JPH03217234A - Production of catalyst for decomposition of ozone - Google Patents

Production of catalyst for decomposition of ozone

Info

Publication number
JPH03217234A
JPH03217234A JP1430090A JP1430090A JPH03217234A JP H03217234 A JPH03217234 A JP H03217234A JP 1430090 A JP1430090 A JP 1430090A JP 1430090 A JP1430090 A JP 1430090A JP H03217234 A JPH03217234 A JP H03217234A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
silver
molded body
ozone decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1430090A
Other languages
Japanese (ja)
Other versions
JPH0586256B2 (en
Inventor
Sadao Terui
照井 定男
Yoshiyuki Yokota
善行 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1430090A priority Critical patent/JPH03217234A/en
Publication of JPH03217234A publication Critical patent/JPH03217234A/en
Publication of JPH0586256B2 publication Critical patent/JPH0586256B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for catalytic decomposition of ozone contained in gas with high activity by impregnating an org. mercury compd. into a carrier and calcining the compd. at a temp. within a specified range after drying. CONSTITUTION:A molded body contg. an element such as Ti or Si is formed and manganese dioxide or other manganese oxide is supported on the molded body to obtain a carrier. An org. mercury compd. such as mercury lactate or mercury citrate is impregnated into the carrier, dried and calcined at 150-300 deg.C. When the resulting catalyst is used in catalytic decomposition of ozone contained in gas, the ozone is decomposed with high activity and the occurrence of environmental problem is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はオゾン分解触媒の製造方法に関し、詳細には気
体中に含有されるオゾンを接触分解する触媒の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an ozone decomposition catalyst, and more particularly to a method for producing a catalyst for catalytically decomposing ozone contained in a gas.

[従来の技術] オゾンは強い酸化能を有していると共に、自からは分解
反応によって無害な酸素となるので、脱臭や殺菌.漂白
等の目的で様々の分野において幅広く利用されている。
[Prior Art] Ozone has a strong oxidizing ability, and it is also used for deodorization and sterilization because it turns into harmless oxygen through a decomposition reaction. It is widely used in various fields for purposes such as bleaching.

しかしながら上記オゾンが未反応のまま大気中に放出さ
れると、その臭いが不快感をもたらすばかりでなく、あ
る濃度以上になると呼吸器を侵しはじめるので、たとえ
微量であっても長時間吸入することは人体にとって極め
て有害である。
However, if unreacted ozone is released into the atmosphere, not only will the odor cause discomfort, but if the concentration exceeds a certain level, it will begin to attack the respiratory system, so even if it is in a small amount, it should not be inhaled for a long time. is extremely harmful to the human body.

特に近年では乾式の複写機等に代表される各種高電圧発
生装置から発生するオゾンによる室内汚染が指摘されて
おり、環境衛生上廃オゾンを分解除去して無害化する技
術の確立が望まれている。
Particularly in recent years, indoor pollution due to ozone generated from various high-voltage generators such as dry-type copying machines has been pointed out, and from the viewpoint of environmental hygiene, it is desired to establish a technology that decomposes and removes waste ozone and renders it harmless. There is.

これまでの廃オゾン処理方法としては、(I)活性炭に
よる処理方法、(II)薬液洗浄による処理方法、( 
II+ )熱分解による処理方法、(IV)オゾン分解
触媒による処理方法等が知られている。
Conventional waste ozone treatment methods include (I) treatment method using activated carbon, (II) treatment method using chemical cleaning, (
II+) A treatment method using thermal decomposition, (IV) A treatment method using an ozone decomposition catalyst, etc. are known.

活性炭による処理方法は低濃度オゾンの処理に利用され
ているが、活性炭とオゾンの反応機構の関係上、活性炭
が早期に酸化消耗してしまうことから寿命が短く、活性
炭を頻繁に交換する煩わしさがある。また高濃度のオゾ
ンを処理する場合は反応熱により活性炭自体が発火,燃
焼する危険性があるので取り扱い上問題がある。
Treatment methods using activated carbon are used to treat low concentrations of ozone, but due to the reaction mechanism between activated carbon and ozone, the activated carbon is quickly oxidized and consumed, resulting in a short service life and the hassle of having to replace the activated carbon frequently. There is. Furthermore, when treating high concentrations of ozone, there is a risk of the activated carbon itself igniting and burning due to the heat of reaction, which poses a problem in handling.

