JPH03219610A - Current-limiting reactor - Google Patents

Current-limiting reactor

Info

Publication number
JPH03219610A
JPH03219610A JP2013628A JP1362890A JPH03219610A JP H03219610 A JPH03219610 A JP H03219610A JP 2013628 A JP2013628 A JP 2013628A JP 1362890 A JP1362890 A JP 1362890A JP H03219610 A JPH03219610 A JP H03219610A
Authority
JP
Japan
Prior art keywords
winding
current
superconductor
cooling container
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013628A
Other languages
Japanese (ja)
Inventor
Teruhiko Maeda
照彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013628A priority Critical patent/JPH03219610A/en
Publication of JPH03219610A publication Critical patent/JPH03219610A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To simplify a main circuit and a control circuit by constituting this reactor of the following: a cooling container; a cylindrical winding installed inside the cooling container; and a superconductor which is inserted at the inside of the winding and which is cooled to a superconducting state by using the cooling container. CONSTITUTION:A cylindrically wound winding 2 is housed longitudinally at the inside of a cooling container 3 whose upper end is sealed hermetically by a lid 3a and whose inside is cooled by using a cooling device of liquid helium. Its winding start and its winding end are connected to connecting terminals. A superconductor 1 of triniobium tin (Nb3Sn) is inserted coaxially at the inside of the winding 2. When the superconductor 1 is first cooled by using the cooling container 3 to a temperature or lower at which a magnetic field by electrification with a rated current becomes a critical magnetic field, it becomes a diamagnetic substance by the Meissner effect and a magnetic flux is not passed at its inside. As a result, the inductance of the winding 2 is reduced. However, when an electric current flowing in the winding is increased by an accident on the load side, the superconductor 1 which has been in a superconducting state up to that time is changed to a normal conducting state and the magnetic flux is passed at the inside. Since the inductance of the winding 2 is increased suddenly, a current-limiting reactor which can suppress an accident current is formed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、限流リアクトルに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a current limiting reactor.

(従来の技術) 従来の限流リアクトルが接続された主回路単線結線図を
示す第5図において、直列に接続された限流リアクトル
5と電磁接触器4Bには、電磁接触器4Aが並列に接続
されて限流回路を構成し、これらの電源側(図示左側)
は図示しない遮断器を介して三相交流電源に接続され、
負荷側には図示しない電動機の負荷が接続されている。
(Prior Art) In FIG. 5, which shows a main circuit single-line diagram to which a conventional current limiting reactor is connected, the current limiting reactor 5 and the electromagnetic contactor 4B are connected in series, and the electromagnetic contactor 4A is connected in parallel. These are connected to form a current-limiting circuit, and these power supply sides (left side in the illustration)
is connected to a three-phase AC power supply via a circuit breaker (not shown),
A load of an electric motor (not shown) is connected to the load side.

このように構成された限流回路において、電磁接触器4
A、 4Bが投入されて図示しない負荷に電力が供給さ
れているときに、もし、負荷側の短絡事故が発生すると
、まず、電磁接触器4Aが開極され、次いで電磁接触器
4Bを開極することで、限流リアクトル5で短絡電流を
抑えて電磁接触器4Bによる大電流の遮断を可能にして
いる。
In the current limiting circuit configured in this way, the electromagnetic contactor 4
If a short-circuit accident occurs on the load side while A and 4B are turned on and power is being supplied to a load (not shown), first the electromagnetic contactor 4A is opened, and then the electromagnetic contactor 4B is opened. By doing so, the short circuit current is suppressed by the current limiting reactor 5, and the large current can be interrupted by the electromagnetic contactor 4B.

