JPH03217696A - Operating method of vertical shaft pump - Google Patents

Operating method of vertical shaft pump

Info

Publication number
JPH03217696A
JPH03217696A JP1437590A JP1437590A JPH03217696A JP H03217696 A JPH03217696 A JP H03217696A JP 1437590 A JP1437590 A JP 1437590A JP 1437590 A JP1437590 A JP 1437590A JP H03217696 A JPH03217696 A JP H03217696A
Authority
JP
Japan
Prior art keywords
water level
main shaft
amount
vertical shaft
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1437590A
Other languages
Japanese (ja)
Inventor
Hirohiko Furukawa
博彦 古川
Masahide Konishi
小西 正英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1437590A priority Critical patent/JPH03217696A/en
Publication of JPH03217696A publication Critical patent/JPH03217696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To increase water storing amount and to prevent generation of a flood by providing an elevating means to move a main shaft up and down, and a water level detecting means to output a signal and operate the elevating means. CONSTITUTION:By the operation of an elevating means 9 to operate depending on the water level signal from a water level detecting means 8, a main shaft 1 is moved up and down. When the water level WL is at the lowest water level LWL or higher, the main shaft 1 is positioned at its lowest position, and the amount of the vane clearance 6 is set to a standard value W1 to allow a normal pumping-out operation. When the water level WL is decreased to less than the lowest water level LWL, the main shaft 1 is positioned at the uppermost position, and the amount of the vane clearance 6 is set to an expanded value to allow a small amount of pumping-out operation. In such a way, the water storing amount is increased, and a flood generating condition can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主として洪水時などにおける水路の排水を行
なうために設置されている排水機場のポンプ吸水井や雨
水ポンプ設備に使用される立軸ポンプの運転方法に関す
る. [従来の技術] 従来より,排水機場のポンプ吸水井などに設置されてい
る一般的な立軸ポンプには、水位が一定のレベルより低
いと吸込口が水中にあるのにもかかわらず渦を生じて空
気混じりの水を吸い込むといった、個々のポンプに特有
の最低水位が存在し、水位がこの最低水位よりも低いレ
ベルであるときに運転を行うと、空気吸込み渦の発生や
呼吸現象などに起因して振動や騒音などを生じるという
特性がある.したがって、このような一般的な立軸ボン
ブを、吸水井などの水位に関係なく全速で運転して不慮
の出水などのために待機させておくと、水位が前記最低
水位未満にあるときに激しい振動や騒音が発生して,ポ
ンプ運転機能障害を引き起こしたり、基礎や建屋を損傷
させるような不都合が生じるおそれを有している. そこで、従来の一般的な立軸ポンプでは、全速待機運転
を行わず,水位が最低水位よりも高いときのみ運転を行
い、水位が最低水位より低いときには運転を停止すると
いった運転システムが採用されていた. [発明が解決しようとする課題] ところが、近年では、都市化の進展に伴う舗装率の増大
や緑地の減少などにより地層の保水機能が低下している
一方で、前記吸水井などへの流入水量が増大する傾向に
あり、しかも、所謂、鉄砲水のように突発的に急激に大
量の水が吸水井に流入することも多々生じている.その
ため、吸水井などでは、水位が短時間で変動し、従来の
一般的な立軸ポンプによる前述の運転システムでは立軸
ポンプの運転開始タイミングや運転停止タイミングを的
確に制御することができず、水位が異常に上昇して、洪
水が発生する事態の引き起こされる懸念があった. 本発明はこのようなの事情に鑑みなされたもので、水位
が最低水位未満のレベルに低下しても、前述の不都合が
発生することな〈立軸ボンブを全速で待機運転させ、こ
れにより吸水井の水位を最低水位未満のレベルに低下さ
せて、貯水量の増大を図り、水位の異常な上昇によって
洪水が発生する事態を防止できるようにした立軸ポンプ
の運転方法の提供を目的とする. [課題を解決するための手段] 前記目的を達成するために、本発明は、主軸に固着され
た羽根車が羽根車室に回転自在に内装され、この羽根車
室の上下に吐出ケーシングと吸込ケーシングがそれぞれ
連通接続された立軸ポンプにおいて,前記主軸を昇降さ
せる昇降手段と、この昇降手段に信号を出力して作動さ
せる水位検知手段が設けられ、水位検知手段からの水位
検知信号に基づいて、水位が当該立軸ポンプの最低水位
以上のレベルにあるときには昇降手段により主軸を下限
位置に位置決めして、羽根車の外周と羽根車室の内周と
の間に形成される羽根隙間の量を通常排水運転の可能な
基準値に設定゛し、水位が当該立軸ポンプの最低水位未
満のレベルにあるときには昇降手段により主軸を上限位
置に位置決めして、前記羽根隙間の量を少量排水運転の
可能な拡大値に設定するものである. [作用] 本発明によれば、吸水井などの水位が最低水位以上のレ
ベルにあるときには、この水位が水位検知手段によって
検知され、ここからの検知信号が昇降手段に入力されて
昇降手段を作動させる.その結果、主軸を押し下げて下
限位置に位置決めし、羽根車の外周と羽根車室の内周と
の間に形成される羽根隙間の量を通常排水運転の可能な
基準値に設定し、立軸ポンプに通常の排水運転を行わせ
る. 前記排水運転の継続によって、吸水井などの水位が最低
水位未満のレベルに低下すると、この水位が水位検知手
段によって検知され、ここからの検知信号が昇降手段に
入力されて昇降手段を作動させる.その結果,主軸を押
し上げて上限位置に位置決めし、羽根車の外周と羽根車
室の内周との間に形成される羽根隙間の量を少量排水運
転の可能な拡大値に設定し,立軸ポンプに少量の排水運
転を行はせる. [実施例] 以下、本発明の実施例を図面に基づいて説明する. 第1図は本発明の一実施例を示す縦断面図であり、図に
おいて、立軸ボンブは、主軸1、この主軸lに固着され
た羽根車2、羽根車2を回転自在に内装する羽根車室3
および該羽根車室3の上下に連通接続される吐出ケーシ
ング4と吸込ケーシング5とから構成されており、吐出
ケーシング4は揚水管4Aと吐出側エルポ4Bとからな
り、羽根車2の外周と羽根車室3の内周との間に羽根隙
間6が形成されている.そして、常時は、羽根隙間6の
量を通常排水運転の可能な基準値W1に設定してある. 主軸lの上端部は、図示されていない駆動源に対して軸
方向の移動を許容するカップリング7によって同時回転
可能に接続されるとともに、水位検知手段8からの水位
検知信号に基づいて作動する昇降手段9の作動によって
、主軸lが昇降するようになっている. 即ち、水位検知手段8は、周知の水位計8Aとここから
の水位検知信号を昇降手段9に出力する信号線8Bとか
ら構成され、昇降手段9は制御部90と駆動部9lとを
有しており,信号線8Bを通って制御部90に入力され
る信号に基づいて、該制御部90から通路10A、IO
Bを介して駆動部9lの上室91Aまたは下室91Bに
、例えば、圧油などの駆動媒体が供給されて、主軸1に
形成した鍔部(ピストン部)IAの上面または下面に負
荷させるようになっている. つぎに,前記構成の作動について説明する.第1図のよ
うに、吸水井Pの水位WLが最低水位LWL以上のレベ
ルにあるときには、この水位WLが水位検知手段8の水
位計8Aによって検知され、この検知信号が信号線8B
を介して昇降手段9の制御部90に入力される.その結
果,該制御部90から通路10Aを介して駆゛動部9l
の上室91Aに圧油などの駆動媒体が供給されて、主軸
lに形成した鍔部(ピストン部)LAの上面に負荷され
鍔部IAを押し下げて、主軸lを下限位置に位置決めし
、羽根車2の外周と羽根車室3の内周との間に形成され
る羽根隙間6の量を通常排水運転の可能な基準値W1に
設定する.したがって、立軸ポンプlは通常の排水運転
を行なう.前記排水運転の継続によって、第2図のよう
に、吸水井Pの水位WLが最低木位I,WL未満のレベ
ルに低下すると、この水位WLが水位検知手段8の水位
計8Aによって検知され、この検知信号が信号線8Bを
介して昇降手段9の制御部90に入力される.その結果
、該制御部90から通路lOBを介して駆動部9lの下
