JPH03218945A - Light amplifying fiber - Google Patents

Light amplifying fiber

Info

Publication number
JPH03218945A
JPH03218945A JP2011782A JP1178290A JPH03218945A JP H03218945 A JPH03218945 A JP H03218945A JP 2011782 A JP2011782 A JP 2011782A JP 1178290 A JP1178290 A JP 1178290A JP H03218945 A JPH03218945 A JP H03218945A
Authority
JP
Japan
Prior art keywords
ion
fiber
ions
light
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011782A
Other languages
Japanese (ja)
Inventor
Hidenori Mimura
榮紀 三村
Noboru Edakawa
登 枝川
Hisahiro Yoshida
尚弘 吉田
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
KDDI Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kokusai Denshin Denwa KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2011782A priority Critical patent/JPH03218945A/en
Publication of JPH03218945A publication Critical patent/JPH03218945A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/10Doped silica-based glasses containing boron or halide containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/28Doped silica-based glasses containing non-metals other than boron or halide containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3476Erbium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain the light amplifying fiber having high efficiency in converting the excitation light into induced-emission light and satisfying the requirements for use in an optical communication system by substituting Si ion close to Er ion with a specified ion in the Er-addition light amplifying quartz glass fiber. CONSTITUTION:In the Er-addition light amplifying quartz glass fiber, the Si ion close to Er ion is locally substituted with an ion capable of increasing the asymmetry in the ligand field of the Er ion, a cation forming a network forming oxide in the glass, e.g. P<3+>, B<3+>, As<3+> and Sb<3+> or a cation forming an intermediate oxide in the glass, e.g. Al<3+>, Ga<3+>, Ti<4+>, Sn<4+>, Ta<3+>, Nb<3+> and Bi<3+>, to obtain a light amplifying fiber for optically exciting Er ion and amplifying the signal light propagating in the fiber with the induced-emission light. The concn. of the substituent ion is kept low so that the consistency with the transmission fiber is not hindered.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、光増幅用中継器を利用した1.5μ帯光通信
システムに用いられる光増幅用ファイバに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an optical amplification fiber used in a 1.5 μ band optical communication system using an optical amplification repeater.

(従来技術とその問題点) 石英ファイバの最低損失波長帯である1.5μ帯の波長
の光を利用した光通信システムは、光の減衰が小さいた
め長距離通信に最も適したシステムである。しかしなが
ら、1.5μ帯通信システムでも無中継光伝送距離はせ
いぜい200km程度であるため、それ以上の距離を伝
送するためには減衰した光信号を再生するための中継器
を用いる必要がある。現在のシステムに使用されている
中継器は、減衰した光信号を一旦電気信号に変換し、電
気的回路によって再生増幅を行う方式であるが、中継器
の小型・経済化や伝送速度の固定されない柔軟なシステ
ム設計が可能な点などから将来的には光電気変換を行わ
ず光信号のまま再生増幅を行う光増幅方式の実現が望ま
れている。
(Prior Art and its Problems) Optical communication systems that utilize light in the 1.5μ band, which is the lowest loss wavelength band of quartz fibers, are the most suitable systems for long-distance communication because the attenuation of light is small. However, even in a 1.5 μ band communication system, the non-repeater optical transmission distance is about 200 km at most, so in order to transmit over a longer distance, it is necessary to use a repeater to regenerate the attenuated optical signal. The repeaters used in current systems convert the attenuated optical signal into an electrical signal, and perform regenerative amplification using an electrical circuit. In the future, it is desired to realize an optical amplification method that regenerates and amplifies the optical signal without performing photoelectric conversion, since it allows for flexible system design.

このような光増幅を行う方法として、現在半導体増幅器
を利用する方法、ファイバの非線形光学効果を利用する
方法、Er添加したファイバの光増幅作用を利用する方
法などが提案されているが、なかでもEr添加ファイバ
を使用する方式は伝送用ファイバとの結合効率が高く、
雑音が低く、偏光に無依存であることなどから最も有望
視されている。
Currently, methods for performing such optical amplification have been proposed, such as a method using a semiconductor amplifier, a method using the nonlinear optical effect of a fiber, and a method using the optical amplification effect of an Er-doped fiber. The method using Er-doped fiber has high coupling efficiency with the transmission fiber,
It is considered the most promising because it has low noise and is independent of polarization.

