JPH0321966B2 - - Google Patents

Info

Publication number
JPH0321966B2
JPH0321966B2 JP56167514A JP16751481A JPH0321966B2 JP H0321966 B2 JPH0321966 B2 JP H0321966B2 JP 56167514 A JP56167514 A JP 56167514A JP 16751481 A JP16751481 A JP 16751481A JP H0321966 B2 JPH0321966 B2 JP H0321966B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
tape
electrical resistance
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56167514A
Other languages
Japanese (ja)
Other versions
JPS5870421A (en
Inventor
Toshiaki Izumi
Fumio Maruta
Takanori Kobuke
Kyoshi Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP56167514A priority Critical patent/JPS5870421A/en
Publication of JPS5870421A publication Critical patent/JPS5870421A/en
Publication of JPH0321966B2 publication Critical patent/JPH0321966B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements

Description

【発明の詳細な説明】 この発明は、高密度、高分解能の磁気記録媒体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-density, high-resolution magnetic recording medium.

近年、磁気記録技術の進展に伴ない、高密度、
高分解能のものが望まれており、小型VTRやカ
メラ一体型VTR、さらにPCM対応録音機などが
提案されるにつれて、それらに用いるための新し
い磁気記録媒体が必要になつてきている。
In recent years, with the advancement of magnetic recording technology, high density,
High resolution is desired, and as compact VTRs, camera-integrated VTRs, and PCM compatible recorders are proposed, new magnetic recording media for use in these devices are needed.

こうした状況下にあつて、真空技術を用いた薄
膜型の磁気記録媒体が注目されている。中でも蒸
着、イオンプレーテイング、スパツタリングなど
によつて非磁性の基体上に直接強磁性層を形成し
て磁気記録媒体とする方法については広く実用化
のための研究が進んでいる。
Under these circumstances, thin film magnetic recording media using vacuum technology are attracting attention. Among these, methods for forming magnetic recording media by directly forming a ferromagnetic layer on a nonmagnetic substrate by vapor deposition, ion plating, sputtering, etc. are being extensively researched for practical use.

しかるに上記蒸着テープをオーデイオテープ用
として設計する際に考慮すべき特性には種々ある
が、表面電気抵抗、ステイフネスなどは重要な項
目である。電気抵抗については、元来塗布タイプ
の磁気テープは主に酸化鉄と高分子バインダーか
ら磁性層が形成されているため、電気抵抗は109
Ω以上の高い値になつていた。このために電気抵
抗値が問題となるのは、走行によつて各所に生じ
る帯電がテープから逃げにくく、いわゆる放置ノ
イズとして音声信号に重なり、耳ざわりであるこ
とが主であつた。この点を解決するために磁性塗
料に導電性材料を混合したり、逆に導電性の薄膜
をベース裏面に設けるなどしてテープ全体として
の電気抵抗を下げる技術が実用化されている。
However, there are various characteristics that should be considered when designing the vapor-deposited tape for use as an audio tape, and surface electrical resistance, stiffness, etc. are important items. Regarding electrical resistance, since the magnetic layer of coated magnetic tape is mainly made of iron oxide and a polymer binder, the electrical resistance is 10 9
It had reached a high value of Ω or more. For this reason, the main reason why the electrical resistance value becomes a problem is that the electrical charge generated in various places during running is difficult to escape from the tape, and it overlaps with the audio signal as so-called leftover noise, causing a harshness to the ears. To solve this problem, techniques have been put into practical use that lower the electrical resistance of the tape as a whole, such as by mixing a conductive material with the magnetic paint or by providing a conductive thin film on the back of the base.