室91Bに圧油などの駆動媒体が供給されて、主軸1に
形成した鍔部(ピストン部)IAの下面に負荷され、鍔
部IAを押し上げて、主軸lを上限位置に位置決めし、
羽根車2の外周と羽根車室3の内周との間に形成される
羽根隙間6の量を前記W1の少なくとも1O倍以上の大
きさ、つまり少量の排水運転が可能な拡大値W2に設定
する. このように,羽根隙間6の量が拡大された状態で立軸ポ
ンプlを全速運転しても、羽根隙間よりの漏れが増大し
、結果的に排水量が減少するため、従来のように、空気
吸込み渦の発生や呼吸現象などが起こらず、したがって
、激しい振動や騒音の発生が回避され、ポンプ運転機能
障害を引き起こしたり、基礎や建屋を損傷させるような
不都合が防止される.しかも、吸水井Pの水位WLを最
低木位LWL未渦のレベルに低下させることで,それだ
け貯水量が増大するので、突発的な雨水の流入による水
位の異常な上昇に対しても十分な余裕をもって対応する
ことができる. また,前記実施例では、LWL未満の水位での羽根隙間
6(W2)を一定にして説明しているがLWLよりの水
位の低下に応じてW1からW2にかけて連続的に隙間を
増大させるようにしてもよい. [発明の効果1 本発明は,前述のように構成されているので、以下に記
載されるような効果を奏する.即ち、吸水弁などの水位
が最低水位以上のレベルにあるときには、この水位が水
位検知手段によって検知され、ここからの検知信号が昇
降手段に入力されて昇降手段を作動させる.その結果、
主軸を押し下げて下限位置に位置決めし、羽根車の外周
と羽根車室の内周との間に形成される羽根隙間の量を通
常排水運転の可能な基準値に設定し、立軸ポンプに通常
の排水運転を行わせる.また,前記排水運転の継続によ
って、吸水井などの水位が最低水位未満のレベルに低下
すると、この水位が水位検知手段によって検知され、こ
こからの検知信号が昇降手段に入力されて昇降手段を作
動させる.その結果、主軸を押し上げて上限位置に位置
決めし、羽根車の外周と羽根車室の内周との間に形成さ
れる羽根隙間の量を少量排水運転の可能な拡大値に設定
し、立軸ポンプに少量の排水運転を行わせることができ
るので、従来のように、空気吸込み渦の発生や呼吸現象
などが起こらず,したがって、激しい振動や騒音の発生
が回避され、ポンプ運転機能障害を引き起こしたり、基
礎や建屋を損傷させるような不都合が防止される.しか
も、吸水井などの水位を最低水位未満のレベルに低下さ
せることで、それだけ貯水量が増大するので、突発的な
雨水の流入による水位の異常な上昇に対しても十分な余
裕をもって対応することができる.
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vertical shaft pump used in pump intake wells and rainwater pump equipment of drainage pumping stations installed mainly for draining waterways during floods. Regarding how to drive. [Conventional technology] Traditionally, general vertical shaft pumps installed in pump water intake wells of drainage pump stations, etc., generate vortices when the water level is lower than a certain level, even though the suction port is underwater. There is a minimum water level specific to each pump, such as air-mixed water being sucked into the pump, and if the pump is operated when the water level is lower than this minimum water level, air suction vortices and breathing phenomena may occur. It has the characteristic of causing vibrations and noise. Therefore, if such a general vertical shaft bomb is operated at full speed regardless of the water level in the water suction well and left on standby in case of an unexpected water outflow, it will cause severe vibration when the water level is below the minimum water level. There is a risk that such noise may cause problems such as malfunction of pump operation or damage to the foundation or building. Therefore, conventional vertical shaft pumps do not perform full-speed standby operation, but operate only when the water level is higher than the minimum water level, and stop operation when the water level is lower than the minimum water level. .. [Problem to be solved by the invention] However, in recent years, the water retention function of the stratum has been decreasing due to an increase in paving ratio and a decrease in green areas due to the progress of urbanization, and the amount of water flowing into the water absorption wells etc. has decreased. In addition, large amounts of water suddenly and suddenly flow into water intake wells, such as in so-called flash floods, which frequently occur. Therefore, in water intake wells, etc., the water level fluctuates in a short period of time, and the above-mentioned operation system using conventional vertical shaft pumps cannot accurately control the operation start timing and operation stop timing of the vertical shaft pump, and the water level fluctuates rapidly. There were concerns that the water would rise abnormally and cause flooding. The present invention was developed in view of the above circumstances, and the above-mentioned inconvenience does not occur even if the water level drops below the minimum water level. The purpose of this invention is to provide a method for operating a vertical shaft pump that lowers the water level to a level below the minimum water level, increases the amount of water stored, and prevents flooding due to an abnormal rise in the water level. [Means for Solving the Problem] In order to achieve the above object, the present invention provides an impeller that is fixed to a main shaft and is rotatably installed in an impeller chamber, and a discharge casing and a suction are arranged above and below the impeller chamber. A vertical shaft pump in which casings are connected to each other is provided with an elevating means for elevating and lowering the main shaft, and a water level detecting means for outputting a signal to the elevating means to operate the elevating means, and based on a water level detection signal from the water level detecting means, When the water level is higher than the lowest water level of the vertical shaft pump, the