス26を予熱し、脱泡されたコンパウンド30が
ケース内に真空下で注入された後加熱硬化を行っていた
The conventional method of injecting and curing the insulating resin described above is shown in FIG. After drying and weighing the mineral filler 27, it is mixed with the base material 28 and curing agent 29, which have also been weighed, to form a compound 3o. There is also a method of mixing the curing agent 29 and then measuring and mixing the curing agent 29 again, but this method is generally more common.) On the other hand, case included 9
The transformer 26 was preheated, and the degassed compound 30 was injected into the case under vacuum and then heated and cured.

発明が解決しようとする課題 以上述べたように温度上昇を下げる目的と高電圧を絶縁
する目的のために絶縁性樹脂は極めて大きな効果を期待
できるものでありながら、従来のスイッチングトランス
の製造方法ではフェライトコアをコイルとともに絶縁性
樹脂の中に埋めることができないという大きな問題点が
あった。その理由はフェライトコアが絶縁性樹脂の中に
埋められ応力が加わると磁歪の逆効果現象によってヒス
テリシスループの変化と鉄損の増大を招き、特性劣化と
効率低下を引き起こすことにある。その結果として絶縁
性樹脂の注入硬化はコイμのみに限られるため温度上昇
の低減効果ばあ1つ期待できず、かつ又、高電Ek扱う
コイルの場合(dコアル外ケース(中にコイ/l/釦よ
び絶縁性樹脂を有する)間の空間にコロナ放電が起きな
いように大きなコアル外ケース間距離が必要になるなど
トランスの大型化を招いていた。
Problems to be Solved by the Invention As mentioned above, insulating resin can be expected to have an extremely large effect for the purpose of reducing temperature rise and insulating high voltage. A major problem was that the ferrite core could not be buried in the insulating resin together with the coil. The reason for this is that when the ferrite core is buried in an insulating resin and stress is applied, the reverse effect of magnetostriction causes a change in the hysteresis loop and an increase in iron loss, leading to deterioration of characteristics and a decrease in efficiency. As a result, injection hardening of the insulating resin is limited to only the coil μ, so no effect of reducing temperature rise can be expected. In order to prevent corona discharge from occurring in the space between the 1/button and the insulating resin, a large distance between the core and the outer case is required, leading to an increase in the size of the transformer.

本発明は上記課題を解決するもので磁歪の逆効果現象を
抑えてフェライトコアをコイルとともに絶縁性樹脂の中
に埋めることができるスイッチングトランスの製造方法
を提供することを目的としている。
The present invention solves the above-mentioned problems and aims to provide a method for manufacturing a switching transformer in which a ferrite core and a coil can be buried in an insulating resin while suppressing the adverse effects of magnetostriction.

課題ヲ解決するための手段 上記課題を解決するために巻枠に巻線したコイルとフェ
ライトコアから戊るトランスを外ケースに収納して、鉱
物性充填剤を外ケース内に充填した後、液状の絶縁性樹
脂を注入し、加熱して絶縁9べ−7 性樹脂を硬化させるものである。
Means for Solving the Problems In order to solve the above problems, a coil wound around a winding frame and a transformer formed from a ferrite core are housed in an outer case, and a mineral filler is filled in the outer case. The insulating resin is injected and heated to harden the insulating resin.

更に充填剤の含有率を上げて熱伝導率を高くして放熱効
果を向上させるために上記手段において外ケース内に充
填する鉱物性充填剤の粒径よシ小さな粒径の第2の鉱物
性充填剤を液状の絶縁性樹:指の中にあらかじめ混合す
るものである。
Furthermore, in order to increase the content of the filler to increase the thermal conductivity and improve the heat dissipation effect, the second mineral filler having a particle size smaller than that of the mineral filler filled in the outer case is used in the above method. The filler is pre-mixed into a liquid insulating tree: your finger.

作用 本発明は上記の方法により鉱物性充填剤がフェライトコ
アを包み個々の鉱物性充填剤のすきまに絶縁性樹脂が浸
み込むのでフェライトコアは線膨張率のほぼ同等の鉱物
性充填剤によって周囲を固められてかりその受ける応力
は小さく磁歪の逆効果現象によるヒステリシスループの
変化および鉄損の増大も極めて小さい。
Function The present invention uses the method described above to wrap the ferrite core in the mineral filler and insulate the insulating resin into the gaps between the individual mineral fillers, so the ferrite core is surrounded by the mineral filler with approximately the same coefficient of linear expansion. Since it is hardened, the stress it receives is small, and the change in hysteresis loop and increase in iron loss due to the reverse effect of magnetostriction are also extremely small.

