JPH03216991A - Automatic heating device - Google Patents

Automatic heating device

Info

Publication number
JPH03216991A
JPH03216991A JP1315890A JP1315890A JPH03216991A JP H03216991 A JPH03216991 A JP H03216991A JP 1315890 A JP1315890 A JP 1315890A JP 1315890 A JP1315890 A JP 1315890A JP H03216991 A JPH03216991 A JP H03216991A
Authority
JP
Japan
Prior art keywords
threshold value
detection
heating
signal
noise level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1315890A
Other languages
Japanese (ja)
Other versions
JP2658468B2 (en
Inventor
Makoto Mihara
誠 三原
Rie Murata
村田 理恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1315890A priority Critical patent/JP2658468B2/en
Publication of JPH03216991A publication Critical patent/JPH03216991A/en
Application granted granted Critical
Publication of JP2658468B2 publication Critical patent/JP2658468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To obtain an automatic heating device with high accuracy and reliability without a detection error due to various external thermal disturbance by providing a threshold value determining means which consecutively renews a threshold value after the start of heating and stops the renewal of the threshold value when the value increases or decreases by a predetermined amount from an initial threshold value. CONSTITUTION:A detected threshold value calculating means 19, based on a specified calculating formula, determines a detected threshold value upon receipt of a noise level measured by a noise level detecting means 18. An error deciding means 21 compares the detected threshold value calculated by the detected threshold value calculating means 19 with a first detected threshold value held by an initial detected threshold value holding means and, when an error is within a specified region, transmits the detected threshold value calculated by the calculating means 19 as it is to a detected threshold value holding means 22. In the case where the error exceeds the specified allowable region, on the other hand, the deciding means 21 transmits a detection stop command signal to the noise level detecting means 18 so as to stop the noise level detection thereafter and stops transmission of the detected threshold value to the detected threshold value holding means 22 while stopping its own function. An accurate detection of a vapor signal is performed without influence of external thermal disturbance from ambient heat sources so as to realize an optimum heating state.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は7lOM:中の食品から発生する水蒸気あるい
はガスの熱気を検出して食品の加熱状態を検知し最適な
7JOs状態で加#Lを終了せしめる自動加熱装置に関
するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is 7lOM: detects the heating state of the food by detecting the steam or hot gas generated from the food inside, and ends the heating process in the optimum 7JOs state. This invention relates to an automatic heating device.

従来の技術 従来より、食品の加熱に伴って負品から発生する水蒸気
あるいはガスのもつ熱気を検出して調理の進行度合い金
検知する雰囲気七ンサを用いた自Ii2!I7lD熱装
置は数多く考案されている。例えば特願¥1−9940
9は、焦電素子に歳品から発生する水蒸気、ガスの高温
気体を導き,焦電素子に発生する電圧の変化により加熱
の仕上がり(進行)を検知する自動η口熱システムの一
例である。この焦電素子を用いた自動加熱システムにお
ける信号険知方式も特願qZ 1− 9 9 4 0 
7でより具体的に考案されている。以下第6図を基に従
来例について説明する。
Conventional technology Conventionally, an atmosphere sensor has been used to detect the progress of cooking by detecting the hot air of steam or gas generated from the negative product as the food is heated. Many I71D thermal devices have been devised. For example, patent application ¥1-9940
9 is an example of an automatic η mouth heating system that guides high-temperature gas such as water vapor or gas generated from a product to a pyroelectric element and detects the completion (progress) of heating by changes in the voltage generated in the pyroelectric element. A signal detection method in an automatic heating system using this pyroelectric element is also patented qZ 1-9 9 4 0
7, it is devised more specifically. A conventional example will be explained below based on FIG.

第6図は加熱の進行に伴う焦電素子の発生電圧(検出信
号)の時間推移である。(1)図に示すように加熱が開
始した後所定時間(T.〜τ2)における代表値Dm 
(例えば飯大値、平均値など)を測定しその値を蒸気が
到来していない静的状態での信号レベルとみなし、その
代表値D.の関数として検知しきい値Dli算出する。
FIG. 6 shows the time course of the voltage (detection signal) generated by the pyroelectric element as heating progresses. (1) Representative value Dm at a predetermined time (T.~τ2) after heating starts as shown in the figure
(for example, a large value, an average value, etc.), and consider that value as the signal level in a static state where no steam has arrived, and its representative value D. A detection threshold value Dli is calculated as a function of .

