JPH0321837B2 - - Google Patents

Info

Publication number
JPH0321837B2
JPH0321837B2 JP11565182A JP11565182A JPH0321837B2 JP H0321837 B2 JPH0321837 B2 JP H0321837B2 JP 11565182 A JP11565182 A JP 11565182A JP 11565182 A JP11565182 A JP 11565182A JP H0321837 B2 JPH0321837 B2 JP H0321837B2
Authority
JP
Japan
Prior art keywords
heat exchange
powder
exchange tube
radiation
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11565182A
Other languages
Japanese (ja)
Other versions
JPS597898A (en
Inventor
Kazutomi Funabashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11565182A priority Critical patent/JPS597898A/en
Publication of JPS597898A publication Critical patent/JPS597898A/en
Publication of JPH0321837B2 publication Critical patent/JPH0321837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱交換用チユーブに係わり、更に詳わ
しくは低温域での酸腐蝕および高温域での高温腐
蝕に影響されることが無く、しかも輻射・接触伝
熱が良好な熱交換用チユーブに関するものであ
る。 現在、ボイラ、熱交換器等に使用されている熱
交換用チユーブの材質は、低温部ではSTB35、
CR1、CRIA等が、又高温部ではSTB35、
SUS401等が一般的に用いられている。 しかし、上記した鋼種の熱交換用チユーブでは
燃焼ガス中のダストや亜硫酸ガスに起因する衝撃
力や酸腐蝕でチユーブ表面がポーラス状になつた
り、又近年の運転温度の上昇、燃料としての高炉
ガスの適用、燃却物の多様化に起因する高温腐蝕
が激しくなつて、熱交換用チユーブの肉厚が小さ
くなり強度低下をひき起こし、ついには使用中に
被熱交換流体の噴出事故が発生する等、安全上好
ましくなという問題点があつた。 本発明者は、上記問題点に鑑み、熱交換用チユ
ーブについて種々実験を行なつた結果、熱交換用
チユーブの主目的である輻射・接触伝熱が良好
で、かつ酸腐蝕や高温腐蝕に侵されることのない
熱交換用チユーブが得られことを確認できた。 すなわち本発明は、少なくともsiCを40〜75wt
%、Cr2O3を2〜10wt%、TaCを2〜10wt%、
Al粉を5〜20wt%、ガラス粉を3〜15wt%、
ZrO2を3〜15wt%含有するセラミツクを鋼管表
面にコーテイングして成ることを特徴とする熱交
換用チユーブを提供せんとするものである。 上記した如くSiC、Cr2O3、TaC、Al粉、ガラ
ス粉およびZrO2を夫々限定した理由は下記の如
くである。 SiCは熱輻射材として含有するものであり、こ
れが75wt%を超えた場合には鋼管の熱膨脹に対
する追従が困難となつてコーテイングしたセラミ
ツクが剥落し、又40wt%未満では熱輻射性およ
び熱伝導性が劣化するため40〜75wt%とした。 Cr2O3、TaC、Al粉は熱輻射助材、バインダー
として含有せしめるものであり、Cr2O3、TaCが
2wt%未満、およびAl粉が5wt%未満では熱伝導
性が低下すると共に被塗装物との密着強度も低下
し、又Cr2O3、TaCが10wt%を超えた場合、およ
びAl粉が20wt%を超えた場合には熱輻射率が低
下すると共にバインダー量が多くなりすぎるため
Cr2O3およびTaCは2〜10wt%、Al粉は5〜
20wt%とした。 ガラス粉およびZrO2は鋼管との密着性、塗膜
間結合強度を増すために含有せしめるものであ
り、ガラス粉およびZrO2が15wt%を超えた場合
には気密性の高い焼成被覆層が得られず、又3wt
%未満では接着強度の高い組成物が得られないた
め、ガラス粉およびZrO2は3〜15wt%とした。 なお、上述した特性を顕著にならしめるために
は、コーテイングするセラミツクに含まれる他の
含有物、すなわちSi3N4、Al(H2PO)3、Al2O3
MgO、Fe2O3およびSiO2を下記の如く決定すれ
ばよい。 先ず、Si3N4およびAl(H2PO)3は上記した
Cr2O3、TaCおよびAl粉と同じ目的で含有せしめ
られるものであり、その配合率としては、Si3N4
は3〜20wt%、Al(H2PO)3は5〜20wt%が好ま
しい。その理由は、Si3N4が3wt%未満ではセラ
ミツクコーテイングの気密性が低下すると共に熱
輻射特性寿命も低下する為であり、又Al
(H2PO)3が5wt%未満では鋼管への接着強度が減
退する為である。またSi3N4およびAl(H2PO)3
夫々20wt%を超えた場合には、熱輻射率の低下
をきたすと共にバインダー量が多くなるためであ
る。 次にAl2O3、MgO、Fe2O3、およびSiO2は上記
したガラス粉およびZrO2と同じ目的で含有せし
められるものであり、その配合率としては、夫々
1〜10wt%が好ましい。その理由としては、1wt
%未満では接着強度が弱くなり、又10wt%を超
えると気密性の高い焼成被覆層が得られないため
である。 また鋼管にコーテイングするセラミツク被覆層
の厚さとしては、0.3〜0.4mmが好ましい。その理
由は0.4mmを超えても熱輻射率は向上せず、コス
ト高になるだけであるからであり、又0.3mm未満
では熱輻射率が低下し、かつ施工が困難なためで
ある。 以上述べた如く配合されたセラミツクは、先ず
高温域においては、1350℃以上で窒素とコーテイ
ング材中のSiCとが反応し、Si3N4やSi2C2N等を
生成するがこれらは熱輻射寿命を延長させるため
問題はない。また1450〜1500℃から炭酸ガスと
SiCとが反応してSiO2を生成するが、これも何等
基材への影響はない。更に熱料中のVaとは反応
しない。 次に低温域においては、亜硫酸ガスとは反応せ
ず、更に酸類に侵されることはない。 よつて上記したセラミツクを鋼管の表面にコー
テイングして成る本発明に係る熱交換用チユーブ
は、高温域での高温腐蝕や低温域での酸腐蝕に影
響されることがなく、よつて使用中に熱交換用チ
ユーブの肉厚が小さくなり強度低下をひき起こす
ことがない。 次に本発明の実施例について説明する。下記表
1に示す配合割合のセラミツクを、外径25.4mm肉
厚2.0mmのSTB−35製の鋼管表面に、4Kg/cm2