main shaft is positioned at the lower limit position by the lifting means, and the amount of blade gap formed between the outer periphery of the impeller and the inner periphery of the impeller chamber is reduced. When the water level is lower than the minimum water level of the vertical shaft pump, the main shaft is positioned at the upper limit position by the lifting means, and the amount of the blade gap is set to a value that is possible for drainage operation. This is set to the enlarged value. [Function] According to the present invention, when the water level in a water absorption well or the like is higher than the minimum water level, this water level is detected by the water level detection means, and a detection signal from there is input to the elevating means to operate the elevating means. Let. As a result, the main shaft is pushed down and positioned at the lower limit position, the amount of blade gap formed between the outer periphery of the impeller and the inner periphery of the impeller chamber is set to a standard value that allows normal drainage operation, and the vertical shaft pump perform normal drainage operation. When the water level in the water suction well, etc. drops to a level below the minimum water level due to the continuation of the drainage operation, this water level is detected by the water level detection means, and a detection signal from there is input to the lifting means to operate the lifting means. As a result, the main shaft is pushed up and positioned at the upper limit position, and the amount of the blade gap formed between the outer periphery of the impeller and the inner periphery of the impeller chamber is set to an enlarged value that allows small-drain operation. A small amount of drainage operation is performed. [Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention. In the figure, a vertical shaft bomb includes a main shaft 1, an impeller 2 fixed to the main shaft 1, and an impeller in which the impeller 2 is rotatably installed. Room 3
It is composed of a discharge casing 4 and a suction casing 5 which are connected to the upper and lower sides of the impeller chamber 3, and the discharge casing 4 is composed of a lift pipe 4A and a discharge side elbow 4B, and includes the outer periphery of the impeller 2 and the blades. A blade gap 6 is formed between the blade and the inner circumference of the vehicle compartment 3. At all times, the amount of the blade gap 6 is set to a reference value W1 that allows normal drainage operation. The upper end of the main shaft l is simultaneously rotatably connected to a drive source (not shown) by a coupling 7 that allows movement in the axial direction, and is actuated based on a water level detection signal from a water level detection means 8. The main shaft 1 is raised and lowered by the operation of the lifting means 9. That is, the water level detection means 8 is composed of a well-known water level gauge 8A and a signal line 8B that outputs a water level detection signal from this to the elevating means 9, and the elevating means 9 has a control section 90 and a driving section 9l. Based on the signal input to the control unit 90 through the signal line 8B, the control unit 90 connects the path 10A to the IO.
A driving medium such as pressurized oil is supplied to the upper chamber 91A or lower chamber 91B of the drive unit 9l through B, and loads the upper or lower surface of the flange (piston) IA formed on the main shaft 1. It has become. Next, the operation of the above configuration will be explained. As shown in FIG. 1, when the water level WL of the water intake well P is higher than the lowest water level LWL, this water level WL is detected by the water level meter 8A of the water level detection means 8, and this detection signal is sent to the signal line 8B.
is inputted to the control unit 90 of the lifting means 9 via. As a result, the drive unit 9l is transferred from the control unit 90 through the passage 10A.