実施例 以下、本発明の実施列について第1図〜第10図を参照
しながら説明する。
EXAMPLES Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 10.

第1図は本発明の一実施例による絶縁性樹脂の注入およ
び硬化の方法を示すプロセス図である。
FIG. 1 is a process diagram showing a method of injecting and curing an insulating resin according to an embodiment of the present invention.

乾燥、計量された鉱物性充填剤27it予熱された1o
7< 。
Dry, weighed mineral filler 27it preheated 1o
7<.

ケース入りトランス26に直接充填する。一方、主剤2
8と硬化剤29はそれぞれを脱泡、計量後、混合して鉱
物性充填剤充填後のケース人fi+−ランスに真空注入
を行った後、加熱硬化を行う。第2図a −fはこのプ
ロセスをトランスで図示したものである。第2図a、b
に示すようにトランス5をケース6に収納した後、予熱
を行いこのケースの中に第2図c、dに示すように乾燥
、計量された鉱物性充填剤27を充填する。一方で脱泡
、計量された主剤28と硬化剤29は混合されて鉱物性
充填剤27の個々の粒子のすきまに第2図e。
The cased transformer 26 is directly filled. On the other hand, main agent 2
8 and the hardening agent 29 are degassed, measured, mixed, vacuum injected into a case lance filled with a mineral filler, and then heated and hardened. Figures 2a-f illustrate this process in a transformer. Figure 2 a, b
After the transformer 5 is housed in a case 6 as shown in FIG. 2, it is preheated and a dried and weighed mineral filler 27 is filled into the case as shown in FIGS. 2c and 2d. On the other hand, the defoamed and measured base agent 28 and curing agent 29 are mixed and placed in the spaces between the individual particles of the mineral filler 27 as shown in FIG. 2e.

fに示すように浸み込むように真空注入された後、加熱
硬化される。
After being injected under vacuum so that it penetrates as shown in f, it is heated and cured.

第3図は別の実施例を示すプロセス図である。FIG. 3 is a process diagram showing another embodiment.

第1図のプロセス図との違いは鉱物性充填剤27より粒
径の小さい微細鉱物性充填剤31を乾燥。
The difference from the process diagram in Figure 1 is that the fine mineral filler 31, which has a smaller particle size than the mineral filler 27, is dried.

計量後、計量された主剤28.硬化剤29とともに混合
したものでそれ以外は全て第1図のプロセスと同じであ
る。この方法で製造されたスイッチングトランスを第4
図a、bに示す。すなわち鉱117、−7 物性充填剤27の個々の粒子の間に粒径の小さい微細鉱
物性充填剤31の個々の粒子が入るため、充填剤含有率
が更に高くなり放熱効果も向上する。
After weighing, weighed main ingredient 28. It is mixed with a hardening agent 29, and everything else is the same as the process shown in FIG. The switching transformer manufactured by this method was
Shown in Figures a and b. That is, since the individual particles of the fine mineral filler 31 having a small particle size are interposed between the individual particles of the mineral filler 27, the filler content is further increased and the heat dissipation effect is also improved.

第5図は本発明をテレビ用フライバックトランスに適用
した実施例である。従来例を示す第14図と同じ部品に
は同一番号を付してあシ、第14図との違いは鉱物性充
填剤27をケース入りトランスに充填した後に絶縁性樹
脂14を注入することとフェライトコア13が鉱物性充
填剤27と絶縁性樹脂14に埋められていることである
。これはフヱライ・トコア13の周囲が線膨張率のほぼ
同じ鉱物性充填剤27に囲咬れ、線膨張率の大きな絶縁
性樹脂14は鉱物性充填剤27の個々の粒子のすき1に
のみ存在し、つなぎの役割を果たして釦シ、フェライト
コアに応力が加わらないためである。この結果、フェラ
イトコア27と2iコイル11の間は誘電率の小さな空
間は存在せずコロナ放電はなくなり、その間の距離は鉱
物性充填剤27と絶縁性樹脂14の絶縁性能だけで考え
ればよく、極めて小さい値とすることができ非常に小さ
なフライバックトランスが実現できる。
FIG. 5 shows an embodiment in which the present invention is applied to a flyback transformer for television. The same parts as in Fig. 14, which shows the conventional example, are given the same numbers.The difference with Fig. 14 is that the insulating resin 14 is injected after the mineral filler 27 is filled into the cased transformer. The ferrite core 13 is buried in a mineral filler 27 and an insulating resin 14. This is because the periphery of the filler core 13 is surrounded by the mineral filler 27 with almost the same coefficient of linear expansion, and the insulating resin 14 with a large coefficient of linear expansion exists only in the gaps 1 between the individual particles of the mineral filler 27. This is because it acts as a connector and does not apply stress to the button and ferrite core. As a result, there is no space with a small dielectric constant between the ferrite core 27 and the 2i coil 11, and no corona discharge occurs, and the distance between them can be considered only based on the insulation performance of the mineral filler 27 and the insulating resin 14. The value can be made extremely small, and a very small flyback transformer can be realized.