しかしながら、蒸着テープなどの場合、磁性層
は金属あるいは合金から構成され、高分子バイン
ダーなどを含まないので、電気抵抗が極端に低く
なり、このためヘツド周囲のシール性の悪いデツ
キなどでは録音時に問題を生じることがある。す
なわち、電気抵抗が極めて低いテープを、いわゆ
る3ヘツドタイプと称されるデツキで使用した場
合、消去ヘツド、録音ヘツド、再生ヘツド間の回
路が、録音ヘツドで発生するバイアス磁界や、消
去ヘツドからの消去磁界に誘起されて、再生ヘツ
ドにノイズをひき起すことが判つている。
However, in the case of vapor-deposited tapes, etc., the magnetic layer is made of metal or alloy and does not contain a polymeric binder, so the electrical resistance is extremely low, which causes problems when recording on decks with poor sealing around the head. may occur. In other words, when a tape with extremely low electrical resistance is used in a so-called three-head type deck, the circuit between the erasing head, recording head, and playback head is affected by the bias magnetic field generated by the recording head and the bias magnetic field from the erasing head. It has been found that the erase field induces noise in the read head.

このような現象は、例えば、特開昭56−47924
号公報にも開示されているところである。そこ
で、上述したような問題は、デツキを製造する際
に配慮すればほとんど回避することが可能である
と思われるが、磁気テープの製造上からも改善が
望まれているところである。さらに上記ノイズの
多くは磁気テープ表面の電気抵抗を高めることに
よつて低減できるものであり、その一つの解決法
として前出の特開昭56−47924号公報に開示され
た如く、連続体である薄膜磁性層にクラツクを設
けて部分的に不連続部分である絶縁層をつくるこ
とが提案されており、ある程度有効であるとして
も薄膜磁性層にクラツクを連続的に再現性よく形
成する技術は極めて困難である。また、蒸着テー
プでは、蒸着金属ないし、合金の薄膜磁性層がそ
の内部応力で反りを招きかつテープ基体(ベース
フイルム)への付着性に改善の余地がある。
This phenomenon is described, for example, in Japanese Patent Application Laid-Open No. 56-47924.
This is also disclosed in the publication No. Therefore, it is believed that most of the above-mentioned problems can be avoided if consideration is given when manufacturing the deck, but improvements are also desired from the viewpoint of manufacturing magnetic tapes. Furthermore, much of the above-mentioned noise can be reduced by increasing the electrical resistance of the magnetic tape surface, and one solution to this problem is to use a continuum as disclosed in the aforementioned Japanese Patent Application Laid-Open No. 56-47924. It has been proposed to create a partially discontinuous insulating layer by creating cracks in a thin magnetic layer, but even if it is somewhat effective, there is no technology to continuously form cracks in a thin magnetic layer with good reproducibility. It is extremely difficult. Furthermore, in vapor-deposited tapes, the thin magnetic layer of vapor-deposited metal or alloy tends to warp due to internal stress, and there is room for improvement in adhesion to the tape substrate (base film).

この発明は、上述した事情に鑑みてなされたも
のであり、非磁性基体と;該非磁性基体の上に形
成された非磁性中間層と;該非磁性中間層の上に
形成されかつ3層以上の強磁性層とそれぞれの強
磁性層を構成する強磁性材を酸化した酸化物層と
の交互積層体である磁性層と;からなる磁気記録
媒体を提出し、磁性層での最上層がその強磁性体
の酸化物からなるものは表面電気抵抗が高くする
ことができ、ノイズが改善されると共に電磁変換
特性もすぐれた磁気記録媒体となるものである。
さらに、中間層をアルミニウム(Al)、SiOx(x
=1.0〜2.0)やチタン(Ti)などの非磁性材料で
蒸着法ないしスパツタリング法で基体(テープベ
ースフイルム)上に直接に、磁性層の形成前に、
堆積形成することによつて、蒸着金属(合金)と
は反対の反りを中間層に与えてカツピング性を改
善し、かつ基体のテープフイルムのステイフネス
(剛性)を改善することができる。
This invention was made in view of the above-mentioned circumstances, and includes: a non-magnetic substrate; a non-magnetic intermediate layer formed on the non-magnetic substrate; Submit a magnetic recording medium consisting of a magnetic layer which is an alternate stack of ferromagnetic layers and oxide layers obtained by oxidizing the ferromagnetic material constituting each ferromagnetic layer; A magnetic recording medium made of a magnetic oxide can have a high surface electrical resistance, improve noise, and have excellent electromagnetic conversion characteristics.
Furthermore, the intermediate layer is made of aluminum (Al), SiO x (x
= 1.0 to 2.0) or titanium (Ti) directly on the substrate (tape base film) by vapor deposition or sputtering before forming the magnetic layer.
By depositing, it is possible to give the intermediate layer a curvature opposite to that of the deposited metal (alloy), thereby improving the cutability and improving the stiffness of the base tape film.