薬液洗浄による処理方法は、還元物質を含んだ水溶液で
廃オゾンを洗浄する方法であるが、処理コストが高く、
廃水処理の問題も生じる。
The treatment method using chemical cleaning is a method of cleaning waste ozone with an aqueous solution containing reducing substances, but the treatment cost is high and
The problem of wastewater treatment also arises.

熱分解による処理方法は、分解効率を上げる為に300
℃以上の加熱が必要となり、多量の排ガスを処理するに
は加熱費用が大きくなり、処理コストが高くなるという
欠点がある。
The treatment method using thermal decomposition requires 300%
This method requires heating to a temperature higher than 0.degree. C., and has the disadvantage that heating costs are high in order to treat a large amount of exhaust gas, which increases the processing cost.

一方オゾン分解触媒による処理方法は、発火爆発の危険
もなく、廃水処理も不要であり、低コストでオゾンを分
解除去できることからオゾン分解には最も有利な方法で
あると言われている。
On the other hand, the treatment method using an ozone decomposition catalyst is said to be the most advantageous method for ozone decomposition because there is no danger of ignition and explosion, no waste water treatment is required, and ozone can be decomposed and removed at low cost.

オゾン分解触媒としてこれまでにも種々の技術が開発さ
れているが、特に特開昭62−97643号公報に開示
されている触媒は、優れた特性を有するオゾン分解触媒
であり、従来のオゾン分解触媒では高温加熱する必要が
あったのに対し、上記触媒は低温活性を高めることによ
り常温でも使用可能なオゾン分解触媒として実用化され
ている。しかしながら環境問題が特に注目を集める近年
では、オゾン分解触媒においても従来品よりざらに高い
活性を有する触媒が要望ざれている。
Various technologies have been developed as ozone decomposition catalysts, but the catalyst disclosed in JP-A No. 62-97643 is an ozone decomposition catalyst with excellent characteristics, and is While catalysts require high-temperature heating, the above-mentioned catalysts have been put into practical use as ozone decomposition catalysts that can be used even at room temperature by increasing their low-temperature activity. However, in recent years, environmental problems have attracted particular attention, and there has been a demand for ozone decomposition catalysts that have significantly higher activity than conventional products.

[発明が解決しようとする課題] 本発明はこのような事情に着目してなされたものであっ
て、気体中に含有されるオゾンを接触分解するにあたり
、高活性なオゾン分解触媒の製造方法を提供することを
目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and provides a method for producing a highly active ozone decomposition catalyst for catalytically decomposing ozone contained in gas. The purpose is to provide

[課題を解決するための手段] 上記目的を達成した本発明のオゾン分解触媒とは、担体
に有機銀を含浸させ、乾燥後150〜300℃にて焼成
することを要旨とするものである。
[Means for Solving the Problems] The ozone decomposition catalyst of the present invention that achieves the above object is characterized in that a carrier is impregnated with organic silver, dried and then calcined at 150 to 300°C.

またTi,Si、Al、Mg,Zrよりなる群から選択
される1種または2種以上の元素及び/またはマンガン
酸化物を含む成形体を作成して、上記担体として用いれ
ば更に触媒体の触媒性能を向上することができる。
Further, if a molded body containing one or more elements selected from the group consisting of Ti, Si, Al, Mg, and Zr and/or manganese oxide is prepared and used as the above-mentioned carrier, the catalyst of the catalyst body can be further improved. Performance can be improved.

[作用] 本発明者らは銀を担持してなるオゾン分解触媒の製造方
法について鋭意研究を行なった結果、従来の触媒調製法
では銀の触媒能を充分に利用しておらず、銀の担持方法
によってはオゾン分解触媒の活性をより一層高めること
が可能であるとの知見を得て本発明に想到した。
[Function] The inventors of the present invention have conducted intensive research on the production method of an ozone decomposition catalyst formed by supporting silver, and have found that the conventional catalyst preparation method does not fully utilize the catalytic ability of silver The present invention was conceived based on the knowledge that it is possible to further increase the activity of an ozone decomposition catalyst depending on the method.