Er添加ファイバを使用する光増幅器の原理は、信号光
と異なる波長の励起光で励起したErイオンの誘導放出
光によって微弱信号光を増幅するものであるが、現在の
光増幅器を長距離光海底ケーブルシステムに適用するに
は以下のような問題点が存在する。即ち、現在のEr添
加ファイバは励起光を誘導放出光に変換する効率が低く
、そのため長距離光海底ケーブルシステムに必要な利得
を得るには100mW程度の強い励起光源が必要とされ
る。しかしながら、このように大出力で信顛性の高い半
導体レーザは現存しないため、光増幅器を長距離光海底
ケーブルシステムに適用するのは困難な状況であり、変
換効率の高い光増幅用ファイバの開発が強く望まれてい
る。
The principle of optical amplifiers using Er-doped fibers is to amplify weak signal light using stimulated emission light of Er ions excited with pump light with a wavelength different from that of the signal light. The following problems exist when applied to cable systems. That is, current Er-doped fibers have low efficiency in converting pumping light into stimulated emission light, and therefore a strong pumping light source of about 100 mW is required to obtain the gain necessary for a long-distance optical submarine cable system. However, as such high-output, highly reliable semiconductor lasers do not currently exist, it is difficult to apply optical amplifiers to long-distance optical submarine cable systems, and development of optical amplification fibers with high conversion efficiency is required. is strongly desired.

一般にNdなどの希土類元素を活性イオンとするガラス
レーザや増幅器の効率を高める方法としては、活性イオ
ンと共に他の希土類イオンや遷移金属イオンを増感剤と
して微量添加する方法や、ホストガラスの組成を変化さ
せる方法等が知られている。
In general, methods to increase the efficiency of glass lasers and amplifiers that use rare earth elements such as Nd as active ions include adding small amounts of other rare earth ions or transition metal ions as sensitizers along with the active ions, or changing the composition of the host glass. There are known methods for changing this.

前者に関しては、Erイオンに対してybが多少増悪作
用をもつことが知られているが、大きな増悪作用を持つ
イオンはまだ知られていない。一方、後者に関してはN
dイオンについて詳細に調べられており、硅酸塩ガラス
よりりん酸塩ガラスのほうが効率が高いことがよく知ら
れている。Ndイオンの例から類推すれば、Erイオン
の場合も発光効率の点で石英ガラスが最適であるとは言
えず、発光効率をより高くする組成のガラスが当然存在
する筈である。従って、このような組成のガラスを用い
てEr添加光増幅用ファイバを作れば、石英ガラスにE
rを添加した現在のファイバよりも効率の高いファイバ
となる筈である。しかし、石英ガラスと組成の差が大き
いガラスで作ったファイバは、例え増幅特性が優れてい
ても光通信システムに用いるには問題がある。
Regarding the former, it is known that yb has a somewhat exacerbating effect on Er ions, but no ion has yet been known to have a large exacerbating effect. On the other hand, regarding the latter, N
The d-ion has been investigated in detail, and it is well known that phosphate glass is more efficient than silicate glass. By analogy with the example of Nd ions, it cannot be said that silica glass is optimal in terms of luminous efficiency in the case of Er ions as well, and there is naturally a glass with a composition that increases luminous efficiency. Therefore, if an Er-doped optical amplification fiber is made using glass with such a composition, the E
This should result in a more efficient fiber than current r-doped fibers. However, fibers made of glass that has a large composition difference from silica glass have problems when used in optical communication systems, even if they have excellent amplification characteristics.

光通信システムに用いる光増幅用ファイバの場合には、
信号伝送用石英ファイバとの整合性が必要であり、例え
ば、両者を融着接続するために粘性一温度特性がほぼ同
一であること、コア径,モードフィールド径などのファ
イバパラメータを近くする必要性から互いに類似した屈
折率であること、耐候性,耐化学性などの点で石英ファ
イバに匹敵する信頬性を有することなどが要求される。
In the case of optical amplification fibers used in optical communication systems,
It is necessary to have consistency with the quartz fiber for signal transmission, for example, in order to fusion splice the two, it is necessary to have almost the same viscosity-temperature characteristics, and to have fiber parameters such as core diameter and mode field diameter close to each other. Therefore, they are required to have refractive indexes similar to each other, and to have reliability comparable to quartz fiber in terms of weather resistance, chemical resistance, etc.