以下、この発明による実施例を添付した図面に
もとづいて詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

実施例 第4図に示すように、15μm厚さのポリエチレ
ンテレフタレートのベースフイルム(テープ)1
を用意し、その上に真空蒸着法によつてアルミニ
ウムの中間層2を厚さ25nmで形成した。次に、
強磁性材のコバルト・ニツケル(Co−Ni)を斜
め蒸着法によつて、冷却キヤン(ドラム)に接触
させて走行するテープのアルミニウム中間層2の
上に強磁性層(Co−Ni層)A1を形成した。この
斜め蒸着法において、蒸着流の最小(又は最大)
入射角付近の部分に酸素(O2)ガスを添加して
Co−Ni層蒸着形成終了近くではCo−Niの酸化物
を蒸着させて酸化物層B1を形成した。蒸着は圧
力を3×10-3Pa(約2×10-5Torr)にし、電子ビ
ーム(EB)にてCo−Niを加熱・溶解して蒸着流
を発生させ、冷却キヤンを0℃に維持した。得ら
れるCo−Ni層A1のテープ長さ方向の保磁力を約
6000e以上となるようした。このようなCo−Ni層
および酸化物層の蒸着形成を繰り返して(2回、
3回、4回および5回の繰り返しで)磁性層3を
形成した。なお、第4図においては、3回繰り返
した3層構造を示す。磁性層3の厚さを200nm
一定となるように、Co−Ni層および酸化物層の
厚さを多層構造に応じて決めた。例えば、3層構
造(第4図)であれば、Co−Ni層A1を50nmと
し、A2およびA3を60nmとし、酸化物層B1,B2
B3を10nmとした。また、4層構造であれば、Co
−Ni層A1〜A4を40nmとし、酸化物層B1〜B4
10nmとした。
Example As shown in Figure 4, a base film (tape) of polyethylene terephthalate with a thickness of 15 μm 1
was prepared, and an aluminum intermediate layer 2 with a thickness of 25 nm was formed thereon by vacuum evaporation. next,
A ferromagnetic layer (Co-Ni layer) A is applied to the aluminum intermediate layer 2 of the tape, which runs in contact with the cooling can (drum), by using a ferromagnetic material cobalt-nickel (Co-Ni) by oblique evaporation. 1 was formed. In this oblique deposition method, the minimum (or maximum) of the deposition flow is
By adding oxygen (O 2 ) gas near the incident angle,
Near the end of the Co--Ni layer deposition, a Co--Ni oxide was deposited to form an oxide layer B1 . For vapor deposition, the pressure is set to 3 x 10 -3 Pa (approximately 2 x 10 -5 Torr), Co-Ni is heated and melted with an electron beam (EB) to generate a vapor deposition flow, and the cooling can is maintained at 0°C. did. The coercive force of the resulting Co-Ni layer A1 in the tape length direction is approximately
It was set to be 6000e or higher. This process of vapor deposition of the Co-Ni layer and the oxide layer was repeated (twice,
The magnetic layer 3 was formed by repeating the process 3 times, 4 times, and 5 times. Note that FIG. 4 shows a three-layer structure that is repeated three times. The thickness of magnetic layer 3 is 200nm.
The thicknesses of the Co--Ni layer and the oxide layer were determined according to the multilayer structure so as to be constant. For example, in the case of a three-layer structure (Fig. 4), the Co-Ni layer A 1 is 50 nm thick, A 2 and A 3 are 60 nm thick, and the oxide layers B 1 , B 2 ,
B3 was set to 10 nm. In addition, if it has a four-layer structure, Co
−Ni layers A 1 to A 4 are 40 nm thick, and oxide layers B 1 to B 4 are
It was set to 10 nm.