以降蒸気が発生したこと金検出信号がしきい値D1を越
えたことを所定の判定則に基づいて判定しt(1時間で
蒸気検知する。その時点で加熱を終了するか所定の追加
加熱後終了するかは食品の性質に委ねられる。
Thereafter, it is determined based on a predetermined judgment rule that steam has been generated and that the gold detection signal has exceeded the threshold value D1 (steam is detected in one hour. At that point, heating is terminated or after a predetermined additional heating is performed. Whether it ends depends on the nature of the food.

発明が解決しようとする課題 さて具体的なこのシステムの構成は特願平1一9940
9に記載されるものである。一般に電子レンジはマイク
ロ波発生手段であるマグネトロン,マグネトロン駆動用
の高圧′iILEEを発生する高圧トランスなどの電力
変換効率の劣る電力部品を備えているため冷却ファンな
どにより充分な冷却が必要となる。この冷却風の風圧を
利用し、オープン庫内の食品から発生する蒸気を焦電素
子へと導き、信号を検出する構成としている。従って、
加熱の進行につれて電力部品の温度上昇や加熱室壁面で
の誘導損失などの熱が食品の熱気とともにセンサに導か
れることになる。
Problems to be Solved by the InventionThe specific configuration of this system is disclosed in Japanese Patent Application No. 19940/1994.
9. In general, microwave ovens are equipped with power components with poor power conversion efficiency, such as a magnetron that is a microwave generating means and a high voltage transformer that generates high voltage 'iILEE for driving the magnetron, so sufficient cooling using a cooling fan or the like is required. Using the pressure of this cooling air, the steam generated from the food in the open storage is guided to the pyroelectric element, which detects a signal. Therefore,
As heating progresses, heat such as the temperature rise of power components and induction loss on the walls of the heating chamber is led to the sensor along with the hot air of the food.

第6図(a)に示したような短い加熱時間の場合はこの
ような蒸気以外の熱が検知性能に悪影響をもたらすとい
うことはない。しかし、加熱時間の長い調理、例えば冷
凍食品を解凍してさらに温めるというような場合には、
調理開始から蒸気信号検知までの時間が長くなり,この
ような蒸気以外の熱による影響が深刻化してくる。
In the case of a short heating time as shown in FIG. 6(a), such heat other than steam does not have an adverse effect on the detection performance. However, when cooking requires a long heating time, such as defrosting frozen food and then reheating it,
As the time from the start of cooking to the detection of the steam signal becomes longer, the effects of heat other than steam become more serious.

第6図(t))1その具体例である。本来ならばしきい
@D1′(一点鎖線レペ/I/)でtl1’時間に検知
するべきところが、食品からの蒸気以外の熱気により静
的状態での信号レベルが逓増するためtdで検知してし
まう。これは明らかに誤検知で充分な加熱状態に達する
前に調理終了するという問題点が生じていた。
FIG. 6(t)) 1 is a specific example. Normally, it should be detected at time tl1' at threshold @D1' (dotted chain line Repe/I/), but it was detected at td because the signal level in a static state increases due to hot air other than steam from food. It ends up. This clearly caused a problem in that the cooking was completed before reaching a sufficient heating state due to false detection.

また、連続使用時にも同様の不具合点がある。Similar problems also occur during continuous use.

一回目の調理終了時により、セットの機械室内の温度は
相当に上がった状態で冷却ファンが停止する。それによ
って過渡的に電力部品雰囲気の温度は上昇し、その状態
で続けて調理を実行すると、溜まった熱気がセンサに導
かれ開始直後は検出信号が高くその後冷却ファンにより
電力部品およびその雰囲気が冷やされ、検出信号すなわ
ち静的状態での信号レベルが逓減していくという現象が
生じる。従って本来D1′の一点鎖線で検知しなければ
いけない所が、検出信号レベルの高いT1〜丁2期間で
検出した代表値n.から算出したしきい値Diで蒸気信
号を検知し終了するため過加熱となるという問題点もあ
る。
At the end of the first cooking, the temperature inside the machine room of the set has risen considerably and the cooling fan stops. As a result, the temperature of the atmosphere of the power components rises transiently, and when cooking continues in this state, the accumulated hot air is guided to the sensor, and the detection signal is high immediately after the start, after which the cooling fan cools down the power components and the atmosphere. As a result, a phenomenon occurs in which the detection signal, that is, the signal level in a static state gradually decreases. Therefore, the point that should normally be detected using the dashed-dotted line D1' is the representative value n detected during the period T1 to T2 when the detection signal level is high. There is also the problem that overheating occurs because the steam signal is detected and terminated at the threshold value Di calculated from .

