JPH0321852B2 - - Google Patents

Info

Publication number
JPH0321852B2
JPH0321852B2 JP56101518A JP10151881A JPH0321852B2 JP H0321852 B2 JPH0321852 B2 JP H0321852B2 JP 56101518 A JP56101518 A JP 56101518A JP 10151881 A JP10151881 A JP 10151881A JP H0321852 B2 JPH0321852 B2 JP H0321852B2
Authority
JP
Japan
Prior art keywords
pressure
flow rate
point
take
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56101518A
Other languages
Japanese (ja)
Other versions
JPS582706A (en
Inventor
Takaaki Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10151881A priority Critical patent/JPS582706A/en
Publication of JPS582706A publication Critical patent/JPS582706A/en
Publication of JPH0321852B2 publication Critical patent/JPH0321852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • G01F7/005Volume-flow measuring devices with two or more measuring ranges; Compound meters by measuring pressure or differential pressure, created by the use of flow constriction

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 この発明は、オリフイスを用いた流体の流路測
方定法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring a fluid flow path using an orifice.

一般に、気体や液体などの流体の流量を測定す
る方法として、流路の一部に流体の流れを妨害す
るオリフイスプレートと呼ばれる障害物を設置し
て流路を仕切り、その流路に生ずる圧力変化を測
定することにより、流量を算出する方法が知られ
ている。即ち、仮にオリフイスの両端での圧力差
がΔPであつた場合には、流量Fは(1)式により与
えられる。
Generally, as a method of measuring the flow rate of fluids such as gases and liquids, an obstacle called an orifice plate is installed in a part of the flow path to partition the flow path, and the pressure change that occurs in that flow path is measured. A method of calculating the flow rate by measuring the flow rate is known. That is, if the pressure difference between both ends of the orifice is ΔP, the flow rate F is given by equation (1).

F∝√ …(1) 流路内の流体圧力の測定は、圧力取出口から行
なわれ、この圧力の取出口の違いにより、ベナー
タツプ法、コーナータツプ法、フランジタツプ
法、永久圧損法などに分かれる。
F∝√ …(1) Fluid pressure in a flow path is measured from the pressure outlet, and depending on the pressure outlet, it is divided into the Benner tap method, corner tap method, flange tap method, permanent pressure drop method, etc. .

第1図は、これらの圧力測定方法の相違を示す
ための説明図である。a図に示すように、流路1
内にオリフイス2が設置されており、流路1内を
流体が矢印で示した方向に流れている場合にはオ
リフイス2の上下流にb図に示すような流体圧力
の変化が生ずる。b図に矢印で示したP1,P1′,
P1″、P2,P2′,P2″、P3はそれぞれa図に示した
圧力取出点A〜G点での圧力である。このとき
P1−P2をベナータツプ取出圧といい、このベナ
ータツプ取出圧から流量を算出する方法をベナー
タツプ法と称する。
FIG. 1 is an explanatory diagram showing the difference between these pressure measurement methods. As shown in figure a, flow path 1
An orifice 2 is installed within the flow path 1, and when fluid flows in the direction shown by the arrow in the flow path 1, changes in fluid pressure occur upstream and downstream of the orifice 2 as shown in Figure b. P 1 , P 1 ′, indicated by arrows in figure b
P 1 ″, P 2 , P 2 ′, P 2 ″, and P 3 are the pressures at the pressure extraction points A to G shown in Figure a, respectively. At this time
P 1 −P 2 is called the Bennertup outlet pressure, and the method of calculating the flow rate from this Bennertup outlet pressure is called the Bennertup method.

以下同様に、P1′−P2′をコーナータツプ取出圧
P1″−P2″をフランジタツプ取出圧、P1−P3を永
久圧損取出圧という。
Similarly, P 1 ′−P 2 ′ is the corner tap removal pressure.
P 1 ″−P 2 ″ is called the flange tap extraction pressure, and P 1 −P 3 is called the permanent pressure loss extraction pressure.