以上の条件で非磁性中間層と多層構造の磁性層
の蒸着膜を形成した。このときの磁性層の強磁性
層数と感度の関係は第1図に示すようになつた。
図において、感度は幅3.8mmに切断したカセツト
テープの形にし、4.75cm/secで333Hzの相対出力
を示した。これによると層数が1ないし2の場合
は、このテープはあまり良い感度を示さないが、
これに対して3層以上の強磁性層からなるテープ
はそれよりすぐれた感度を示すことが明らかにな
つた。
Under the above conditions, a deposited film of a nonmagnetic intermediate layer and a multilayered magnetic layer was formed. At this time, the relationship between the number of ferromagnetic layers in the magnetic layer and the sensitivity was as shown in FIG.
In the figure, the sensitivity is shown in the form of a cassette tape cut to a width of 3.8 mm, and a relative output of 333 Hz at 4.75 cm/sec. According to this, when the number of layers is 1 or 2, this tape does not show very good sensitivity, but
On the other hand, it has become clear that tapes consisting of three or more ferromagnetic layers exhibit superior sensitivity.

つぎに、第4図に示したサンプルをつくる際
に、最上層を含めたコバルト・ニツケルの酸化物
層蒸着時に、酸素分圧をいくつかの圧力として酸
化の度合いの異なるサンプルを得た。ただし、こ
の時、強磁性層(Co−Ni層)の保磁力は同様に
概ね6000e以上になるように斜め蒸着の際の入射
角を調整した。上述したようにして得られたサン
プルの最上層形成時の酸素分圧とテープ表面の電
気抵抗は第2図に示したようになつた。ここで電
気抵抗とはテープを幅3.8mm、長さ20cmにしてそ
の両端で測定した電気抵抗をいう。なお、得られ
たサンプルについて酸化の度合いとノイズの関係
を調べると、上述のように表面電気抵抗が低く、
導電性のあるテープは3ヘツドタイプのデツキ
で、ヘツドのシールを悪くしたものは、録音同時
再生時に、再生信号に含まれるノイズが単に再生
した場合に比べて大きくなるのだが、酸化物の最
上層を形成することによつてこの緩和がなされる
ものである。すなわち両ノイズレベルの差をテー
プ表面の電気抵抗との関係で示せば第3図のよう
になる。
Next, when making the sample shown in FIG. 4, samples with different degrees of oxidation were obtained by changing the oxygen partial pressure to several pressures during the deposition of the cobalt-nickel oxide layer including the top layer. However, at this time, the incident angle during oblique deposition was adjusted so that the coercive force of the ferromagnetic layer (Co--Ni layer) was approximately 6000e or more. The oxygen partial pressure and electrical resistance of the tape surface at the time of forming the uppermost layer of the sample obtained as described above were as shown in FIG. Here, electrical resistance refers to the electrical resistance measured at both ends of a tape with a width of 3.8 mm and a length of 20 cm. In addition, when examining the relationship between the degree of oxidation and noise for the obtained sample, as mentioned above, the surface electrical resistance is low;
The conductive tape is a 3-head type deck, and if the head is poorly sealed, the noise contained in the playback signal will be greater when recording and playing back at the same time than when simply playing back. This relaxation is achieved by forming an upper layer. That is, if the difference between the two noise levels is shown in relation to the electrical resistance of the tape surface, the result will be as shown in FIG.

ここでノイズレベルは333Hzのノイズ成分であ
る。
Here, the noise level is a 333Hz noise component.