さらに、マイクロ波加熱以外の熱源、例えばヒーターを
併せて具備するような構成の複合加熱調埋器が商品化さ
れているが、これらの機器においてもヒーター加熱直後
の庫内温度が高い状態で本自動加熱機能を使用すると(
0)図で示したように静的状態の検知レベルが逓減し誤
検知が生じることは容易に考えられる。
Furthermore, although composite heating conditioners that are also equipped with a heat source other than microwave heating, such as a heater, have been commercialized, even in these devices, the temperature inside the refrigerator is high immediately after heating with the heater. When using the automatic heating function (
0) As shown in the figure, it is easy to imagine that the detection level in the static state will gradually decrease and false detection will occur.

そこで、本発明は食品から発生する水蒸気、ガスの熱気
を検出する雰囲気センサを用いた自動加勢装置において
、周辺の熱源からの熱的外乱の影響をうけず正確に蒸気
信号を検知し最適な加熱状態での終了を実現するもので
ある。
Therefore, the present invention is an automatic boosting device using an atmosphere sensor that detects hot water vapor and gas generated from food, which accurately detects steam signals without being affected by thermal disturbances from surrounding heat sources and optimizes heating. This is to realize termination in the state.

課題を解決するための手段 そこで本発明の自動加熱装置は、被加熱物から発生する
水蒸気やガスの熱気を検出する雰囲気センサと,雰囲気
センサからの信号を検出する信号検出手段と、信号検出
手段の信号金一定期間監視した結果をもとに所定のしき
い値を決定するしきい値決定手段と、信号演出手役の信
号レベルがしきい値決定手段が決定し念しきい値以上に
達したことを検知し電力を制御する制御手段とを備え、
しきい値決定手段は加熱開始から逐次継続してしきい値
を更新し、初期しきい値より一定量増加あるいは減少し
た時しきい値の更新を停止する構成としたものである。
Means for Solving the Problems Therefore, the automatic heating device of the present invention includes an atmosphere sensor that detects hot water vapor or gas generated from an object to be heated, a signal detection means that detects a signal from the atmosphere sensor, and a signal detection means. a threshold determining means for determining a predetermined threshold based on the result of monitoring the signal for a certain period of time; and a control means for detecting the occurrence of the
The threshold value determination means is configured to update the threshold value successively from the start of heating, and stop updating the threshold value when the threshold value increases or decreases by a certain amount from the initial threshold value.

作用 上記構成によって本発明による自動加熱装置は以下のよ
うな作用を有する。
Effects The automatic heating device according to the present invention with the above structure has the following effects.

逐次継続してしきい値を更新することによって,食品以
外の熱源からの熱による静的状態での信号レベルの変化
に応じた最適のしきい値金決定することが可能で食品か
らの蒸気、ガスによる熱以外の信号の変動で誤検知する
ことはなくなる。
By continuously updating the threshold value, it is possible to determine the optimal threshold value in response to changes in the signal level in static conditions due to heat from heat sources other than food, vapor from food, Erroneous detection will no longer occur due to fluctuations in signals other than heat caused by gas.

また決定したしきい値が初期に決定したしきい値から一
定量の増710あるいは減少した時、しきい値の更新を
停止しているため本来の食品からの蒸気による信号レベ
ルの増大を静的状態での信号レベルの増大と判断して誤
ったしきい値の更新を行うこともなく信頼性の高い自動
加熱装置を提供するものである。
In addition, when the determined threshold value increases or decreases by a certain amount from the initially determined threshold value, updating of the threshold value is stopped, so the increase in signal level due to the original food vapor is statically suppressed. To provide a highly reliable automatic heating device that does not erroneously update a threshold value based on a determination that the signal level has increased in the current state.