本発明方法が好結果をもたらす理由について完全には解
明されていないが以下の様に推測される。従来のオゾン
分解触媒では銀を担持させるにあたり硝酸銀を使用する
のが一般的である。しかるに硝酸銀の分解温度は444
℃であり、触媒調製時にはそれ以上の高温域で焼成する
ことが必要となる。この結果として銀は凝集して分散度
が低くなり、従って銀が有効に働くことができず活性向
上に結び付き難いものと考えられる。
Although the reason why the method of the present invention produces good results is not completely understood, it is speculated as follows. Conventional ozone decomposition catalysts generally use silver nitrate to support silver. However, the decomposition temperature of silver nitrate is 444
℃, and when preparing the catalyst, it is necessary to calcinate at a higher temperature range. As a result of this, silver aggregates and its degree of dispersion becomes low, so that silver cannot work effectively and it is thought that it is difficult to improve the activity.

これに対して有機銀を使用する場合、有機銀の分解温度
は概して低いので、より低温で焼成することが可能であ
り、銀の分散度が高くなって、高活性に結びつくもので
あると考えられる。
On the other hand, when using organic silver, the decomposition temperature of organic silver is generally low, so it is possible to sinter at a lower temperature, which increases the degree of silver dispersion and is thought to lead to high activity. It will be done.

本発明で使用される有機銀は分解温度が300℃未満の
ものであれば良く、種類を限定するものではな《、有機
酸の銀塩,銀を含むキレート化合物や錯体等が使用され
る。これらのうち特に好ましいのは有機酸銀であり、有
機酸銀としては、乳酸銀やクエン酸,リンゴ酸銀,コハ
ク酸銀.酒石酸銀,グリコール酸銀などを挙げることが
でき、分解温度は例えば乳酸銀が175℃であり、酢酸
銀が180℃である。
The organic silver used in the present invention may have a decomposition temperature of less than 300° C., and the type thereof is not limited. Silver salts of organic acids, chelate compounds and complexes containing silver, etc. are used. Among these, organic acid silver is particularly preferred, and examples of the organic acid silver include silver lactate, silver malate, silver succinate. Examples include silver tartrate and silver glycolate, and the decomposition temperature is, for example, 175°C for silver lactate and 180°C for silver acetate.

本発明において有機銀を含浸、乾燥させた後の焼成温度
は、150℃以上300℃以下が好ましい。該焼成温度
が150℃未満であると有機銀の分解が困難となり、一
方300℃を超えると銀の凝集が起こりやすくなフて銀
の分散度が悪化するので望ましくない。
In the present invention, the firing temperature after impregnating and drying organic silver is preferably 150°C or more and 300°C or less. If the firing temperature is less than 150°C, it will be difficult to decompose the organic silver, while if it exceeds 300°C, silver will tend to agglomerate and the degree of dispersion of silver will deteriorate, which is not desirable.

本発明における銀の担持量は、0.1重量%以上10重
量%以下であることが好ましい。上記担持量が0.1重
量%未満であると活性が不足する。
The amount of silver supported in the present invention is preferably 0.1% by weight or more and 10% by weight or less. If the supported amount is less than 0.1% by weight, the activity will be insufficient.

一方10重量%を超えると活性の伸びが小さくなると共
にコスト上昇につながるので望ましくない。
On the other hand, if it exceeds 10% by weight, it is undesirable because the activity decreases and costs increase.

マンガン酸化物としては二酸化マンガンの他Mn○.M
n203,Mn.,o4等が挙げられるが、触媒活性の
面から二酸化マンガンを用いることが好ましい。
In addition to manganese dioxide, manganese oxides include Mn○. M
n203, Mn. , o4, etc., but it is preferable to use manganese dioxide from the viewpoint of catalytic activity.

尚触媒製造時においてマンガン酸化物単独では成形性が
悪いので、マンガン酸化物を後述する無機化合物からな
る成形体に担持することが推奨される。
Since moldability is poor when using manganese oxide alone during catalyst production, it is recommended that manganese oxide be supported on a molded body made of an inorganic compound, which will be described later.