上記第3図によると、200Ωを越える表面電気
抵抗のテープはノイズレベル差は1dB以下とな
り、実用上に問題はない。このとき、感度は数10
Ωのサンプルに比べて1dB程度低くなつたにとど
まつたので、テープのSN比はノイズレベル差が
なくなつた分だけ改善されたことになり、実用上
問題のない範囲となつた。
According to FIG. 3 above, tapes with a surface electrical resistance exceeding 200Ω have a noise level difference of 1 dB or less, which poses no problem in practical use. At this time, the sensitivity is several 10
Since it was only about 1 dB lower than the Ω sample, the SN ratio of the tape was improved by the amount that the noise level difference disappeared, and it was within a range that did not cause any practical problems.

なお、ノイズレベル差のこの傾向はオーデイオ
周波数領域のどこでも同じであつた。また強磁性
層が4層以上の場合でも、200Ω以上の抵抗にな
るとこの発明の実施例と同様にノイズレベル差は
2dB以下となる。
Note that this tendency of noise level difference was the same everywhere in the audio frequency domain. Also, even if there are four or more ferromagnetic layers, if the resistance is 200Ω or more, the noise level difference will be the same as in the embodiment of this invention.
It will be less than 2dB.

以上詳細に説明したように、この発明による磁
気記録媒体は、蒸着テープを実用化する上で不可
避なノイズの問題を解決したものであり、工業的
効果は顕著である。さらに、アルミニウムなどの
中間層を蒸着する際に該アルミニウム蒸着層に生
じる内部応力によつて基体(テープ)と共に反る
が、強磁性(Co−Ni)層の蒸着で生じる該強磁
性層内部応力とは反対方向の応力で反り方も逆で
あるために、結果として相殺されて蒸着テープ
(磁気記録媒体)としては反り発生が従来よりも
大幅に小さくできる。また、中間層の形成はテー
プ(基体)のステイフネスを向上させ(すなわ
ち、腰を強くして)、磁気ヘツド当りなどを改善
する。
As explained in detail above, the magnetic recording medium according to the present invention solves the problem of noise that is inevitable when putting vapor-deposited tape into practical use, and has a remarkable industrial effect. Furthermore, when an intermediate layer such as aluminum is deposited, the aluminum deposited layer warps together with the base (tape) due to the internal stress generated in the aluminum deposited layer, but the ferromagnetic layer internal stress that occurs when the ferromagnetic (Co-Ni) layer is deposited. Since the stress in the opposite direction causes the warp to occur in the opposite direction, the results cancel each other out, and the occurrence of warp in the vapor-deposited tape (magnetic recording medium) can be made much smaller than in the past. Furthermore, the formation of the intermediate layer improves the stiffness of the tape (substrate) (that is, makes it stiffer) and improves the contact with the magnetic head.

なお、実施例に示した中間層、強磁性層および
酸化物層の形成において、その方法がこの発明に
よる主旨を逸脱しない範囲で変更することは可能
であり、イオンプレーテイングやスパツタリング
なども用い得るものである。特に、酸素雰囲気と
電気抵抗との関係については、その他の条件、例
えば蒸発速度、基体の移動速度などが影響を与え
るので、この発明の有効な範囲を限定するもので
はない。
In addition, in the formation of the intermediate layer, ferromagnetic layer, and oxide layer shown in the examples, it is possible to change the method without departing from the gist of the present invention, and ion plating, sputtering, etc. may also be used. It is something. In particular, the relationship between the oxygen atmosphere and the electrical resistance is influenced by other conditions, such as the evaporation rate and the movement rate of the substrate, so this does not limit the effective scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁気記録媒体(蒸着磁気
テープ)の部分拡大断面図、第2図はこの発明の
実施例で得られた磁気テープの磁性層の強磁性層
数と感度の関係図、第3図は3層構造磁性層での
酸化物層を形成する際の真空槽内の酸化分圧とで
きあがつたテープ表面の電気抵抗との関係図、お
よび第4図は最上層が酸化物層となつている3層
構造の磁性層である場合の表面電気抵抗とノイズ
レベル差の関係図である。
FIG. 1 is a partially enlarged sectional view of a magnetic recording medium (vapor-deposited magnetic tape) according to the present invention, and FIG. 2 is a relationship between the number of ferromagnetic layers and sensitivity of the magnetic tape obtained in an example of the present invention. , Figure 3 shows the relationship between the oxidation partial pressure in the vacuum chamber and the electrical resistance of the finished tape surface when forming the oxide layer in a three-layer magnetic layer, and Figure 4 shows the relationship between the oxidation partial pressure in the vacuum chamber and the electrical resistance of the finished tape surface. FIG. 3 is a diagram showing the relationship between surface electrical resistance and noise level difference in the case of a three-layer magnetic layer consisting of an oxide layer.