これら2つの圧力取出口からの流体圧力の差
ΔPと流量Fとの関係は前記のように(1)式で示さ
れるから、小流量の時は流量の変化の割合にくら
べ、取出差圧の変化の割合が小さくなり、測定精
度が悪くなる。これを解決するために、例えば第
2図に示すように差圧測定器を2台使用する方法
がある。即ち流路1の流量のフルレンジが測定出
来る差圧測定器3と、例えば9%の流量の時がフ
ルレンジになるスパンの小さい差圧測定器4とを
設け、三方コツク5によつて差圧測定器に流れる
流路を切換えて、流量が少ない時は小レンジの差
圧測定器4によつて測定し、流量が30%以上の時
には大レンジの差圧測定器3によつて測定するこ
とにより、小流量の時にも精度を保とうとするも
のである。なお6は差圧取出口から取出される流
量を調整するためのコツクである。
The relationship between the fluid pressure difference ΔP from these two pressure outlets and the flow rate F is expressed by equation (1) as described above, so when the flow rate is small, the difference in the output pressure The rate of change becomes smaller and measurement accuracy deteriorates. To solve this problem, there is a method of using two differential pressure measuring devices, for example, as shown in FIG. That is, a differential pressure measuring device 3 that can measure the full range of the flow rate in the flow path 1 and a differential pressure measuring device 4 with a small span that reaches the full range when the flow rate is 9%, for example, are provided, and the differential pressure can be measured by the three-way kettle 5. By switching the flow path flowing through the device, when the flow rate is low, the small range differential pressure measuring device 4 measures it, and when the flow rate is 30% or more, the large range differential pressure measuring device 3 measures it. , which attempts to maintain accuracy even when the flow rate is small. Note that 6 is a knob for adjusting the flow rate taken out from the differential pressure outlet.

しかしこの方法では差圧測定器を2台必要とす
るため、測定装置が大型となり、しかも高価にな
るという欠点を有していた。
However, since this method requires two differential pressure measuring devices, it has the disadvantage that the measuring device becomes large and expensive.

この発明の目的は、小流量の時でも精度が良
く、しかも一台の差圧測定器で流量の測定が可能
な、流量測定方法を提供する事にある。
An object of the present invention is to provide a flow rate measurement method that has good accuracy even at small flow rates and can measure the flow rate with a single differential pressure measuring device.

この発明は、流路内に複数の圧力取出点を設置
して、流量に応じてこの圧力取出点を切換えて差
圧測定器に接続することにより流路内の流体流量
を測定するようにしたものである。
This invention measures the fluid flow rate in the flow path by installing a plurality of pressure take-off points in the flow path, switching these pressure take-off points according to the flow rate, and connecting them to a differential pressure measuring device. It is something.

以下この発明の実施例を図面に基づいて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図はこの本発明を実施するための装置の接
続系統図である。流路1にはオリフイス2が設け
られており、圧力取出点A,D,Gはベナータツ
プ取出及び永久圧損取出に対応する位置に設けら
れている。7は差圧測定器、8は三方コツク、9
はコツクをそれぞれ示している。圧力取出点A,
D,Gではそれぞれ流体圧力P1,P2,P3が検出
される。
FIG. 3 is a connection system diagram of an apparatus for carrying out the present invention. An orifice 2 is provided in the flow path 1, and pressure take-off points A, D, and G are provided at positions corresponding to Benner tap take-off and permanent pressure loss take-off. 7 is a differential pressure measuring device, 8 is a three-way kettle, 9
indicate Kotsuku, respectively. Pressure take-off point A,
Fluid pressures P 1 , P 2 , and P 3 are detected at D and G, respectively.

このような測定系において、小流量時にはベナ
ータツプ法で、大流量時には永久圧損法でそれぞ
れ流量を算出する。即ち、三方コツク8の切換え
により、小流量の時には、差圧測定器7にベナー
タツプ取出口AとDとの圧力差P1−P2がかゝる
よにし、大流量時には、永久圧損取出口AとGと
の圧力差P1−P3がかゝるように動作させる。
In such a measurement system, the flow rate is calculated by the Bennertapp method when the flow rate is small, and by the permanent pressure drop method when the flow rate is large. That is, by switching the three-way switch 8, when the flow rate is small, the pressure difference P 1 - P 2 between the Bennertap outlet A and D is applied to the differential pressure measuring device 7, and when the flow rate is large, the permanent pressure loss outlet Operate so that the pressure difference between A and G is P1 - P3 .

ここでベナータツプ法で測定された圧力差を
ΔPa、永久圧損法で測定された圧力差をΔPbとす
ると、(2)式、(3)式が成立する。
Here, assuming that the pressure difference measured by the Bennertup method is ΔP a and the pressure difference measured by the permanent pressure loss method is ΔP b , equations (2) and (3) hold true.

ΔPa=P1−P2… (2) ΔPb=P1−P3=(1−m)(P1−P2)… (3) ここでmはオリフイスの開口比である。流量の
フルレンジFTは永久圧損法によりわかるように
差圧測定器のレンジを決めると(4)式により大流量
時の流量Fが測定出来る。
ΔP a =P 1 −P 2 (2) ΔP b =P 1 −P 3 =(1−m)(P 1 −P 2 )… (3) Here, m is the aperture ratio of the orifice. The full range of flow rate F T can be determined by the permanent pressure drop method, and by determining the range of the differential pressure measuring device, the flow rate F at large flow rates can be measured using equation (4).