本発明でTi,Si、Al、Mg,Zrよりなる群から
選択される1種または2種以上の元素を含む成形体を作
成するにあたって用いることができる無機化合物は、チ
タニア.シリカ.シリカアルミナ,アルミナ,ジルコニ
ア.ゼオライト,ケイソウ土.ケイ酸マグネシウム等の
一般的な化合物である。これらの1種または2種以上を
任意に使用すれば製造時の成形性を良好にすることがで
きるが、特にTi及びSiからなる二元系複合酸化物や
Ti,St及びZrからなる三元系複合酸化物が成形性
やオゾン分解性能の点で推奨される。
In the present invention, inorganic compounds that can be used to create a molded body containing one or more elements selected from the group consisting of Ti, Si, Al, Mg, and Zr include titania. silica. Silica alumina, alumina, zirconia. Zeolite, diatomaceous earth. Common compounds such as magnesium silicate. If one or more of these are optionally used, the moldability during production can be improved, but in particular binary composite oxides consisting of Ti and Si and ternary composite oxides consisting of Ti, St and Zr. Composite oxides are recommended in terms of moldability and ozone decomposition performance.

本発明の触媒は形状によって特に限定されるものではな
く、ハニカム状,円柱状,板状.リボン状,波板状.パ
イプ状,ドーナツ状,格子状等一体化成形されたものの
中から適宜選択すれば良い。
The catalyst of the present invention is not particularly limited by its shape, and may be honeycomb-shaped, cylindrical, or plate-shaped. Ribbon-like, corrugated plate-like. An appropriate one may be selected from integrally molded shapes such as a pipe shape, a donut shape, and a lattice shape.

次に本発明の最も好ましい触媒の調製方法について述べ
るが本発明は下記方法によって限定されるものではない
Next, the most preferred method for preparing the catalyst of the present invention will be described, but the present invention is not limited to the following method.

まずTiおよびSiからなる二元系複合酸化物(以下T
i02−Si02と記す)粉体に成形助剤を加え、適量
の水を添加しつつ混合混練し、押し出し成形機でベレッ
ト状またはハニヵム状に成形する。成形物を50〜20
0℃で乾燥した後、300〜800℃、好ましくは35
0〜600℃で、1〜10時間、好ましくは2〜6時間
、空気流通下で焼成してTi02−Si02よりなる成
形体を得る。該成形体を硝酸マンガン水溶液に含浸させ
て硝酸マンガンを該成形体に担持した後、乾燥,焼成を
施し、二酸化マンガンとTie2−SiO.よりなる成
形体を得る。引き続き該成形体に乳酸銀水溶液を40〜
50℃に加温しながら含浸させて担持させた後、乾燥,
焼成することにより完成触媒を得ることができる。
First, a binary composite oxide (hereinafter T
A molding aid is added to the powder (referred to as i02-Si02), mixed and kneaded while adding an appropriate amount of water, and molded into a pellet or honeycomb shape using an extruder. 50-20 molded items
After drying at 0°C, 300-800°C, preferably 35
The product is fired at 0 to 600° C. for 1 to 10 hours, preferably 2 to 6 hours under air circulation to obtain a molded body made of Ti02-Si02. The molded body is impregnated with a manganese nitrate aqueous solution to support manganese nitrate on the molded body, and then dried and fired to form manganese dioxide and Tie2-SiO. A molded body consisting of the following is obtained. Subsequently, a silver lactate aqueous solution was added to the molded body for 40~
After being impregnated and supported while heating at 50°C, drying,
A finished catalyst can be obtained by calcination.

[実施例] 実施例! チタン及びケイ素からなる複合酸化物を以下に述べる方
法で調製した。
[Example] Example! A composite oxide consisting of titanium and silicon was prepared by the method described below.