実施例 以下、本発明の一実施例を添付図而にもとづいて説明す
る。第3図は本発明の一実施例における自動加熱装置の
構成を示す要部断面図、第4図はその検知システム部分
の基本回路構成を示すブロック図である。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. FIG. 3 is a sectional view of essential parts showing the configuration of an automatic heating device according to an embodiment of the present invention, and FIG. 4 is a block diagram showing the basic circuit configuration of the detection system portion thereof.

第2図において加熱室1内に置かれた被加熱物3はマグ
ネトロン4によって誘電加熱される。被FlO熱物3は
加熱室1内の電界強度の不均一によって生じる加熱むら
を改善するために回転載置台2によって回転しながら加
熱される。
In FIG. 2, a heated object 3 placed in a heating chamber 1 is dielectrically heated by a magnetron 4. In FIG. The FlO heated object 3 is heated while being rotated by the rotary mounting table 2 in order to improve uneven heating caused by non-uniform electric field strength within the heating chamber 1 .

被加熱物3の別熱が進行し含まれる水分が沸点近くに達
すると、多呈の高温蒸気が発生し、この蒸気は7111
熱室7の天井に設けられた通気口6に向かって上昇する
。さらにマグネトロン4などの電力部品の冷却用に設け
られた冷却ファン7−1Lおよびプロペラ7−bによっ
てセット吸気口8から吸入された風は庫内吸気口6を通
って加熱室1内に入りその風圧によって被加熱物3から
発生する蒸気は通気口6に排出される。さらに焦電素子
1oに当たった蒸気は、焦電素子10表面で結露して焦
電素子1oに潜熱を主体とした多量の熱エネルギーを与
えるため,焦電素子1oは温度が上昇して焦電電王が発
生する。このとき、被加熱物3から発生した蒸気は、蒸
気より低温の空気中を揺らぎながら移動してゆくから、
焦電素子10に当たる蒸気の量も時間的、空間的に揺ら
いでいる。従って、被加熱物3が一定以上の温度となっ
て定常的に蒸気が発生するようになっても、焦電素子1
0はある瞬間,大量の蒸気で温度が上がるが、次の瞬間
に当たる蒸気量がわずかになって温度が下がり、次の瞬
間には再び多量の蒸気が当たり温度が上がるというよう
に、被加熱物3から蒸気が出続ける間、上記説明の温度
の需らぎに対応して不規411な交流電EEを発生し続
ける。
When the heated object 3 is heated separately and the water content reaches near the boiling point, a lot of high-temperature steam is generated, and this steam is 7111
It rises toward the vent 6 provided in the ceiling of the heat chamber 7. Furthermore, the wind taken in from the set intake port 8 by the cooling fan 7-1L and propeller 7-b provided for cooling power components such as the magnetron 4 enters the heating chamber 1 through the internal intake port 6. Steam generated from the heated object 3 due to wind pressure is discharged to the vent 6. Furthermore, the steam that hits the pyroelectric element 1o condenses on the surface of the pyroelectric element 10 and gives the pyroelectric element 1o a large amount of thermal energy mainly consisting of latent heat, so the temperature of the pyroelectric element 1o increases and the pyroelectric A king arises. At this time, the steam generated from the heated object 3 moves while fluctuating in the air, which is cooler than the steam.
The amount of vapor hitting the pyroelectric element 10 also fluctuates temporally and spatially. Therefore, even if the heated object 3 reaches a certain temperature or higher and steam is generated steadily, the pyroelectric element 1
0 means that at one moment, a large amount of steam causes the temperature to rise, but in the next moment, a small amount of steam hits the object, causing the temperature to drop, and in the next moment, a large amount of steam hits the object again, raising the temperature. While steam continues to be emitted from 411, irregular alternating current electricity EE continues to be generated in response to the temperature fluctuations described above.

第6図は焦電素子10からこのようにして発生する電王
の様子を示したもので、加熱時間がある時間に達すると
被加熱物からの蒸気によって焦電素子10間に大振幅の
交流電圧(数1Qm▼)が発生し続ける。
FIG. 6 shows the state of electric power generated in this way from the pyroelectric element 10. When the heating time reaches a certain time, a large amplitude AC voltage is generated between the pyroelectric element 10 due to steam from the heated object. (Several 1Qm▼) continues to occur.