F=K√b… (4) ここではKは定数である。そして、小流量にな
つた時には、ベナータツプ法に切換え、上で定め
た大流量時のレンジで測定すると、(5)式のような
関係が成立するから、 √b=√1−√a… (5) 流路が、最大流量の√1−以下の時にベナー
タツプ法ではかると0〜FT×√1−の流量を
同一の差圧測定器のフルレンジで測定出来ること
になる。従つて、単一の圧力差のみを用いて流量
を測定している時に起る小流量時の精度低下を防
止することが出来る。
F=K√ b … (4) Here, K is a constant. Then, when the flow rate becomes small, switch to the Bennertup method and measure in the range for large flow rates determined above. Since the relationship shown in equation (5) holds, √ b = √1−√ a … ( 5) When the flow path is less than the maximum flow rate √1-, the Bennertup method can measure the flow rate from 0 to F T ×√1- using the full range of the same differential pressure measuring device. Therefore, it is possible to prevent a decrease in accuracy when the flow rate is small, which occurs when the flow rate is measured using only a single pressure difference.

なお本実施例においては、ベナータツプ取出口
と永久圧損取出口とを切換えて測定する方法につ
いて説明したが、これらの圧力取出口の切換えは
上記のものに限定されるものではなく、測定精度
を考慮して種々の他の組合せを選ぶことが出来
る。さらに圧力差の測定は2点の圧力取出口に限
定されることなく、任意の個数間の圧力差を測定
しても良い。
In this example, the method of measuring by switching between the Benertap outlet and the permanent pressure loss outlet has been explained, but the switching of these pressure outlets is not limited to the above, and measurement accuracy must be taken into account. Various other combinations can be selected. Furthermore, the measurement of the pressure difference is not limited to two pressure outlet ports, and the pressure difference between any number of ports may be measured.

また、圧力取出口の切換えにはヒステリシスを
持たせ、切換え点近傍の流量が、むやみに切換わ
らないようにする機能を持たせることも可能であ
る。
It is also possible to provide hysteresis to the switching of the pressure outlet so as to prevent the flow rate near the switching point from being switched unnecessarily.

第4図は、第3図の実施例において、圧力取出
口の切換えにヒステリシスを持たせた場合の圧力
差と流量との関係を示す図である。即ち、最大流
量FTからFT×√1−×α(α<1)まではP1
P3を用いて永久圧損法で測定し、それ以下の流
量になつたらベナータツプ法に切換えP1−P2
用いて測定し、その後は流量が増加し、FT×√
1−mになつたら再び永久圧損法に切換える。
FIG. 4 is a diagram showing the relationship between the pressure difference and the flow rate when switching the pressure outlet has hysteresis in the embodiment of FIG. 3. That is, from the maximum flow rate F T to F T ×√1−×α (α<1), P 1
Measure using the permanent pressure drop method using P 3 , and when the flow rate becomes lower than that, switch to the Bennertup method and measure using P 1P 2. After that, the flow rate increases and F T ×√
When it reaches 1-m, switch to the permanent pressure drop method again.

このように切換え操作にヒステリシスを持たせ
ることによつて安定した測定を行うことが出来
る。
By providing hysteresis in the switching operation in this way, stable measurements can be performed.

さらに、三方コツクの切換え中は、測定信号は
不安定で不正確であるので、切換え終了までは切
換前の値をホールドするという機能を付加するこ
とにより測定精度の信頼性を上げることが出来
る。
Furthermore, since the measurement signal is unstable and inaccurate during the switching of the three-way switch, the reliability of measurement accuracy can be increased by adding a function to hold the value before switching until the switching is completed.

以上説明したようにこの発明によれば、流量の
変化に応じて、圧力取出口を切換えて流量を測定
しているので、単一の差圧測定器を用いて、小流
量から大流量までを精度を劣化させることなく測
定出来るというすぐれた効果がある。
As explained above, according to the present invention, the flow rate is measured by switching the pressure outlet in accordance with the change in the flow rate, so a single differential pressure measuring device can be used to measure from small flow rates to large flow rates. It has the excellent effect of being able to perform measurements without deteriorating accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力測定方法の相違を示す説明図、第
2図は2台の差圧測定器を用いた従来の流量測定
法の一例を示す図、第3図はこの発明を実施する
ための装置の接続系統図、第4図は圧力取出口の
切換えにヒステリシスを持たせた場合の圧力差と
流量との関係を示す図である。 1……流路、2……オリフイス、7……差圧測
定器、8……三方コツク、A,D,G……圧力取
出点。
Fig. 1 is an explanatory diagram showing the difference in pressure measurement methods, Fig. 2 is an illustration showing an example of a conventional flow measurement method using two differential pressure measuring devices, and Fig. 3 is an explanatory diagram showing the difference in pressure measurement methods. The connection system diagram of the device, FIG. 4, is a diagram showing the relationship between the pressure difference and the flow rate when switching the pressure outlet has hysteresis. 1...Flow path, 2...Orifice, 7...Differential pressure measuring device, 8...Three-way socket, A, D, G...Pressure extraction point.