まず水40flにアンモニア水(NH,,25%)28
ftを添加し、これにスノーテックスーNCS−30 
(日産化学製シリカゾル、Sin2として約30重量%
含有)2.4κgを加えた。得られた溶液中に、下記の
組成を有する硫酸チタニルの硫酸水溶液15.3j2を
水301で希釈したチタン含硫酸水溶液を攪拌しながら
徐々に滴下し、Ti02とSin.の共沈ゲルを生成し
た。
First, add 28 ml of ammonia water (NH, 25%) to 40 fl of water.
ft and add Snowtech NCS-30 to this.
(Silica sol manufactured by Nissan Chemical, approx. 30% by weight as Sin2)
(containing) 2.4 κg was added. A titanium-containing aqueous sulfuric acid solution prepared by diluting a sulfuric acid aqueous solution 15.3j2 of titanyl sulfate having the following composition with water 301 was gradually dropped into the obtained solution while stirring, and Ti02 and Sin. A co-precipitated gel was produced.

T i O S O 4  2 5 0 g / 1 
( T i O 2換算)全H2SO4  1100g
/u さらにそのまま15時間静置して得られたTie2−S
i02ゲルを濾過し、水洗後200℃で10時間乾燥し
た。次いで空気雰囲気下550℃で6時間焼成した。焼
成により得られた粉体の組成はTiO2 :SiO2=
4:1 (モル比)であり、BET表面積は1 8 5
 m27gであった。上記粉体は以降TS−1と呼ぶが
、このTS−1を用いて以下に述べる方法によってオゾ
ン分解触媒を調製した。
T i O S O 4 2 5 0 g / 1
(T i O 2 conversion) Total H2SO4 1100g
/u Tie2-S obtained by further standing still for 15 hours
The i02 gel was filtered, washed with water, and then dried at 200° C. for 10 hours. Then, it was fired at 550° C. for 6 hours in an air atmosphere. The composition of the powder obtained by firing is TiO2:SiO2=
4:1 (molar ratio), and the BET surface area is 1 8 5
It was 27g. The above powder will be referred to as TS-1 hereinafter, and an ozone decomposition catalyst was prepared using this TS-1 by the method described below.

まず上記TS−1粉体1.O Kgに微結晶性セルロー
ス[旭化成工業(株)製、商品名:アビセル]20gを
適当量の水と共に加え、ニーダーでよく混合混練した後
、押し出し成形機で直径3.0mm ,長さ3.0mm
のベレットを成形し、100℃で10時間乾燥後、空気
雰囲気下500℃で6時間焼成してTie2−Sin2
からなるベレット成形体を得た。
First, the above TS-1 powder 1. Add 20g of microcrystalline cellulose [manufactured by Asahi Kasei Industries, Ltd., trade name: Avicel] together with an appropriate amount of water to O kg, mix and knead well with a kneader, and then extrude into pieces with a diameter of 3.0mm and a length of 3.0mm. 0mm
Tie2-Sin2
A pellet molded body consisting of the following was obtained.

次に該ベレット成形体190gを蒸発皿にとり、Agと
して10gを含有する乳酸銀水溶液200ccを加え、
十分混合して含浸させた後、渇浴上で濃縮乾固し120
℃で5時間乾燥した。さらに電気炉において空気雰囲気
下、250℃で3時間焼成して完成触媒を得た。得られ
た触媒の組成はAg :TS−1=5 : 95 (重
量比)であり、下記の方法でオゾン分解率を求めた。
Next, 190 g of the pellet molded body was placed in an evaporating dish, and 200 cc of a silver lactate aqueous solution containing 10 g of Ag was added.
After thoroughly mixing and impregnating, it was concentrated to dryness on a dry bath at 120%
It was dried at ℃ for 5 hours. Further, the catalyst was fired in an electric furnace at 250° C. for 3 hours in an air atmosphere to obtain a completed catalyst. The composition of the obtained catalyst was Ag:TS-1=5:95 (weight ratio), and the ozone decomposition rate was determined by the following method.

内径20mmのパイレックス製反応管にベレット状の上
記触媒10.5ccを充填し、オゾンを10pp+n含
有する空気を流速0.525 8m3/Hr (空間速
度50,000Hr−’)で触媒層に導入し、反応温度
20℃におけるオゾン分解率を求めた。結果は第1表に
示す。
A Pyrex reaction tube with an inner diameter of 20 mm was filled with 10.5 cc of the above pellet-shaped catalyst, and air containing 10 pp+n of ozone was introduced into the catalyst layer at a flow rate of 0.525 8 m/Hr (space velocity 50,000 Hr-'). The ozone decomposition rate at a reaction temperature of 20°C was determined. The results are shown in Table 1.