ガラス組成の差が大きいファイバでは到底このような要
求を満足することは不可能であり、たとえ増幅特性が優
れていても光通信システムに用いることはできない。
It is impossible for fibers with large differences in glass composition to satisfy such requirements, and even if they have excellent amplification characteristics, they cannot be used in optical communication systems.

以上説明したように、現在のEr添加光増幅用ファイバ
は長距離通信システムに用いるには増幅効率が低く、ま
た光通信システムに用いるための諸要求を満足し、かつ
増幅効率を向上させるための方法も何等開示されていな
い。
As explained above, current Er-doped optical amplification fibers have low amplification efficiency for use in long-distance communication systems. No method was disclosed.

(発明の目的) 本発明は、上述した従来技術の問題点に鑑みなされたも
ので、励起光と誘導放出光の変換効率が高く、かつ光通
信システムに用いるために必要な諸要求を満足する光増
幅用ファイバを提供することを目的とするものである。
(Object of the Invention) The present invention has been made in view of the problems of the prior art described above, and has high conversion efficiency between excitation light and stimulated emission light, and satisfies various requirements necessary for use in an optical communication system. The purpose of this invention is to provide a fiber for optical amplification.

(問題点を解決するための手段) この目的を達成するために、本発明の光増幅用ファイバ
は、石英系ガラスファイバ中に分散させたErイオンを
光励起しその誘導放出光でファイバ内を伝搬する信号光
を増幅するEr添加光増幅用石英ガラスファイバにおい
て、Erイオン近傍に存在するSiイオンがErイオン
の配位子場の非対称性を増加させるイオンで局所的に置
換され、かつ置換イオンの濃度が伝送用ファイバとの整
合性に支障のない低濃度であることを特徴とする構成を
有している。
(Means for solving the problem) In order to achieve this object, the optical amplification fiber of the present invention optically excites Er ions dispersed in a silica-based glass fiber and propagates the stimulated emission light within the fiber. In an Er-doped quartz glass fiber for optical amplification that amplifies signal light, Si ions existing near Er ions are locally replaced with ions that increase the asymmetry of the Er ion's ligand field, and It has a configuration characterized by a low concentration that does not impede compatibility with the transmission fiber.

(実施例1) 第1図は本発明のErイオンの近傍に存在するSi イ
オンを局所的に他のイオンと置換した状態を示す図であ
る。
(Example 1) FIG. 1 is a diagram showing a state in which Si 2 ions existing in the vicinity of Er ions of the present invention are locally replaced with other ions.

まず、ガラス全体の組成を変えなくてもErイオン近傍
のSi イオンのみを置換すれば励起光と誘導放出光の
変換効率の向上が可能になる理由について説明する。
First, the reason why it is possible to improve the conversion efficiency of excitation light and stimulated emission light by replacing only Si 2 ions in the vicinity of Er ions without changing the composition of the entire glass will be explained.

一般に、希土類イオンを添加した固体レーザ増幅器によ
り、微小信号を増幅する場合、単位長あたりの利得は次
式で与えられる。
Generally, when a small signal is amplified using a solid-state laser amplifier doped with rare earth ions, the gain per unit length is given by the following equation.

G=ex直σ.・ΔN)   ・一・− (1)ここで
、σ2は誘導放出断面積、ΔNは反転分布密度である。
G=ex directσ.・ΔN) ・1・− (1) Here, σ2 is the stimulated emission cross section, and ΔN is the population inversion density.

ΔNを太き《するには励起光強度を増大させなければな
らないので、励起光強度一定のまま高利得を得るにはσ
,を大きくする必要がある。
In order to increase ΔN, the pumping light intensity must be increased, so in order to obtain high gain while keeping the pumping light intensity constant, σ
, needs to be increased.

また、希土類イオンの状態J゜からJへの遷移の誘導放
出断面積σ,は次式で与えられる。
Further, the stimulated emission cross section σ of the transition from the state J° to J of the rare earth ion is given by the following equation.

ここで、A,・,は状態J゛がらJへの輻射遷移確率、
Δλ.ffは発光スペクトルの有効半値幅、λは発光波
長、nは屈折率、Cは光速である。(2)式からわかる
ように大きなσpを得るには状態間の輻射遷移確率を大
きくするが、発光スペクトルの有効半値幅を小さくすれ
ばよい. 以下、輻射遷移確率を大きくするための方法を述べる。
Here, A,·, is the radiative transition probability from state J to J,
Δλ. ff is the effective half-width of the emission spectrum, λ is the emission wavelength, n is the refractive index, and C is the speed of light. As can be seen from equation (2), in order to obtain a large σp, the probability of radiative transition between states is increased, but the effective half-width of the emission spectrum can be decreased. A method for increasing the radiative transition probability will be described below.