Claims (1)

【特許請求の範囲】[Claims] 1 流路の一部にオリフイスを設置し、このオリ
フイスを介して流路の上流側に共通の圧力取出点
を、流路の下流側にベナータツプ法用圧力取出点
と永久圧損法用圧力取出点を各々設置し、前記ベ
ナータツプ法用圧力取出点と永久圧損法用圧力取
出点とを切換える切換手段を設置し、この切換手
段で切換えられた圧力取出点と前記共通の圧力取
出点との差圧を測定する差圧測定器を設置し、前
記切換手段が前記ベナータツプ法用圧力取出点を
選択しているときは、前記差圧測定器の差圧に基
づきベナータツプ法により流体流量を測定し、前
記切換手段が前記永久圧損法用圧力取出点を選択
しているときは、前記差圧測定器の差圧に基づき
永久圧損法により流体流量を測定し、前記ベナー
タツプ法により測定した流体流量が前記オリフイ
スの開口比により予め定められた流量範囲を越え
たとき、前記切換手段を前記永久圧損法用圧力取
出点側に切換えるようにしたことを特徴とする流
量測定方法。
1 An orifice is installed in a part of the flow path, and a common pressure take-off point is established on the upstream side of the flow path through this orifice, and a pressure take-off point for the Bennertup method and a pressure take-off point for the permanent pressure drop method are established on the downstream side of the flow path. and a switching means for switching between the pressure take-off point for the Bennertapp method and the pressure take-off point for the permanent pressure drop method, and the differential pressure between the pressure take-off point switched by the switching means and the common pressure take-off point. When a differential pressure measuring device is installed and the switching means selects the Bennertup method pressure extraction point, the fluid flow rate is measured by the Bennertup method based on the differential pressure of the differential pressure measuring device, When the switching means selects the pressure take-off point for the permanent pressure drop method, the fluid flow rate is measured by the permanent pressure drop method based on the differential pressure of the differential pressure measuring device, and the fluid flow rate measured by the Bennertup method is applied to the orifice. A method for measuring a flow rate, characterized in that when the flow rate exceeds a predetermined flow rate range based on the aperture ratio of the flow rate, the switching means is switched to the pressure take-off point side for the permanent pressure drop method.
JP10151881A 1981-06-30 1981-06-30 Flow rate measuring method Granted JPS582706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10151881A JPS582706A (en) 1981-06-30 1981-06-30 Flow rate measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10151881A JPS582706A (en) 1981-06-30 1981-06-30 Flow rate measuring method

Publications (2)

Publication Number Publication Date
JPS582706A JPS582706A (en) 1983-01-08
JPH0321852B2 true JPH0321852B2 (en) 1991-03-25

Family

ID=14302734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10151881A Granted JPS582706A (en) 1981-06-30 1981-06-30 Flow rate measuring method

Country Status (1)

Country Link
JP (1) JPS582706A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434094U (en) * 1987-08-27 1989-03-02
JPH0184698U (en) * 1987-11-27 1989-06-06

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246756U (en) * 1975-09-29 1977-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246756U (en) * 1975-09-29 1977-04-02

Also Published As

Publication number Publication date
JPS582706A (en) 1983-01-08

Similar Documents

Publication Publication Date Title
EP1879004B1 (en) Flow rate measuring device
US3695094A (en) Leak detection method and system
JPH11502026A (en) Gas mass flow measurement system
US3555901A (en) Method of and apparatus for measuring varying fluid flow
CN104061973A (en) Flowmeter
US10605636B2 (en) Flowmeter
JPH0321852B2 (en)
JPH08271309A (en) Multiphase flow meter
US3927563A (en) Flow rate measuring system with calibration means
US11099055B1 (en) Self-checking ultrasonic fluid flow measurement system
JPH0887335A (en) Mass flow rate controller
US3575049A (en) Sonic flow meter
JPH0682282A (en) Measuring equipment for flow rate
JP2000249619A (en) Gas leakage detecting method
JPS5827020A (en) Wide range type flow rate measuring device
US6516675B1 (en) Bubble ultrasonic flow meter
JP2000249579A (en) Flow-rate measurement method and differential- pressure-type flowmeter utilizing it
JPH0727734A (en) Device for measuring void ratio
JP3252187B2 (en) Flowmeter
JP3408341B2 (en) Flow meter
JPH0198940A (en) Water leakage detecting device
US20240255340A1 (en) Detecting a measurement bias of a reference zero-flow value
JPH08327527A (en) Capillary type viscometer
RU1795287C (en) Method of measuring gas mass flow rate
JPS6319780Y2 (en)