去J1吐ス 実施例1におけるTS−1の代わりに活性アルミナを使
用する以外は、全て実施例1と同様にして触媒を調製し
、オゾン分解率を求めた。結果は第1表に示す。得られ
た触媒の組成はAg:Al2 03 =5 +95 (
重量比)であった。
A catalyst was prepared in the same manner as in Example 1 except that activated alumina was used instead of TS-1 in Example 1, and the ozone decomposition rate was determined. The results are shown in Table 1. The composition of the obtained catalyst was Ag:Al2 03 =5 +95 (
weight ratio).

実施例3 実施例1におけるTS−1の代わりにゼオライトを使用
する以外は、全て実施例1と同様にして触媒を調製し、
オゾン分解率を求めた。結果は第1表に示す。得られた
触媒の組成はAg:ゼオライト=5:95(重量比)で
あった。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that zeolite was used instead of TS-1 in Example 1,
The ozone decomposition rate was determined. The results are shown in Table 1. The composition of the obtained catalyst was Ag:zeolite=5:95 (weight ratio).

実施例4 実施例1におけるTS−1の代わりに二酸化マンガンを
使用する以外は、全て実施例1と同様にして触媒を調製
し、オゾン分解率を求めた。結果は第1表に示す。得ら
れた触媒の組成はAg+Mn02 =5 : 9 5 
(重量比)であった。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that manganese dioxide was used instead of TS-1 in Example 1, and the ozone decomposition rate was determined. The results are shown in Table 1. The composition of the obtained catalyst was Ag+Mn02 =5:95
(weight ratio).

比較例1 実施例1で得られたTie.−Sin2からなるベレッ
ト成形体を用い、下記の方法によってオゾン分解触媒を
調製した。
Comparative Example 1 Tie. obtained in Example 1. An ozone decomposition catalyst was prepared by the following method using a pellet molded body made of -Sin2.

まずベレット成形体190gを蒸発皿にとり、Agとし
て10gを含有する硝酸銀水溶液200ccを加え、十
分混合して含浸させた後、渇浴上で濃縮乾固し120℃
で5時間乾燥した。次いで電気炉において空気雰囲気下
、450℃で3時間焼成して触媒を得、オゾン分解率を
求めた。
First, 190 g of the pellet molded body was placed in an evaporating dish, 200 cc of a silver nitrate aqueous solution containing 10 g of Ag was added, and the mixture was sufficiently mixed to impregnate the body, and then concentrated to dryness on a dry bath at 120°C.
It was dried for 5 hours. The catalyst was then calcined in an electric furnace at 450° C. for 3 hours in an air atmosphere, and the ozone decomposition rate was determined.

結果は第1表に示す。尚得られた触媒の組成はAg:T
S−1=5:95 (重量比)であった。
The results are shown in Table 1. The composition of the obtained catalyst was Ag:T.
S-1=5:95 (weight ratio).

第   1   表 実施例5 実施例1で得たTS−1粉体10Kgに適当量の水を添
加し二−ダーでよく混合して、さらに混練した後、押出
し成形機で外形が縦50mm,横50mm,長さ100
mmである格子状ハニカム(肉厚0.2 mm. 目開
き1.2mm )を成形し、150℃で5時間乾燥後、
空気雰囲気下300℃で2時間焼成した。こうして得ら
れた格子状ハニカムに硝酸マンガン水溶液を含浸せしめ
、120℃で3時間乾燥し、450℃で3時間焼成した
。このようにしてMnO2を担持させた格子状ハニカム
に乳酸銀水溶液を含浸せしめ、120℃で3時間乾燥し
た後、250℃で3時間焼成して完成触媒を得た。
Table 1 Example 5 Add an appropriate amount of water to 10 kg of the TS-1 powder obtained in Example 1, mix well in a seconder, knead further, and then use an extruder to mold the powder to a size of 50 mm in length and 50 mm in width. 50mm, length 100
A lattice-like honeycomb (wall thickness 0.2 mm, opening 1.2 mm) was formed and dried at 150°C for 5 hours.
It was baked at 300° C. for 2 hours in an air atmosphere. The lattice honeycomb thus obtained was impregnated with an aqueous manganese nitrate solution, dried at 120°C for 3 hours, and fired at 450°C for 3 hours. The lattice-shaped honeycomb supporting MnO2 in this manner was impregnated with an aqueous silver lactate solution, dried at 120°C for 3 hours, and then calcined at 250°C for 3 hours to obtain a completed catalyst.