輻射遷移確率を決定しているのは遷移の強度パラメータ
Ωtであり、Ω、が大きい程輻射遷移確率も大きい。ま
たΩ1は次式で表される。
What determines the radiative transition probability is the transition intensity parameter Ωt, and the larger Ω, the greater the radiative transition probability. Moreover, Ω1 is expressed by the following formula.

Ω1=Σl A.”l三”(k−t)    ・−−−
−−− (3)ここでA♂は結晶場を展開した時の奇パ
リティ(odd parity)項で、希土類イオンの
配位子場の対称性と強度に依存する。一方、三(k, 
t)は4f軌道と4f軌道に混じり込む異なるパリティ
を持った軌道との波動函数の重なり積分とエネルギー差
を含む項で、希土類イオンと配位子間の結合の性質に依
存する。即ち、(3)式は希土類イオンの配位子場の非
対称性の増加や希土類イオンと配位子の軌道の重なりの
増加などがΩ、を大きくする効果のあることを示してい
る。従って、輻射遷移確率を増大させるには希土類イオ
ンの配位子場の非対称性が増すように配位子のOイオン
あるいはOイオンと結合しているSi イオンを他のイ
オンと置換するのが有効と考えられる。
Ω1=Σl A. "l three" (k-t) ・---
--- (3) Here, A♂ is an odd parity term when the crystal field is expanded, and it depends on the symmetry and strength of the ligand field of the rare earth ion. On the other hand, three (k,
t) is a term that includes the overlap integral of the wave function and the energy difference between the 4f orbital and the orbital with a different parity mixed into the 4f orbital, and it depends on the nature of the bond between the rare earth ion and the ligand. That is, equation (3) shows that an increase in the asymmetry of the ligand field of the rare earth ion, an increase in the overlap between the orbits of the rare earth ion and the ligand, etc. have the effect of increasing Ω. Therefore, in order to increase the probability of radiative transition, it is effective to replace the O ion of the ligand or the Si ion bonded to the O ion with another ion so as to increase the asymmetry of the ligand field of the rare earth ion. it is conceivable that.

このような置換を行うための最も簡便な方法はガラス全
体の組成を変化させることであるが、上述の議論から判
るようにΩ,に直接関与しているのはErに配位してい
るOイオンあるいは0イオンと結合しているSi イオ
ンであるので、第2図のガラス構造の模式図のうよにE
rに近接するイオンのみを部分置換しても十分な効果が
得られるはずである。実際に添加されるErイオンの濃
度は、濃度消光を避けるため50〜500ppm程度が
望ましいとされている。従って、Erイオンの配位数を
7〜8と仮定すればErイオンに配位しているイオンは
せいぜい400〜4000ppm程度にしかならず、こ
れらの配位イオンを効率的に置換すれば石英ガラスの物
性に顕著な変化を与えない数%以内の僅かな組成変化で
もって十分な効果を得ることが可能になる。すなわち、
置換イオンの濃度は伝送用ファイバとの整合性に支障が
ない範囲内の低濃度である。
The simplest way to perform such substitution is to change the overall composition of the glass, but as can be seen from the above discussion, it is the O coordinating to Er that is directly involved in Ω. Since it is a Si ion bonded to an ion or a 0 ion, it is E as shown in the schematic diagram of the glass structure in Figure 2.
Even if only the ions close to r are partially replaced, a sufficient effect should be obtained. It is said that the concentration of Er ions actually added is preferably about 50 to 500 ppm in order to avoid concentration quenching. Therefore, assuming that the coordination number of Er ions is 7 to 8, the amount of ions coordinated to Er ions is only about 400 to 4000 ppm, and if these coordination ions are efficiently replaced, the physical properties of silica glass can be improved. It becomes possible to obtain a sufficient effect with a slight compositional change within a few percent that does not cause a significant change in the composition. That is,
The concentration of the replacement ions is a low concentration within a range that does not interfere with compatibility with the transmission fiber.