第6図は本発明を複写機用の高圧電源に用いられるスイ
ッチングトランスに適用した実施例である。従来例を示
す第16図と同じ部品には同一番号を付して釦シ、第1
5図との違いは鉱物性充填剤27をケース入りトランス
に充填した後、絶縁性樹脂24を注入することとフェラ
イトコア23が鉱物性充填剤27と絶縁性樹脂24に埋
められていることである。これはフェライトコア23の
周囲が線膨張率のほぼ同じ鉱物性充填剤27に囲1れ、
線膨張率の大きな絶縁性樹脂24は鉱物性充填剤27の
個々の粒子のすきすにのみ存在し、つなぎの役割を果た
しておシ、フェライトコアに応力が加わらないためであ
る。この結果、フェライトコア27と2/にコイル18
の間は誘電率の小さな空間は存在せずコロナ放電はなく
なり、その間の距離は鉱物性充填剤27と絶縁性樹脂2
4の絶縁性能だけで考えればよく、極めて小さい値とす
ることができ、非常に小さなスイッチングトランスが実
現できる。
FIG. 6 shows an embodiment in which the present invention is applied to a switching transformer used in a high voltage power supply for a copying machine. The same parts as in Fig. 16, which shows the conventional example, are given the same numbers and are designated as buttons and parts.
The difference from Fig. 5 is that the insulating resin 24 is injected after the mineral filler 27 is filled into the cased transformer, and the ferrite core 23 is buried in the mineral filler 27 and the insulating resin 24. be. This is because the ferrite core 23 is surrounded by a mineral filler 27 having almost the same coefficient of linear expansion.
This is because the insulating resin 24 having a large coefficient of linear expansion exists only in the spaces between the individual particles of the mineral filler 27, plays the role of a connector, and does not apply stress to the ferrite core. As a result, the coil 18 is connected to the ferrite cores 27 and 2/.
There is no space with a small dielectric constant between them, and corona discharge disappears, and the distance between them is the distance between the mineral filler 27 and the insulating resin 2.
It is only necessary to consider the insulation performance of 4, and it can be set to an extremely small value, making it possible to realize an extremely small switching transformer.

13、、−7 第7図は本発明の製造方法すなわち第3図のプロセスに
よる絶縁性樹脂の注入硬化後と注入前のフェライトコア
のヒステリシスループの比較であり、第8図は従来の製
造方法すなわち第16図のプロセスによる絶R性樹脂の
注入硬化後と注入前のフェライトコアのヒステリシスル
ープの比較である(フェライトコアは富士電気化学(株
)製のFEER35LZ−H49N 、絶縁性樹脂はエ
ポキシ樹脂、測定周波数は100KIlz(正弦波)。
13,,-7 Figure 7 is a comparison of the hysteresis loops of the ferrite core after and before injection and hardening of the insulating resin according to the manufacturing method of the present invention, that is, the process shown in Figure 3, and Figure 8 is a comparison of the hysteresis loops of the ferrite core according to the conventional manufacturing method. In other words, this is a comparison of the hysteresis loop of the ferrite core after and before injection and hardening of the absolute R resin by the process shown in Figure 16 (the ferrite core is FEER35LZ-H49N manufactured by Fuji Electrochemical Co., Ltd., and the insulating resin is epoxy resin). , the measurement frequency is 100Kilz (sine wave).