得られた触媒の組成はAg:Mn02  :TS  1
=3:17:80C重量比)であり、下記の方法でオゾ
ン分解率を求めた。
The composition of the obtained catalyst was Ag:Mn02:TS1
=3:17:80C weight ratio), and the ozone decomposition rate was determined by the following method.

パイレックス製反応管に格子状ハニカム触媒を充填し、
オゾンを10ppm含有する空気を流速2 5 8m3
/}Ir  (空間速度100,000Hr−’ )で
触媒層に導入し、反応温度25℃におけるオゾン分解率
を求めた。結果は第2表に示す。
A Pyrex reaction tube is filled with a lattice honeycomb catalyst,
Air containing 10 ppm ozone at a flow rate of 2 5 8 m3
/}Ir (space velocity 100,000 Hr-') was introduced into the catalyst layer, and the ozone decomposition rate at a reaction temperature of 25°C was determined. The results are shown in Table 2.

実施例6 Agを担持させるにあたり実施例5で用いた乳酸銀水溶
液の代わりにクエン酸銀水溶液を使用する以外は実施例
5と同様にして触媒を調製し、オゾン分解率を求めた。
Example 6 A catalyst was prepared in the same manner as in Example 5, except that a silver citrate aqueous solution was used instead of the silver lactate aqueous solution used in Example 5 to support Ag, and the ozone decomposition rate was determined.

結果は第2表に示す。尚得られた触媒の組成はAg:M
n02  :TS−1=3;17:80(重量比)であ
った。
The results are shown in Table 2. The composition of the obtained catalyst was Ag:M
n02:TS-1=3;17:80 (weight ratio).

実施例7 Agの担持量を3重量%から6重量%に変えた以外は実
施例5と同様にして触媒を調製し、オゾン分解率を求め
た。結果は第2表に示す。尚得られた触媒の組成はAg
 + MnO2 : TS  1 =6: 16.5 
: 77.5 (重量比)であった。
Example 7 A catalyst was prepared in the same manner as in Example 5 except that the supported amount of Ag was changed from 3% by weight to 6% by weight, and the ozone decomposition rate was determined. The results are shown in Table 2. The composition of the obtained catalyst is Ag
+ MnO2: TS 1 =6: 16.5
: 77.5 (weight ratio).

比較例2 実施例5で得られたMnO2担持格子状ハニカムに、乳
酸銀水溶液の代わりに硝酸銀水溶液を含浸せしめ、12
0℃で3時間乾燥した後、450℃で3時間焼成して触
媒を得、オゾン分解率を求めた。結果は第2表に示す。
Comparative Example 2 The MnO2-supported lattice honeycomb obtained in Example 5 was impregnated with a silver nitrate aqueous solution instead of a silver lactate aqueous solution, and 12
After drying at 0°C for 3 hours, it was calcined at 450°C for 3 hours to obtain a catalyst, and the ozone decomposition rate was determined. The results are shown in Table 2.

尚得られた触媒の組成はAg :MnO2 :TS−1
=3 :17 :80(重量比)であった。
The composition of the obtained catalyst was Ag:MnO2:TS-1
=3:17:80 (weight ratio).

第 2 表 第1表および第2表に示した実験結果から、本発明の製
造方法によるオゾン分解触媒は、硝酸銀水溶液によって
Agを含浸させた従来の触媒に比べて、オゾン分解能が
非常に高いことが分かる。
Table 2 From the experimental results shown in Tables 1 and 2, the ozone decomposition catalyst produced by the production method of the present invention has a much higher ozone decomposition ability than the conventional catalyst impregnated with Ag using a silver nitrate aqueous solution. I understand.

[発明の効果] 本発明は以上の様に構成されているので、気体中に含有
されるオゾンを接触分解するにあたり、高活性なオゾン
分解触媒の製造方法が提供できることとなった。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to provide a method for producing a highly active ozone decomposition catalyst for catalytically decomposing ozone contained in gas.