次に、輻射遷移確率の増大に有効なイオンの種類につい
て述べる。前述したように、輻射遷移確率を増大させる
ためには、配位子場の非対称性を増加させることが有効
と考えられるので、その効果が大きくかつ伝送波長帯の
1.5μ帯に吸収を持たないイオン種を選択することが
必要である。配位子場の非対称性を増加させる直接的な
方法は、Erイオンに配位しているOイオンの一部を他
の陰イオンで置換することであるが、配位イオンを直接
置換しな《でも配位してぃる0イオンと結合しているS
iイオンを置換することによっても配位子場の非対称性
を増加させる可能である。配位子場の対称性はErと0
イオン間の距離と角度によって決まるが、これらは0イ
オンと結合している陽イオンによって強く支配される。
Next, we will discuss the types of ions that are effective in increasing the radiative transition probability. As mentioned above, it is considered effective to increase the asymmetry of the ligand field in order to increase the probability of radiative transition. It is necessary to select ionic species that are not present. A direct method to increase the asymmetry of the ligand field is to replace some of the O ions coordinating to Er ions with other anions; 《However, S bonded with the coordinated 〃0 ion
It is also possible to increase the asymmetry of the ligand field by replacing the i ions. The symmetry of the ligand field is Er and 0
Determined by the distance and angle between the ions, these are strongly dominated by the cations bound to the 0 ion.

従って、0イオンと結合しているSiイオンの一部を他
イオンで置換しても配位子場の非対称性を増すことがで
きる。
Therefore, even if some of the Si ions bonded to the 0 ion are replaced with other ions, the asymmetry of the ligand field can be increased.

このような目的でSi イオンを他の陽イオンで置換す
るためには、添加した陽イオンはガラス中でSi イオ
ンと類似したサイトを占め得るイオンであることが必要
であるが、アルカリ,アルカリ土類イオンのようなガラ
ス中で網目修飾酸化物となるイオンはErに配位する0
イオンとの結合に直接関与しないので殆ど効果がない。
In order to replace Si ions with other cations for this purpose, the added cations must be ions that can occupy similar sites to Si ions in the glass, but alkaline and alkaline earth Ions that become network-modifying oxides in glass, such as similar ions, coordinate with Er.
Since it is not directly involved in bonding with ions, it has little effect.

これに対し、ガラス中で網目形成酸化物となるpS+B
S−As”,Sb5′″等のイオン、あるいは中間酸化
物となるA It !+,  ca”,  T i”,
  S n”  Ta”Nb”+  Bt3+等のイオ
ンはErに配位する0イオンと直接的に結合するので顕
著な効果が得られる.次に本発明の光増幅用ファイバを
実現するための製造法の例について述べる。
On the other hand, pS+B becomes a network-forming oxide in the glass.
A It!, which becomes ions such as S-As", Sb5'", or intermediate oxides! +, ca”, T i”,
Since ions such as S n"Ta"Nb"+ Bt3+ directly combine with the 0 ions coordinating to Er, a remarkable effect can be obtained. Next, a manufacturing method for realizing the optical amplification fiber of the present invention will be described. Let's discuss an example.

Erイオンの近傍に所望のイオンを添加するには、例え
ば液相浸漬法においてErイオンと添加イオンが共存す
る溶液中にコア用スートを浸漬し、乾燥後焼結して母材
を作ればよい。このようにすれば溶液中のErイオンと
添加イオンの濃度を調節することによりEr近傍の添加
イオン濃度を調節することも可能である。
In order to add desired ions in the vicinity of Er ions, for example, the core soot can be immersed in a solution in which Er ions and added ions coexist using a liquid phase immersion method, and then dried and sintered to form a base material. . In this way, it is also possible to adjust the concentration of added ions near Er by adjusting the concentrations of Er ions and added ions in the solution.

なお、上述の説明では、コアとクラッドの屈折率差によ
り石英ファイバに導波機能を持たせる手段について何ら
触れなかったが、コアの屈折率をクラッドの屈折率より
も相対的に大きくする手段としては、一般にコアにゲル
マニウム(Gelをドープしてコアの屈折率を相対的に
大きくする方法、またはクラッドにふっ素でF)等をド
ープしてクラッドの屈折率を相対的に小さくする方法が
ある。本発明は石英ファイバにErがドープされていれ
ば、どちらの石英ファイバにも適用可能である。
In addition, in the above explanation, there was no mention of a means of imparting a waveguide function to the quartz fiber by the refractive index difference between the core and the cladding, but as a means of making the refractive index of the core relatively larger than the refractive index of the cladding. In general, there is a method of doping the core with germanium (Gel) to relatively increase the refractive index of the core, or a method of doping the cladding with fluorine (F) or the like to relatively decrease the refractive index of the cladding. The present invention is applicable to any type of quartz fiber as long as the quartz fiber is doped with Er.