測定温度は120Cである。)。第7図にかいては絶縁
性樹脂の注入硬化の前後に釦いてヒステリシスループの
変化がほとんどないのに対し、第8図にかいてはヒステ
リシスループの傾斜が小さくなり面積が大きくなってい
る。又第9図は本発明の製造方法すなわち第3図のプロ
セスによる絶縁性樹脂の注入硬化後と注入前のフェライ
トコアの鉄損温度特性カーブの比較であシ、第10図は
従来の製造方法すなわち第16図のプロセスによる絶縁
性樹脂の注入硬化後と注入前のフェライトコアの鉄損温
度特性カーブの比較である(フェライ14/ トコアは富士電気化学(株)製のFEER35LZ−H
49N、絶縁性樹脂はエポキシ樹脂、測定周波数は1o
c)KHz(正弦波)、磁束密度は1500ガウスであ
る。)。第9図に釦いては注入前の鉄損と絶縁性樹脂注
入後の鉄損の差がごくわずか(特に40’C以上ではほ
とんど差なし)であるのに対し第10図では極めてその
差が大きい。
The measurement temperature is 120C. ). In FIG. 7, there is almost no change in the hysteresis loop before and after the insulating resin is injected and hardened, whereas in FIG. 8, the slope of the hysteresis loop becomes smaller and the area becomes larger. Fig. 9 is a comparison of the iron loss temperature characteristic curves of the ferrite core after and before injection of insulating resin according to the manufacturing method of the present invention, that is, the process shown in Fig. 3, and Fig. 10 is a comparison of the iron loss temperature characteristic curves of the ferrite core according to the conventional manufacturing method. In other words, it is a comparison of the iron loss temperature characteristic curves of the ferrite core after injecting and hardening the insulating resin by the process shown in Fig. 16 and before injecting it (Ferrai 14/Tokoa is FEER35LZ-H manufactured by Fuji Denki Kagaku Co., Ltd.).
49N, insulating resin is epoxy resin, measurement frequency is 1o
c) KHz (sine wave), magnetic flux density is 1500 Gauss. ). In Fig. 9, the difference between the iron loss before injection and the iron loss after insulating resin injection is very small (especially at temperatures above 40'C, there is almost no difference), but in Fig. 10, the difference is extremely small. big.

以上のような差が出る理由は次の通りである。すなわち
第3図のプロセスにかいてはケース入りトランス26に
寸ず鉱物性充填剤27が充填され。
The reason for the above difference is as follows. That is, in the process shown in FIG. 3, the cased transformer 26 is completely filled with mineral filler 27.

その後絶縁性樹脂(主剤28.硬化剤29)と微細鉱物
性充填剤31の混合、脱泡したものを注入するために鉱
物性充填剤270個々の粒子のすき1に絶縁性樹脂が浸
み込む状態となりフェライトコア1に加わる応力は鉱物
性充填剤27によって支配されるがこの両者の線膨張率
がほとんど同等であるためその応力は極めて小さい。尚
、この理由はそのま1第1図のプロセスにも適用される
After that, the insulating resin (base resin 28, curing agent 29) and fine mineral filler 31 are mixed, and in order to inject the defoamed material, the insulating resin permeates into the gaps 1 between the individual particles of the mineral filler 270. The stress applied to the ferrite core 1 in this state is controlled by the mineral filler 27, but since the coefficients of linear expansion of the two are almost the same, the stress is extremely small. Note that this reason also applies to the process shown in FIG. 1.

この状態を示したものが第17図である。一方第16図
のプロセスにかいては絶縁性樹脂(主剤16 28、硬化剤29)と鉱物性充填剤27の混合脱泡した
ものがケース入りトランス26に注入されるがこのとき
の状態は絶縁性樹脂の中に鉱物性充填剤27が分散して
いる状態であり、フェライトコア1に対する応力は線膨
張率の大きな絶縁性樹脂によって支配される。この状態
を示したものが第18図である。又これらの理由によっ
て鉱物性充填剤27の配合量も本発明例では多くするこ
とができその結果、熱伝導率の向上釦よび耐クラツク性
の向上も図れる。次の表はエポキシ樹脂を用いた50W
クラスのスイッチングトランスについてその比較をした
ものである。
FIG. 17 shows this state. On the other hand, in the process shown in FIG. 16, a degassed mixture of insulating resin (base resin 16 28, curing agent 29) and mineral filler 27 is injected into the cased transformer 26, but at this time the state is insulated. The mineral filler 27 is dispersed in the ferrite core 1, and the stress on the ferrite core 1 is dominated by the insulating resin having a large coefficient of linear expansion. FIG. 18 shows this state. Further, for these reasons, the amount of mineral filler 27 can be increased in the examples of the present invention, and as a result, it is possible to improve the thermal conductivity and the crack resistance. The following table shows 50W using epoxy resin.
This is a comparison of class switching transformers.