A driving medium such as pressure oil is supplied to the upper chamber 91A, and is applied to the upper surface of the flange (piston part) LA formed on the main shaft l, pushing down the flange IA, positioning the main shaft l at the lower limit position, and rotating the blade. The amount of the blade gap 6 formed between the outer periphery of the wheel 2 and the inner periphery of the impeller chamber 3 is set to a reference value W1 that allows normal drainage operation. Therefore, the vertical shaft pump 1 performs normal drainage operation. As the water drainage operation continues, as shown in FIG. 2, when the water level WL of the water suction well P falls to a level below the lowest tree level I, WL, this water level WL is detected by the water level meter 8A of the water level detection means 8, This detection signal is input to the control section 90 of the elevating means 9 via the signal line 8B. As a result, a driving medium such as pressure oil is supplied from the control section 90 to the lower chamber 91B of the driving section 9l through the passage IOB, and is loaded onto the lower surface of the flange (piston section) IA formed on the main shaft 1. Push up the flange IA and position the main shaft l to the upper limit position,
The amount of the blade gap 6 formed between the outer periphery of the impeller 2 and the inner periphery of the impeller chamber 3 is set to an enlarged value W2 that is at least 10 times larger than the W1, that is, a small amount of drainage operation is possible. do. In this way, even if the vertical shaft pump l is operated at full speed with the amount of the blade gap 6 expanded, leakage from the blade gap will increase and the amount of water discharged will decrease as a result. No vortices or breathing phenomena occur, and therefore, the generation of severe vibrations and noise is avoided, and inconveniences such as malfunctioning pump operation and damage to foundations and buildings are prevented. Moreover, by lowering the water level WL of the water intake well P to the lowest tree level LWL unedged level, the amount of water stored increases accordingly, so there is sufficient margin against abnormal rises in water level due to sudden inflow of rainwater. You can respond with Furthermore, in the above embodiment, the blade gap 6 (W2) is constant at a water level below LWL, but the gap is increased continuously from W1 to W2 as the water level decreases from LWL. You can. [Advantageous Effects of the Invention 1] Since the present invention is configured as described above, it produces the effects described below. That is, when the water level of the water intake valve, etc. is at a level higher than the minimum water level, this water level is detected by the water level detection means, and a detection signal from there is input to the elevating means to operate the elevating means. the result,
Push down the main shaft to position it at the lower limit position, set the amount of blade gap formed between the outer periphery of the impeller and the inner periphery of the impeller chamber to a reference value that allows normal drainage operation, and set the vertical shaft pump to the normal Perform drainage operation. Furthermore, when the water level in the water intake well, etc. drops to a level below the minimum water level due to the continuation of the drainage operation, this water level is detected by the water level detection means, and a detection signal from there is input to the elevating means to operate the elevating means. Let. As a result, the main shaft is pushed up and positioned at the upper limit position, and the amount of the blade gap formed between the outer periphery of the impeller and the inner periphery of the impeller chamber is set to an enlarged value that allows for small-dose drainage operation. Since the pump can perform a small amount of drainage operation, unlike conventional pumps, air suction vortices and breathing phenomena do not occur, and the generation of severe vibrations and noise is avoided, which may cause pump operation malfunctions. This prevents inconveniences that could damage the foundation or building. Furthermore, by lowering the water level in water intake wells, etc. to a level below the minimum water level, the amount of water stored increases accordingly, so there is sufficient margin to cope with abnormal rises in water level due to sudden inflow of rainwater. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し,第1図は通常排水運転
状態の縦断正面図、第2図は少量排水運転状態の縦断正
面図である. 1・・・主軸 2・・・羽根車 本・・・羽根車室 4・・・吐出ケーシング 5・・・吸込ケーシング 6・・・羽根隙間 8・・・水位検知手段 9・・・昇降手段 W1・・・羽根隙間量の基準値 W2・・・羽根隙間量の拡大値 WL・・・水位 LWL・・・最低水位
The drawings show an embodiment of the present invention, and FIG. 1 is a longitudinal sectional front view of the device in a normal drainage operation state, and FIG. 2 is a longitudinal sectional front view of a small amount drainage operation state. 1... Main shaft 2... Impeller main body... Impeller chamber 4... Discharge casing 5... Suction casing 6... Blade gap 8... Water level detection means 9... Lifting means W1 ...Reference value of blade gap amount W2...Enlarged value of blade gap amount WL...Water level LWL...Minimum water level