圧力で0.4mmの厚さに噴付け被覆し、第1図に示
す昇温割合でコーテイングした。
The present invention relates to a heat exchange tube, and more particularly to a heat exchange tube that is not affected by acid corrosion in a low temperature range or high temperature corrosion in a high temperature range, and has good radiation and contact heat transfer. It is something. Currently, the materials of heat exchange tubes used in boilers, heat exchangers, etc. are STB35,
CR1, CRIA, etc., and STB35 in high temperature areas,
SUS401 etc. are commonly used. However, in heat exchange tubes of the above-mentioned steel types, the surface of the tube becomes porous due to impact force and acid corrosion caused by dust and sulfur dioxide gas in the combustion gas, and due to the recent rise in operating temperatures, the use of blast furnace gas as fuel application, high-temperature corrosion due to the diversification of combustion materials becomes more severe, the wall thickness of the heat exchange tube becomes smaller, causing a decrease in strength, and eventually accidents occur in which the heat exchange fluid blows out during use. There was a problem that it was not desirable from a safety point of view. In view of the above-mentioned problems, the present inventor conducted various experiments on heat exchange tubes and found that the heat exchange tubes have good radiation and contact heat transfer, which are the main purposes of heat exchange tubes, and are resistant to acid corrosion and high temperature corrosion. It was confirmed that a heat exchange tube that does not leak was obtained. That is, the present invention uses at least 40 to 75 wt of siC.
%, 2 to 10 wt% of Cr 2 O 3 , 2 to 10 wt% of TaC,
5-20wt% Al powder, 3-15wt% glass powder,
It is an object of the present invention to provide a heat exchange tube characterized in that the surface of the steel tube is coated with ceramic containing 3 to 15 wt% of ZrO2 . The reasons for limiting SiC, Cr 2 O 3 , TaC, Al powder, glass powder, and ZrO 2 as described above are as follows. SiC is contained as a heat radiating material, and if it exceeds 75wt%, it will be difficult to follow the thermal expansion of the steel pipe and the ceramic coating will peel off, and if it is less than 40wt%, it will have poor thermal radiation and thermal conductivity. The content was set at 40 to 75 wt% because of the deterioration of the content. Cr 2 O 3 , TaC, and Al powder are included as heat radiation aids and binders.
If the content of Al powder is less than 2wt%, and if the Al powder is less than 5wt %, the thermal conductivity will decrease and the adhesion strength with the object to be coated will decrease. If it exceeds %, the thermal emissivity will decrease and the amount of binder will be too large.
Cr2O3 and TaC are 2-10wt %, Al powder is 5-10wt%
It was set to 20wt%. Glass powder and ZrO 2 are included to increase the adhesion with the steel pipe and the bonding strength between coatings, and if the glass powder and ZrO 2 exceeds 15wt%, a fired coating layer with high airtightness can be obtained. 3wt again