ところで、従来のりアクドルの電流とインダクタンスの
関係は、第6図に示すように、主に限流リアクトルに使
われる空心形のものは点線Bに示すように電流値に関係
なく一定であり、又、分路リアクトルや消弧リアクトル
などに使われるギャップ付リアクトルは、同図二点鎖線
りで示すように電流がある地点まで増えると急激に垂下
した後はぼ平行となり、更に、ギャップなしりアクドル
では、同図−点鎖線Cで示すように、徐々に垂下してい
て、いづれも電流とともに増えるものはない。
By the way, as shown in Figure 6, the relationship between the current and inductance of a conventional glue reactor is constant regardless of the current value in the case of the air-core type, which is mainly used for current limiting reactors, as shown by the dotted line B. , a reactor with a gap used as a shunt reactor or an arc-extinguishing reactor, as shown by the two-dot chain line in the same figure, when the current increases to a certain point, it droops rapidly and then becomes nearly parallel. As shown by the dotted chain line C in the same figure, the currents gradually droop, and none of them increases with the current.

(発明が解決しようとするI!題) ところが、従来の限流リアクトルでは、第5図に示すよ
うに、事故電流に対応するために主回路には1台の電磁
接触器が要るだけでなく、電磁接触器4’A、4Bの動
作順序と動作時刻などを制御するために制御回路が複雑
となる。
(I! Problem to be solved by the invention) However, in the conventional current limiting reactor, as shown in Fig. 5, only one magnetic contactor is required in the main circuit to cope with fault current. However, the control circuit becomes complicated in order to control the operation order and operation time of the electromagnetic contactors 4'A and 4B.

更に、第6図で示すように、事故電流に対してインダク
タンスが減少又は不変であるが、増える特性のりアクド
ルはないので、電磁接触器4Bの遮断容量は大きいもの
が要る。
Further, as shown in FIG. 6, the inductance decreases or remains unchanged with respect to the fault current, but since there is no characteristic of increasing the inductance, the electromagnetic contactor 4B needs to have a large breaking capacity.

そこで、本発明の目的は、主回路と制御回路を簡素化す
ることのできる限流リアクトルを得ることである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain a current-limiting reactor whose main circuit and control circuit can be simplified.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)本発明は、限
流リアクトルを、冷却容器と、この冷却容器内に設けら
れた筒状の巻線と、この巻線内に貫挿され冷却容器で超
電導状態に冷却される超電導体で構成することで、巻線
に流れる事故電流による巻線の磁束を超電導体に貫通さ
せインダクタンスを増やして、事故電流を抑えた限流リ
アクトルである。
(Means and effects for solving the problem) The present invention provides a current limiting reactor that includes a cooling vessel, a cylindrical winding provided in the cooling vessel, and a cooling vessel inserted through the winding. This current-limiting reactor is constructed with a superconductor that is cooled to a superconducting state, allowing the magnetic flux of the winding caused by the fault current flowing through the winding to pass through the superconductor, increasing inductance, and suppressing the fault current.

(実施例) 以下、本発明の限流リアクトルの一実施例を図面を参照
して説明する。
(Example) Hereinafter, one example of the current limiting reactor of the present invention will be described with reference to the drawings.

第1図は、本発明の限流リアクトルの縦断面図である。FIG. 1 is a longitudinal sectional view of the current limiting reactor of the present invention.

同図において、上端が蓋3aで密封され内部が図示しな
い液体ヘリウムの冷却装置で冷却される縦断面U字状の
冷却容器3の内部には、円筒状に巻かれた巻線2が縦に
収納され、この巻線2の巻き始めと巻き終りは冷却容器
3に設けられた図示しない接続端子に接続され、巻線2
の内部には三ニオブ錫(Nb、 Sn )で製作された
丸棒状の超電導体1が同軸に貫挿されている。
In the figure, a cylindrical winding 2 is vertically wound inside a cooling container 3 having a U-shaped longitudinal section and whose upper end is sealed with a lid 3a and whose interior is cooled by a liquid helium cooling device (not shown). The winding 2 is stored, and the winding start and winding end are connected to connection terminals (not shown) provided in the cooling container 3, and the winding 2
A round bar-shaped superconductor 1 made of triniobium tin (Nb, Sn) is coaxially inserted into the inside of the tube.