発明の効果 以上の実施例から明らかなように本発明によればケース
入シトランスに鉱物性充填剤を外ケース内に充填した後
液状の絶縁性樹脂又は微細鉱物性充填剤と絶縁性樹脂の
混合物を注入硬化させるのでフェライトコアに対する応
力は線膨張率のほとんど同等の鉱物性充填剤によって支
配されるので極めて小さくフェライトコアの磁歪の逆効
果現象もほとんどなくフェライトコアとコイμを共に絶
縁性樹脂の中に埋めることができるのでスイッチングト
ランスの温度上昇の著しい低減を図ることができるとと
もに高電圧を扱うトランスの場合はコロナ放電を起こす
空間がなくなって著しく小型化が可能になる。同時に鉱
物性充填剤の配合量が増加して熱伝導重重よび耐クラツ
ク性の向上が図れる。
Effects of the Invention As is clear from the above embodiments, according to the present invention, after filling the outer case of a cased citrans with a mineral filler, a liquid insulating resin or a mixture of a fine mineral filler and an insulating resin is produced. Since the ferrite core is injected and hardened, the stress on the ferrite core is dominated by the mineral filler with almost the same coefficient of linear expansion, so it is extremely small and there is almost no adverse effect of the magnetostriction of the ferrite core. Since it can be buried inside the switching transformer, the temperature rise of the switching transformer can be significantly reduced, and in the case of a transformer that handles high voltages, there is no space for corona discharge to occur, making it possible to significantly downsize the transformer. At the same time, the blended amount of mineral filler is increased to improve heat conductivity and crack resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法の一実施例を示すプロセス図
、第2図IL Nfは同スイッチングトランスのプロセ
スを示す側面断面図と正面断面図、第17、。 3図は本発明の製造方法の別の実施列を示すプロセス図
、第4図Δ、bは同スイッチングトランスの正面断面図
と側面断面図、第5図は同フライバックトランスの正面
断面図、第6図は同複写機用高圧電源のスイッチングト
ランスの正面断面図、第7図は本発明のスイッチングト
ランスのフェライトコアのヒステリシスループの一例を
示す特性図、第8図は従来の製造方法によるスイッチン
グトランスのフェライトコアのヒステリシスループを示
す特性図、第9図は本発明のスイッチングトランスのフ
ェライトコアの鉄損温度特性の一例を示す特性図、第1
0図は従来の製造方法によるスイッチングトランスのフ
ェライトコアの鉄損温度特性を示す特性図、第11図a
、bは従来のスイッチングトランスの正面図1よび側面
図、第12図はスイッチングトランスに用いられるフエ
ライ図ハ従来のフライバックトランスの正面断面図、第
15図は従来の複写機用高圧電源のスイッチン187.
7 ブトランスの正面断面図、第16図は従来の製造方法を
示すプロセス図、第17図は本発明のスイッチングトラ
ンスの一実施例の部分断面図、第18図は従来のスイッ
チングトランスの部分断面図である。 1.13.23・・・・・・フェライトコア、2,9゜
11.16.18・・・・・・コイル、3,8,10゜
15.17・・・・・・ボビン、5・・・・・・トラン
ス、6゜12.22・・・・・・外ケース、7,14,
24・・・・・・絶縁性樹脂、26・・・・・・ケース
入シトランス、27・・・・・・鉱物性充填剤、2B・
・・・・・絶縁性樹脂の主剤、29・・・・・・絶縁性
樹脂の硬化剤、31・・・・・・微細鉱物性充填剤。
FIG. 1 is a process diagram showing one embodiment of the manufacturing method of the present invention, and FIG. 2 is a side sectional view and a front sectional view showing the process of the same switching transformer. 3 is a process diagram showing another implementation of the manufacturing method of the present invention, FIG. 4 Δ, b is a front sectional view and side sectional view of the switching transformer, and FIG. 5 is a front sectional view of the flyback transformer. FIG. 6 is a front cross-sectional view of the switching transformer of the high-voltage power supply for the copying machine, FIG. 7 is a characteristic diagram showing an example of the hysteresis loop of the ferrite core of the switching transformer of the present invention, and FIG. 8 is a switching transformer according to the conventional manufacturing method. FIG. 9 is a characteristic diagram showing an example of the iron loss temperature characteristics of the ferrite core of the switching transformer of the present invention.
Figure 0 is a characteristic diagram showing the iron loss temperature characteristics of the ferrite core of a switching transformer manufactured by the conventional manufacturing method, and Figure 11a.
, b is a front view 1 and a side view of a conventional switching transformer, FIG. 12 is a front view 1 and a side view of a conventional flyback transformer, FIG. 12 is a front sectional view of a conventional flyback transformer used in a switching transformer, and FIG. 187.
FIG. 16 is a process diagram showing a conventional manufacturing method, FIG. 17 is a partial sectional view of an embodiment of the switching transformer of the present invention, and FIG. 18 is a partial sectional view of a conventional switching transformer. It is. 1.13.23... Ferrite core, 2,9°11.16.18... Coil, 3,8,10°15.17... Bobbin, 5. ...Transformer, 6゜12.22 ...Outer case, 7,14,
24... Insulating resin, 26... Citrans in case, 27... Mineral filler, 2B.
...Main ingredient for insulating resin, 29...Curing agent for insulating resin, 31...Fine mineral filler.