次に第4図で示す電子回路で、焦電素子1oで発生した
電圧はDC(直流)カット回路11,L.P.F(ロウ
・バスフィルター)12r経てアンプ(増幅回路)13
の増幅回路で増幅された後マイコン14により読み取ら
れる。焦電素子1oは高インピーダンスのため,1MΩ
程度の抵抗16と、0.06μ程度のコンデンサー16
とを並列に結合し緩和を図っている。またマイコン14
はマグネトロン4、冷却ファン7等に制御信号をお〈り
コントロールする。
Next, in the electronic circuit shown in FIG. 4, the voltage generated in the pyroelectric element 1o is transferred to the DC (direct current) cut circuit 11, L. P. F (low bass filter) 12r then amplifier (amplification circuit) 13
After being amplified by the amplifier circuit, it is read by the microcomputer 14. The pyroelectric element 1o has a high impedance of 1MΩ.
A resistor 16 of about 0.06μ and a capacitor 16 of about 0.06μ
We are attempting to alleviate this by combining these in parallel. Also, microcontroller 14
is controlled by sending control signals to the magnetron 4, cooling fan 7, etc.

さて、使用者は食品の再加熱を行うべく自動加熱装置に
加熱指令を送ると,マイコン14はそれを受けマグネト
ロン4及び冷却ファン7に動作信号を送り被加熱物3の
加熱を開始する。そして加熱が進行するにつれ、被加熱
物3から蒸気が発生し、その高温蒸気は前述した原理で
焦電素子1oに導かれ電圧が発生する。マイコン14は
それを検知することによって被加熱物3が充分加熱され
たことを検知し、その時点で加熱を終了したり、食品に
よっては加熱が不充分の場合もあるので所定の追加加熱
を実行したりして調理を終了する。
Now, when the user sends a heating command to the automatic heating device to reheat the food, the microcomputer 14 receives the command and sends an operation signal to the magnetron 4 and the cooling fan 7 to start heating the object to be heated 3. As the heating progresses, steam is generated from the object to be heated 3, and the high-temperature steam is guided to the pyroelectric element 1o to generate a voltage according to the principle described above. By detecting this, the microcomputer 14 detects that the object to be heated 3 has been sufficiently heated, and ends the heating at that point, or performs predetermined additional heating since the heating may not be sufficient depending on the food. to finish cooking.

次に、マイコン14がどのようにして蒸気が発生したと
判断するか、即ち検知シーケンスについて説明する。
Next, a description will be given of how the microcomputer 14 determines that steam has been generated, that is, the detection sequence.

第1図は、マイコン14内部の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing the internal configuration of the microcomputer 14. As shown in FIG.

データ測定手段1Tは七ンサからのアナログ入力信号を
測定する。例えばA/D変換器などで構成され所定の時
間間隔toで連続的にデータの測定を行う。時間間隔t
oは数十μsec程度である。
The data measuring means 1T measures the analog input signal from the seven sensors. For example, it is composed of an A/D converter, etc., and continuously measures data at predetermined time intervals to. time interval t
o is approximately several tens of microseconds.

ノイズレベル検知手段18はデータ測定手段17の信号
を受け、所定時限内の平均値や極大値などの代表値すな
わち蒸気信号が到来していない静的状態のi号レベルで
あるノイズレベ/l/を測定する。
The noise level detection means 18 receives the signal from the data measurement means 17, and detects the noise level /l/ which is a representative value such as an average value or a local maximum value within a predetermined time period, that is, the i level in a static state where no steam signal has arrived. Measure.

この所定時限は数秒から数t秒程度の値とし、後述する
誤差判定手段21からの停止指令信号を受けるまで連続
的に測定を繰り返す。
This predetermined time period is set to a value of about several seconds to several t seconds, and the measurement is continuously repeated until a stop command signal is received from the error determining means 21, which will be described later.

検知しきい値演算手段19はノイズレベル検知手段18
が測定し念ノイズレベルを受け所定の演算法則のもとに
検知しきい値を決定する。ここで検知しきい値はノイズ
レベルに対して充分余裕のある高い値に設定しなければ
ならないことは自明である。例えば、具体的演算法則の
一例としてDi =aDm } b  (a− bは定
数) −・− ・− ・−(1)としても良いし、さら
にDmの高次の式で展開しても差し支えない。
The detection threshold calculation means 19 is the noise level detection means 18
The detection threshold value is determined based on a predetermined calculation rule based on the measured noise level. It is obvious that the detection threshold value must be set to a high value with sufficient margin for the noise level. For example, as an example of a concrete operation rule, Di = aDm } b (a- b is a constant) -・- ・- ・- (1), or it can be further expanded with a higher-order expression of Dm. .