Claims (4)

【特許請求の範囲】[Claims] (1)担体に有機銀を含浸させ、乾燥後150〜300
℃にて焼成することを特徴とするオゾン分解触媒の製造
方法。
(1) Impregnate the carrier with organic silver, and after drying, the
A method for producing an ozone decomposition catalyst, which comprises firing at ℃.
(2)マンガン酸化物を含む成形体を作成した後、該成
形体に有機銀を含浸させ、乾燥後150〜300℃にて
焼成することを特徴とするオゾン分解触媒の製造方法。
(2) A method for producing an ozone decomposition catalyst, which comprises creating a molded body containing manganese oxide, impregnating the molded body with organic silver, drying, and then firing at 150 to 300°C.
(3)Ti、Si、Al、Mg、Zrよりなる群から選
択される1種または2種以上の元素を含む成形体を作成
した後、該成形体に有機銀を含浸させ、乾燥後150〜
300℃にて焼成することを特徴とするオゾン分解触媒
の製造方法。
(3) After creating a molded body containing one or more elements selected from the group consisting of Ti, Si, Al, Mg, and Zr, the molded body is impregnated with organic silver, and after drying,
A method for producing an ozone decomposition catalyst, which comprises firing at 300°C.
(4)Ti、Si、Al、Mg、Zrよりなる群から選
択される1種または2種以上の元素とマンガン酸化物を
含む成形体を作成した後、該成形体に有機銀を含浸させ
、乾燥後150〜300℃にて焼成することを特徴とす
るオゾン分解触媒の製造方法。
(4) After creating a molded body containing one or more elements selected from the group consisting of Ti, Si, Al, Mg, and Zr and manganese oxide, impregnating the molded body with organic silver, A method for producing an ozone decomposition catalyst, which comprises firing at 150 to 300°C after drying.
JP1430090A 1990-01-23 1990-01-23 Production of catalyst for decomposition of ozone Granted JPH03217234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1430090A JPH03217234A (en) 1990-01-23 1990-01-23 Production of catalyst for decomposition of ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1430090A JPH03217234A (en) 1990-01-23 1990-01-23 Production of catalyst for decomposition of ozone

Publications (2)

Publication Number Publication Date
JPH03217234A true JPH03217234A (en) 1991-09-25
JPH0586256B2 JPH0586256B2 (en) 1993-12-10

Family

ID=11857247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1430090A Granted JPH03217234A (en) 1990-01-23 1990-01-23 Production of catalyst for decomposition of ozone

Country Status (1)

Country Link
JP (1) JPH03217234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511422A (en) * 2008-12-10 2012-05-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Improvement of catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511422A (en) * 2008-12-10 2012-05-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Improvement of catalyst

Also Published As

Publication number Publication date
JPH0586256B2 (en) 1993-12-10

Similar Documents

Publication Publication Date Title
US5187137A (en) Catalyst and method of preparing the catalyst
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JPH01168341A (en) Catalyst for selectively reducing nitrogen oxide using ammonia
KR100418225B1 (en) Catalyst and process for removing organohalogen compounds
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
JPH0510973B2 (en)
JPH0555184B2 (en)
JPH03217234A (en) Production of catalyst for decomposition of ozone
JPH0114810B2 (en)
JPS6029288B2 (en) Catalyst manufacturing method and denitrification method
JPS5935026A (en) Preparation of calcined titanium oxide and catalyst
JP3833731B2 (en) Ammonia decomposition method
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPS63182032A (en) Deodorizing catalyst
JP3785310B2 (en) Organohalogen compound decomposition catalyst, production method thereof, and use
JPH0357815B2 (en)
JPS6372342A (en) Catalyst for removing nitrogen oxide
JPH0586252B2 (en)
JPH0585218B2 (en)
JPS63117763A (en) Deodorant
JP2005021780A (en) Production method of exhaust gas treatment catalyst
JPH057776A (en) Catalyst and its manufacture
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JPS62176541A (en) Ozone decomposing agent
JPH02174934A (en) Catalyst to be used for treatment of water