このように構成された限流リアクトルにおいては、超電
体1は、巻線2が接続された主回路の機器の定格電流の
通電による磁界が臨界磁界となる温度以下に先づ冷却容
器3で冷却される。
In the current limiting reactor configured in this way, the superelectric body 1 is first heated in the cooling vessel 3 at a temperature below which the magnetic field due to the rated current of the main circuit equipment to which the winding 2 is connected becomes a critical magnetic field. cooled down.

すると、超電導体1は、マイスナ効果で反磁性体となっ
て内部には磁束が通過しないので、巻線2のインダクタ
ンスは減少する。
Then, the superconductor 1 becomes a diamagnetic material due to the Meisner effect, and no magnetic flux passes through the superconductor 1, so the inductance of the winding 2 decreases.

ところが、もし、負荷側の事故で巻線2に流れる電流が
増えると、それまで超電導状態の超電導体1は常電導状
態となって、内部に磁束が通過して巻線2のインダクタ
ンスは急激に増えるので、事故電流を抑えることのでき
る限流リアクトルとなる。第6図の実線は、その特性を
示す。
However, if the current flowing through the winding 2 increases due to an accident on the load side, the superconductor 1, which had been in a superconducting state, becomes a normal conductor, and magnetic flux passes through the inside, causing the inductance of the winding 2 to suddenly increase. As the current increases, it becomes a current-limiting reactor that can suppress fault current. The solid line in FIG. 6 shows its characteristics.

又、第2図は、巻線2に定格電流が流れているときの巻
線2の磁束6の分布を示し、上述のように超電導体1の
内部には通過せず、巻線2とに形成された空隙を通過し
ている。
Moreover, FIG. 2 shows the distribution of the magnetic flux 6 in the winding 2 when the rated current is flowing through the winding 2, and as mentioned above, it does not pass into the superconductor 1 but is connected to the winding 2. It passes through the gap formed.

一方、第3図は、巻線2に事故電流が流れたときの巻線
2による磁束6の分布を示し、磁束6は超電導体1の内
部も通過してあたかも空心リアクトルの状態である。
On the other hand, FIG. 3 shows the distribution of magnetic flux 6 due to the winding 2 when a fault current flows through the winding 2, and the magnetic flux 6 also passes through the inside of the superconductor 1, as if it were an air-core reactor.

又、第4図は、本発明の限流リアクトル7の接続図を示
し、限流リアクトル7の負荷側には1台の電磁接触器4
Cが接続されている。
Moreover, FIG. 4 shows a connection diagram of the current limiting reactor 7 of the present invention, and one electromagnetic contactor 4 is installed on the load side of the current limiting reactor 7.
C is connected.

同図において、定常時には電磁接触器4cは投入されて
いて、負荷電流は少さいインダクタンスの限流リアクト
ル7を介して供給されるが、事故発生時には、限流リア
クトル7のインダクタンスの増大で抑えられた事故電流
は、小容量の電磁接触器4Cでも容易に遮断される。こ
の結果、従来と比べて電磁接触器を減らし制御回路を簡
略化することのできる限流リアクトルとなる。
In the figure, during normal operation, the electromagnetic contactor 4c is turned on and the load current is supplied through the current limiting reactor 7 with a small inductance, but when an accident occurs, the inductance of the current limiting reactor 7 increases and the load current is suppressed. The fault current can be easily interrupted even by a small-capacity electromagnetic contactor 4C. As a result, a current-limiting reactor can be obtained which can reduce the number of electromagnetic contactors and simplify the control circuit compared to the conventional one.