(発明の効果) 以上詳細に説明したように、本発明はErに配位する0
イオンと結合するSiイオンをErの配位子場の非対称
特性を増加させるイオンで置換することにより、Er添
加光増幅用ファイバの変換効率(増幅効率)を高めるこ
とを可能にする,またEr近傍のSi イオンのみを局
所的に置換することにより、伝送用石英ファイバと類似
した粘性一温度特性,屈折率,信幀性を有することを可
能にする。
(Effects of the Invention) As explained in detail above, the present invention provides 0
By replacing the Si ions that bond with ions with ions that increase the asymmetric characteristics of the Er ligand field, it is possible to increase the conversion efficiency (amplification efficiency) of the Er-doped optical amplification fiber. By locally replacing only Si ions, it is possible to have viscosity-temperature characteristics, refractive index, and reliability similar to those of a transmission quartz fiber.

従って本発明による光増幅用ファイバは、長距離用光通
信システムに適用することが可能であり、その効果は極
めて大である。
Therefore, the optical amplification fiber according to the present invention can be applied to long-distance optical communication systems, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はEr添加光増幅用ファイバのErイオン近傍の
Stイオンを局所的に置換した状態を示す本発明の模式
図、第2図はErイオンに近接したSi イオンを置換
した場合の本発明によるガラス構造の模式図である。
Fig. 1 is a schematic diagram of the present invention showing a state in which St ions near Er ions in an Er-doped optical amplification fiber are locally replaced, and Fig. 2 shows the present invention when Si ions near Er ions are replaced. FIG. 1 is a schematic diagram of a glass structure according to

Claims (3)

【特許請求の範囲】[Claims] (1)石英系ガラスファイバ中に分散させたErイオン
を光励起しその誘導放出光でファイバ内を伝搬する信号
光を増幅するEr添加光増幅用石英ガラスファイバおい
て、 Erイオン近傍に存在するSiイオンがErイオンの配
位子場の非対称性を増加させるイオンで局所的に置換さ
れ、かつ置換イオンの濃度が伝送用ファイバとの整合性
に支障のない低濃度であるように構成されたことを特徴
とする光増幅用ファイバ。
(1) In a quartz glass fiber for Er-doped optical amplification, which optically excites Er ions dispersed in the silica-based glass fiber and amplifies the signal light propagating within the fiber using stimulated emission light, Si present near the Er ions is used. The ion is locally substituted with an ion that increases the asymmetry of the ligand field of the Er ion, and the concentration of the substituted ion is configured to be a low concentration that does not interfere with compatibility with the transmission fiber. An optical amplification fiber characterized by:
(2)前記置換イオンがP^5^+、B^5^+、As
^5^+、Sb^5^+等のガラス内で網目形成酸化物
となる陽イオンであることを特徴とする特許請求の範囲
第1項記載の光増幅用ファイバ。
(2) The substitution ion is P^5^+, B^5^+, As
The fiber for optical amplification according to claim 1, characterized in that the fiber is a cation such as ^5^+, Sb^5^+, which forms a network-forming oxide in the glass.
(3)前記置換イオンがAl^3^+、Ga^3^+、
Ti^4^+、Sn^4^+、Ta^5^+、Nb^5
^+、Bi^3^+等のガラス内で中間酸化物となる陽
イオンであることを特徴とする特許請求の範囲第1項記
載の光増幅用ファイバ。
(3) The substitution ion is Al^3^+, Ga^3^+,
Ti^4^+, Sn^4^+, Ta^5^+, Nb^5
The fiber for optical amplification according to claim 1, characterized in that the fiber is a cation which becomes an intermediate oxide in the glass, such as ^+, Bi^3^+, etc.
JP2011782A 1990-01-23 1990-01-23 Light amplifying fiber Pending JPH03218945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011782A JPH03218945A (en) 1990-01-23 1990-01-23 Light amplifying fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011782A JPH03218945A (en) 1990-01-23 1990-01-23 Light amplifying fiber

Publications (1)

Publication Number Publication Date
JPH03218945A true JPH03218945A (en) 1991-09-26

Family

ID=11787519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011782A Pending JPH03218945A (en) 1990-01-23 1990-01-23 Light amplifying fiber