Since a composition with high adhesive strength cannot be obtained if the amount is less than 3% to 15% by weight, the glass powder and ZrO 2 are contained in an amount of 3 to 15 wt%. In addition, in order to make the above-mentioned characteristics more noticeable, it is necessary to add other substances contained in the ceramic to be coated, such as Si 3 N 4 , Al(H 2 PO) 3 , Al 2 O 3 ,
MgO, Fe 2 O 3 and SiO 2 may be determined as follows. First, Si 3 N 4 and Al(H 2 PO) 3 are
It is contained for the same purpose as Cr 2 O 3 , TaC and Al powder, and its blending ratio is Si 3 N 4
is preferably 3 to 20 wt%, and Al(H 2 PO) 3 is preferably 5 to 20 wt%. The reason for this is that if Si 3 N 4 is less than 3 wt%, the airtightness of the ceramic coating will decrease and the life of the thermal radiation property will also decrease.
This is because if (H 2 PO) 3 is less than 5 wt%, the adhesive strength to the steel pipe will decrease. Further, if Si 3 N 4 and Al(H 2 PO) 3 each exceed 20 wt%, the thermal emissivity decreases and the amount of binder increases. Next, Al 2 O 3 , MgO, Fe 2 O 3 , and SiO 2 are contained for the same purpose as the glass powder and ZrO 2 described above, and their compounding ratios are preferably 1 to 10 wt%, respectively. The reason is that 1wt
If it is less than 10% by weight, the adhesive strength will be weak, and if it exceeds 10wt%, a fired coating layer with high airtightness cannot be obtained. The thickness of the ceramic coating layer coated on the steel pipe is preferably 0.3 to 0.4 mm. The reason for this is that if it exceeds 0.4 mm, the thermal emissivity will not improve and the cost will only increase, and if it is less than 0.3 mm, the thermal emissivity will decrease and construction will be difficult. In the ceramic compounded as described above, nitrogen reacts with SiC in the coating material at temperatures above 1350°C, producing Si 3 N 4 , Si 2 C 2 N, etc. There is no problem because the radiation life is extended. Also, from 1450 to 1500℃, carbon dioxide gas
Although it reacts with SiC to produce SiO 2 , this does not have any effect on the base material. Furthermore, it does not react with Va in the heating material. Next, in a low temperature range, it does not react with sulfur dioxide gas and is not attacked by acids. Therefore, the heat exchange tube according to the present invention, which is made by coating the surface of the steel pipe with the above-mentioned ceramic, is not affected by high temperature corrosion in high temperature ranges or acid corrosion in low temperature ranges, and therefore is easy to use during use. The wall thickness of the heat exchange tube is reduced and there is no reduction in strength. Next, examples of the present invention will be described. Ceramic having the proportions shown in Table 1 below was sprayed onto the surface of an STB-35 steel pipe with an outer diameter of 25.4 mm and a wall thickness of 2.0 mm to a thickness of 0.4 mm at a pressure of 4 Kg/cm 2 . Coating was carried out at the heating rate shown in .