Claims (1)

【特許請求の範囲】[Claims] 主軸に固着された羽根車が羽根車室に回転自在に内装さ
れ、この羽根車室の上下に吐出ケーシングと吸込ケーシ
ングがそれぞれ連通接続された立軸ポンプにおいて、前
記主軸を昇降させる昇降手段と、この昇降手段に信号を
出力して作動させる水位検知手段が設けられ、水位検知
手段からの水位検知信号に基づいて、水位が当該立軸ポ
ンプの最低水位以上のレベルにあるときには昇降手段に
より主軸を下限位置に位置決めして、羽根車の外周と羽
根車室の内周との間に形成される羽根隙間の量を通常排
水運転の可能な基準値に設定し、水位が当該立軸ポンプ
の最低水位未満のレベルにあるときには昇降手段により
主軸を上限位置に位置決めして、前記羽根隙間の量を少
量排水運転の可能な拡大値に設定することを特徴とする
立軸ポンプの運転方法。
In a vertical shaft pump in which an impeller fixed to a main shaft is rotatably housed in an impeller chamber, and a discharge casing and a suction casing are connected in communication with each other above and below the impeller chamber, a lifting means for raising and lowering the main shaft; A water level detection means is provided which outputs a signal to the lifting means to operate it, and when the water level is higher than the lowest water level of the vertical shaft pump based on the water level detection signal from the water level detection means, the lifting means moves the main shaft to the lower limit position. The amount of blade gap formed between the outer periphery of the impeller and the inner periphery of the impeller chamber is set to a standard value that allows normal drainage operation, and the water level is below the lowest water level of the vertical shaft pump. A method for operating a vertical shaft pump, characterized in that when the main shaft is at the level, the main shaft is positioned at the upper limit position by means of a lifting means, and the amount of the blade gap is set to an enlarged value that allows a small amount of drainage operation.
JP1437590A 1990-01-24 1990-01-24 Operating method of vertical shaft pump Pending JPH03217696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1437590A JPH03217696A (en) 1990-01-24 1990-01-24 Operating method of vertical shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1437590A JPH03217696A (en) 1990-01-24 1990-01-24 Operating method of vertical shaft pump