Claims (2)

【特許請求の範囲】[Claims] (1) 巻枠に巻線したコイルとフェライトコアからな
るトランスを外ケースに収納して、鉱物性充填剤を外ケ
ース内に充填した後、液状の絶縁性樹脂を注入し、加熱
して絶縁性樹脂を硬化させるスイッチングトランスの製
造方法。
(1) A transformer consisting of a coil wound on a winding frame and a ferrite core is housed in an outer case, a mineral filler is filled in the outer case, and then liquid insulating resin is injected and heated to insulate it. A method for manufacturing a switching transformer that hardens a synthetic resin.
(2) 外ケース内に充填する鉱物性充填剤の粒径より
小さな粒径の第2の鉱物性充填剤を液状の絶縁性樹脂の
中にあらかじめ混合した請求項1記載のスイッチングト
ランスの製造方法。
(2) The method for manufacturing a switching transformer according to claim 1, wherein a second mineral filler having a particle size smaller than the particle size of the mineral filler filled in the outer case is mixed in advance into the liquid insulating resin. .
JP2015541A 1990-01-25 1990-01-25 Manufacture of switching transformer Pending JPH03220707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015541A JPH03220707A (en) 1990-01-25 1990-01-25 Manufacture of switching transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015541A JPH03220707A (en) 1990-01-25 1990-01-25 Manufacture of switching transformer

Publications (1)

Publication Number Publication Date
JPH03220707A true JPH03220707A (en) 1991-09-27

Family

ID=11891658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015541A Pending JPH03220707A (en) 1990-01-25 1990-01-25 Manufacture of switching transformer

Country Status (1)

Country Link
JP (1) JPH03220707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031092A (en) * 2001-07-18 2003-01-31 Yamatake Corp Proximity sensor
JP2013140929A (en) * 2011-12-30 2013-07-18 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031092A (en) * 2001-07-18 2003-01-31 Yamatake Corp Proximity sensor
JP2013140929A (en) * 2011-12-30 2013-07-18 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7623014B2 (en) Choke coil
JP3160685B2 (en) Inductor
JP6065609B2 (en) Reactor, converter, and power converter
US8686820B2 (en) Reactor
GB2044550A (en) Case inductive circuit components
JP2007019402A (en) Coil-sealing resin-molded reactor, and manufacturing method thereof
US3602814A (en) Encapsulated electric coil having barrier layer
JP3126864B2 (en) Ignition coil
US3662460A (en) Method of making a random wound encapsulated coil
JPH03220707A (en) Manufacture of switching transformer
JPH0232508A (en) Resin molded coil
JP2001103756A (en) Power circuit block
JPH04307907A (en) Coil
JPH11144977A (en) Transformer
JP2003168607A (en) Dust inductor
JP3138490B2 (en) Manufacturing method of chip inductor
JPH0121536Y2 (en)
JP3013197B2 (en) Inductor and manufacturing method thereof
US3821678A (en) Transformer having a cast winding structure with integral insulating barriers
JPH02228011A (en) Transformer
JPH10189375A (en) Electromagnetic device
JP3250431B2 (en) Trance
JPS60263412A (en) Flyback transformer
JPS638097Y2 (en)
SU1410116A1 (en) Transformer