【表】 上記した本発明に係る熱交換用チユーブと従来
の熱交換用チユーブ(STB−35製)との輻射能
の比較を表2に、又800〜1200℃で連続した場合
における輻射能の比較を第2図に、更に表3に示
す燃焼ガスを用いて850℃で連続使用した場合の
チユーブ肉厚の変化の比較を第3図に示す。なお
第4図は本発明に係る熱交換用チユーブの輻射能
と使用温度との関係図である。
[Table] Table 2 shows a comparison of the radiation activity between the heat exchange tube according to the present invention and the conventional heat exchange tube (made of STB-35). A comparison is shown in Fig. 2, and Fig. 3 shows a comparison of changes in tube wall thickness when continuously used at 850°C using the combustion gas shown in Table 3. Note that FIG. 4 is a diagram showing the relationship between the radiation efficiency and operating temperature of the heat exchange tube according to the present invention.

【表】 ε〓チユーブ表面の放射率
〓 1 〓
ε 〓輻射能
[Table] ε 2 = Emissivity of tube surface
〓 1 〓
ε = radiation

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともSiCを40〜75wt%、Cr2O3を2〜
10wt%、TaCを2〜10wt%、Al粉を5〜20wt
%、ガラス粉を3〜15wt%、およびZrO2を3〜
15wt%含有するセラミツクを鋼管表面にコーテ
イングして成ることを特徴とする熱交換用チユー
ブ。
1 At least 40-75wt% SiC and 2-2% Cr 2 O 3
10wt%, TaC 2~10wt%, Al powder 5~20wt
%, glass powder 3~15wt%, and ZrO 2 3~15wt%
A heat exchange tube characterized by coating the surface of a steel tube with ceramic containing 15wt%.
JP11565182A 1982-07-02 1982-07-02 Heat-exchanging tube Granted JPS597898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11565182A JPS597898A (en) 1982-07-02 1982-07-02 Heat-exchanging tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11565182A JPS597898A (en) 1982-07-02 1982-07-02 Heat-exchanging tube

Publications (2)

Publication Number Publication Date
JPS597898A JPS597898A (en) 1984-01-17
JPH0321837B2 true JPH0321837B2 (en) 1991-03-25

Family

ID=14667911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11565182A Granted JPS597898A (en) 1982-07-02 1982-07-02 Heat-exchanging tube

Country Status (1)

Country Link
JP (1) JPS597898A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147296A (en) * 1987-12-04 1989-06-08 Nippon Chem Plant Consultant:Kk Heat exchanger
JPH02227246A (en) * 1989-02-28 1990-09-10 Matsushita Electric Ind Co Ltd Heat exchanger
KR100877574B1 (en) * 2006-12-08 2009-01-08 한국원자력연구원 High temperature and high pressure corrosion resistant process heat exchanger for a nuclear hydrogen production system

Also Published As

Publication number Publication date
JPS597898A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
JP3399650B2 (en) Heat and oxidation resistant coating method
US4608087A (en) Heat-resistant inorganic composition
CN101328569A (en) Thermal sprayed protective layer for metallic substrates
CN111944334A (en) Nano metal ceramic coating
CN112876887B (en) Long-acting protective coating for furnace wall of gas nitriding furnace and preparation method thereof
US3036929A (en) Method of manufacturing durable lance pipes for oxygen smelting
JPH0321837B2 (en)
US20020145212A1 (en) Process and mixture for forming a coherent refractory mass on a surface
JPS6215508B2 (en)
CN108358619B (en) Circulating fluidized bed boiler flue castable and preparation method thereof
JP2000302554A (en) Silicon nitride-combined silicon carbide refractory
JP2735865B2 (en) Spray repair material
JPS59156967A (en) Sio2-cao-li2o low expansion flame spray material
JP3009084B2 (en) Magnesia-alumina spray material
JPH01148757A (en) Patching repairing material
JP3009815B2 (en) Aluminum titanate-alumina spray material
JPH04358054A (en) Powdery material for thermal spraying and surface-coated parts having excellent erosion resistance
JPH0436453A (en) Thermal spraying material and thermally sprayed heat resisting member
JPH01264976A (en) Flame spraying material
SU1198328A1 (en) Heat-exchange surface of gas heater
JPS6134169A (en) Spraying material for coating metallic aluminum
JPH01108186A (en) Sic structural material for stream-resistant atmosphere
JPS62148378A (en) Flow-in refractories
JPH06206776A (en) Refractory powder for flame spraying
JPH06219855A (en) Metallic powder containing alumina-mgo-al2o3 spinel based thermal spraying material