Country Status (1)

Country Link
JP (1) JPH03218945A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023392A1 (en) * 1998-10-20 2000-04-27 Asahi Glass Company Ltd. Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
WO2001055041A1 (en) * 2000-01-26 2001-08-02 Asahi Glass Company, Limited Light-amplifying glass and process for producing the same
WO2001099241A3 (en) * 2000-06-20 2002-05-23 Corning Inc RARE EARTH ELEMENT-DOPED Bi-Sb-Al-Si GLASS AND ITS USE IN OPTICAL AMPLIFIERS
US6410467B1 (en) * 1998-04-08 2002-06-25 Corning Incorporated Antimony oxide glass with optical activity
US6503860B1 (en) * 1998-04-08 2003-01-07 Corning Incorporated Antimony oxide glass with optical activity
US6560392B2 (en) 1999-09-28 2003-05-06 Asahi Glass Company, Limited Optical amplifying glass fiber
US6599853B2 (en) 2000-01-26 2003-07-29 Asahi Glass Company, Limited Optical amplifier glass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410467B1 (en) * 1998-04-08 2002-06-25 Corning Incorporated Antimony oxide glass with optical activity
US6503860B1 (en) * 1998-04-08 2003-01-07 Corning Incorporated Antimony oxide glass with optical activity
WO2000023392A1 (en) * 1998-10-20 2000-04-27 Asahi Glass Company Ltd. Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
US6620748B1 (en) 1998-10-20 2003-09-16 Asahi Glass Co Ltd Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
US6560392B2 (en) 1999-09-28 2003-05-06 Asahi Glass Company, Limited Optical amplifying glass fiber
WO2001055041A1 (en) * 2000-01-26 2001-08-02 Asahi Glass Company, Limited Light-amplifying glass and process for producing the same
US6599853B2 (en) 2000-01-26 2003-07-29 Asahi Glass Company, Limited Optical amplifier glass
US6653251B2 (en) 2000-01-26 2003-11-25 Asahi Glass Company, Limited Optical amplifying glass and method for its production
WO2001099241A3 (en) * 2000-06-20 2002-05-23 Corning Inc RARE EARTH ELEMENT-DOPED Bi-Sb-Al-Si GLASS AND ITS USE IN OPTICAL AMPLIFIERS

Similar Documents

Publication Publication Date Title
Vossler et al. Planar Er: Yb glass ion exchanged waveguide laser
JP2003124547A (en) Optical fiber amplifier
US6278719B1 (en) Lasers, optical amplifiers, and amplification methods
Harun et al. Double-pass erbium-doped zirconia fiber amplifier for wide-band and flat-gain operations
JP4723569B2 (en) Glass for optical amplifier fiber
US6198870B1 (en) Optical waveguide and 1.5 μm-band optical amplifier using same
Barbier et al. Erbium-doped glass waveguide devices
JPH03218945A (en) Light amplifying fiber
JP4183225B2 (en) Optical amplifier
JP3190036B2 (en) Fiber amplifier and fiber laser
EP1189316B1 (en) Optical fiber for optical amplification and optical fiber amplifier
JP2753539B2 (en) Optical fiber amplifier
JPH11236245A (en) Optical waveguide and 1.5-1.6 micron band light amplifier using the same
EP1672822A2 (en) Optical fibre for an optical amplifier with rare earth element amplification and Raman optical amplification
JPH04333029A (en) Optical fiber for amplification and optical fiber amplifier for 1.3mum band using the same
US7181119B2 (en) Optically amplifying waveguide, optical amplifier module, and optical communication system
JP4655553B2 (en) Optical amplifying waveguide, optical amplifying module, and optical communication system
JPH03218946A (en) Light amplifying fiber
JP2001109026A (en) Fiber raman amplifier and fiber raman laser
Kimura et al. Pump wavelength dependence of the gain factor in 1.48 μm pumped Er3+‐doped fiber amplifiers
JP3296195B2 (en) Laser, optical amplifier, and optical amplification method
JPH0392828A (en) Optical fiber laser amplifier
Cheng et al. Compact and wide-band bismuth-based erbium-doped fibre amplifier based on two-stage and double-pass approaches
JP3916796B2 (en) Tellurite glass for optical amplification, optical fiber, optical amplifier and laser apparatus using the glass
JP2756510B2 (en) Broadband fiber laser medium and optical amplifier using the same