Claims (1)

【特許請求の範囲】 1 非磁性基体1と; 該非磁性基体1の上に形成された非磁性中間層
2と; 該非磁性中間層2の上に形成されかつ3層以上
の強磁性層A1,〜A3とそれぞれの強磁性層を構
成する強磁性材を酸化した酸化物層B1,〜B3
の交互積層体である磁性層3と; からなる磁気記録媒体。 2 前記磁気記録媒体において、幅3.8mm、長さ
20cmの両端で測定した電気抵抗が200Ω以上であ
ることを特徴とする請求項1記載の磁気記録媒
体。
[Claims] 1. A non-magnetic substrate 1; a non-magnetic intermediate layer 2 formed on the non-magnetic substrate 1; and three or more ferromagnetic layers A 1 formed on the non-magnetic intermediate layer 2. , ~A 3 and oxide layers B 1 and ~B 3 formed by oxidizing the ferromagnetic material constituting each ferromagnetic layer. 2 The magnetic recording medium has a width of 3.8 mm and a length of
2. The magnetic recording medium according to claim 1, wherein the electrical resistance measured at both ends of 20 cm is 200Ω or more.
JP56167514A 1981-10-20 1981-10-20 Magnetic recording medium Granted JPS5870421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167514A JPS5870421A (en) 1981-10-20 1981-10-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167514A JPS5870421A (en) 1981-10-20 1981-10-20 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5870421A JPS5870421A (en) 1983-04-26
JPH0321966B2 true JPH0321966B2 (en) 1991-03-25

Family

ID=15851090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167514A Granted JPS5870421A (en) 1981-10-20 1981-10-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5870421A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056916U (en) * 1983-09-28 1985-04-20 大日本印刷株式会社 magnetic recording medium
JPS6056915U (en) * 1983-09-28 1985-04-20 大日本印刷株式会社 magnetic recording medium
JP2002367135A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Magnetic recording medium and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720920A (en) * 1980-07-14 1982-02-03 Sekisui Chem Co Ltd Magnetic recording medium and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720920A (en) * 1980-07-14 1982-02-03 Sekisui Chem Co Ltd Magnetic recording medium and its manufacture

Also Published As

Publication number Publication date
JPS5870421A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
US4371590A (en) Magnetic recording medium with stepwise orientation of deposited metallic particles
EP0036649B1 (en) Magnetic recording tape
JPH05342553A (en) Magnetic recording medium and its production
JPH04259909A (en) Magnetic recording medium
JPH0321966B2 (en)
JPS58166531A (en) Vertical magnetic recording medium
JPH0546013B2 (en)
JPH0582652B2 (en)
JPH026130B2 (en)
JPS60140525A (en) Magnetic recording medium for vertical recording
JPS62128019A (en) Magnetic recording medium
JPH0612568B2 (en) Magnetic recording medium
JPS5975429A (en) Vertically magnetized magnetic recording medium
JPS5833619B2 (en) magnetic recording medium
JPS6134722A (en) Vertical magnetic recording medium
JPS61187122A (en) Magnetic recording medium
KR960000822B1 (en) A magnetic recording medium
JPH0357535B2 (en)
JPH065574B2 (en) Magnetic recording medium
JPH01143312A (en) Amorphous soft magnetic laminated film
JPS5977621A (en) Vertical magnetic recording medium
JPH053655B2 (en)
JPS58171717A (en) Magnetic recording medium
JPS61294635A (en) Magnetic recording medium
JPS639293B2 (en)