Publications (1)

Publication Number Publication Date
JPH03217696A true JPH03217696A (en) 1991-09-25

Family

ID=11859302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1437590A Pending JPH03217696A (en) 1990-01-24 1990-01-24 Operating method of vertical shaft pump

Country Status (1)

Country Link
JP (1) JPH03217696A (en)

Similar Documents

Publication Publication Date Title
US5360290A (en) Underground drainage facility, vertical-shaft multi-stage adjustable vane pump, and method of running drainage pump
US7874809B2 (en) Water-lifting pump apparatus and method for controlling operation thereof
US4576197A (en) Pump suction vacuum lift vortex control
JPH03217696A (en) Operating method of vertical shaft pump
JP6101574B2 (en) Underground drainage station and operation method thereof
JPS63134897A (en) Vertical shaft pump
JP6469384B2 (en) Advance standby pump
JPH0623756Y2 (en) Vertical pump
JPH0385400A (en) Vertical shaft pump
JP3532348B2 (en) Pumping equipment with high head pump
JPH08338389A (en) Horizontal shaft pump
JPH04143495A (en) Operating method for horizontal shaft pump
JP3496121B2 (en) Pumps for underground drainage facilities and vertical multi-stage movable blade pumps
JPH04148097A (en) Method of operating horizontal shaft pump
JP2721930B2 (en) Operation method of horizontal axis pump
JPH0734228Y2 (en) Vertical pump
JP3324125B2 (en) Vertical pump
JP3306453B2 (en) Underground drainage facility
JPH0622157Y2 (en) Vertical pump
JPH02294595A (en) Vertical shaft pump
JP2860736B2 (en) Pump station
JPH05133382A (en) Vertical shaft pump
JPH04103896A (en) Operating method of vertical shaft pump
JPH0361695A (en) Vertical shaft type pump
JP2512778Y2 (en) Full-speed standby operation pump