なお、上記実施例において、冷却容器3による超電導体
1の冷却温度は、巻線2に流れる電流が主回路の定格電
流のときとしたが、定格電流でなくてもよく、超電導材
の種別や適用される回路や負荷に応じて任意に設定すれ
ばよい。
In the above embodiment, the temperature at which the superconductor 1 is cooled by the cooling container 3 is set when the current flowing through the winding 2 is the rated current of the main circuit. It may be set arbitrarily depending on the applied circuit and load.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、限流リアクトルを、冷却容器と
、この冷却容器と、この冷却容器内に設けられた筒状の
巻線と、この巻線内に貫挿され冷却容器で超電導状態に
冷却される超電導体で構成することで、事故時に巻線に
流れる電流で巻線2のインダクタンスを増やしたので、
主回路と制御回路を簡素化することのできる限流リアク
トルを得ることができる。
As described above, according to the present invention, the current limiting reactor includes a cooling container, a cylindrical winding provided in the cooling container, and a superconducting state in the cooling container inserted into the winding. By constructing it with a superconductor that is cooled by
A current limiting reactor whose main circuit and control circuit can be simplified can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の限流リアクトルの一実施例を示す縦断
面図、第2図と第3図は本発明の限流リアクトルの作用
を示す説明図、第4図は本発明の限流リアクトルの適用
例を示す接続図、第5図は従来の限流リック1−ルの適
用例を示す接続図、第6図は従来の限流リアクトルの作
用を示す図である。
FIG. 1 is a vertical cross-sectional view showing one embodiment of the current limiting reactor of the present invention, FIGS. 2 and 3 are explanatory views showing the action of the current limiting reactor of the present invention, and FIG. 4 is a current limiting reactor of the present invention. FIG. 5 is a connection diagram showing an example of application of a reactor, FIG. 5 is a connection diagram showing an example of application of a conventional current-limiting rick, and FIG. 6 is a diagram showing the operation of a conventional current-limiting reactor.

Claims (1)

【特許請求の範囲】[Claims]  冷却容器と、この冷却容器内に設けられた筒状の巻線
と、この巻線内に貫挿され前記冷却容器で超電導状態に
冷却される超電導体でなる限流リアクトル。
A current limiting reactor comprising a cooling container, a cylindrical winding provided in the cooling container, and a superconductor inserted into the winding and cooled to a superconducting state in the cooling container.
JP2013628A 1990-01-25 1990-01-25 Current-limiting reactor Pending JPH03219610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013628A JPH03219610A (en) 1990-01-25 1990-01-25 Current-limiting reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013628A JPH03219610A (en) 1990-01-25 1990-01-25 Current-limiting reactor

Publications (1)

Publication Number Publication Date
JPH03219610A true JPH03219610A (en) 1991-09-27

Family

ID=11838504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013628A Pending JPH03219610A (en) 1990-01-25 1990-01-25 Current-limiting reactor

Country Status (1)

Country Link
JP (1) JPH03219610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307908A (en) * 1991-04-05 1992-10-30 Takaoka Electric Mfg Co Ltd Current limiter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307908A (en) * 1991-04-05 1992-10-30 Takaoka Electric Mfg Co Ltd Current limiter

Similar Documents

Publication Publication Date Title
US3703664A (en) Fault current limiter using superconductive element
KR100505054B1 (en) Resistive type superconducting fault current limiter
US4700257A (en) Superconductive AC current limiter
US3629690A (en) Current limiting device for limiting short circuit current in energy transfer systems
RU2639316C1 (en) Superconducting fault current limiter
US3443255A (en) Current limiting device
Rozenshtein et al. Saturated cores FCL—A new approach
Kozak et al. Tests and performance analysis of coreless inductive HTS fault current limiters
US3691491A (en) Superconductive switching path for heavy current
Tixador et al. Hybrid superconducting AC fault current limiter principle and previous studies
JPH01303765A (en) Current limiter
JPH03219610A (en) Current-limiting reactor
US3176195A (en) Superconducting solenoid
Norris et al. Fault current limiters using superconductors
IL26689A (en) Device and method for releasing electric energy
JPH1197260A (en) Superconducting transformer attached with current-limiting device
JPH0581973A (en) Dc circuit breaker
US6335851B1 (en) Current-limiting device
Ishigohka et al. Fundamental test of new DC superconducting fault current limiter
Funaki et al. Electromagnetic properties of large capacity superconducting cables in a 1000kVA-class superconducting transformer
JPH08316534A (en) Current limiter
JP3231837B2 (en) Superconducting current limiting device
JP2533119B2 (en) Superconducting device for short circuit suppression
JPH09182285A (en) Superconductive current limiter
KR20030067770A (en) High-Tc Superconducting Fault Current Limiter of DC-Reactor Type By the Flux-Lock Model