初期検知しきい値保持手段20は測定第1回目の険知し
きい値全保持する。誤差判定手段21は検知しきい値演
算手段19が算出した検知しきい値と初期検知しきい値
保持手段が保持している第1回目の検知しきい値との比
較を行い、(現在の検知しきい値一第1回目の検知しき
い値)の誤差が所定範囲内にあれば検知しきい値演算手
役19の算出した検知しきい値をそのまま検知しきい値
保持手段22へと送信する。逆に誤差が所定の許容範囲
を逸脱すればノイズレベル検知手段に検知停止指令信号
を送り、以降のノイズレベル検知を停止させると共に、
検知しきい値保持千段22への検知しきい値の送信も停
止し自己機能を停止する。例えば誤差が正の限界値α、
負の限界値βとしてそれぞれ異なった限界値をもたせて
もよい。
The initial detection threshold holding means 20 holds the entire detection threshold of the first measurement. The error determination means 21 compares the detection threshold calculated by the detection threshold calculation means 19 with the first detection threshold held by the initial detection threshold holding means, and If the error of the first detection threshold is within a predetermined range, the detection threshold calculated by the detection threshold calculation hand 19 is sent as is to the detection threshold holding means 22. . On the other hand, if the error deviates from a predetermined tolerance range, a detection stop command signal is sent to the noise level detection means to stop subsequent noise level detection, and
The transmission of the detection threshold value to the detection threshold holding stage 22 is also stopped and its own function is stopped. For example, the limit value α for which the error is positive,
Different limit values may be provided as the negative limit value β.

検知しきい値保持手段22は検知しきい値を記憶保持し
、検知判定手段23はその保持されている検知しきい値
とデータ測定手段17の測定する瞬時データを比較し所
定の判定法則にしたがってその信号が明らかに検知しき
い値を越えたことを認識して電力制御手段24に蒸気を
検知したことを伝える。ここでの所定の判定法則の一例
として瞬時データがn回検知しきい値を越えることとし
、そのn回を蒸気検知にふさわしい回数としている。
The detection threshold holding means 22 stores and holds the detection threshold, and the detection judgment means 23 compares the held detection threshold with the instantaneous data measured by the data measuring means 17, and compares the held detection threshold with the instantaneous data measured by the data measuring means 17, according to a predetermined judgment rule. It is recognized that the signal clearly exceeds the detection threshold and informs the power control means 24 that vapor has been detected. As an example of the predetermined judgment rule here, it is assumed that the instantaneous data exceeds the detection threshold value n times, and the n times are the number of times suitable for vapor detection.

電力制御手段24はマグネトロン4に加熱制御信号を送
り、即座に停止したり、僅かな追加過熱ヲ実行したりし
て加Mk終了する。
The power control means 24 sends a heating control signal to the magnetron 4, and immediately stops or performs a slight additional overheating to complete the heating Mk.

第2図はマイフンに入力されるセンサ信号の波形である
。マイコンの電圧レベルに合わせるため丁度第6図のセ
ンサ出力をDCカットし、f波整流したような波形とな
っている。(&)図はごく一般的な再加熱の場合の信号
である。加熱が開始して所定時間で1になるとマイコン
14は信号を読み取りにいき、T2時間まで一定の間隔
で連続的に時間間隔toで測定を繰り返しその間に測定
した極大値をその時限(TIT2)における代表値Dm
1 とし(1)式から険知しきい値Diを決定する。従
って7イズレベA/Dullに対応する涜知しきい値D
l+が決まり,次の時限(r2〜T5 )ではそれに基
づいて蒸気の検知を行う。時限(T2〜T5 )では前
時限と同様に時間間隔toで連続的に測定を行いその時
限でノイズレベルである極大値DI12e探索すると同
時に測定データが検知しきい値Dl.i越える回数をカ
ウントし所定回数nに達すると蒸気信号検知と判断する
FIG. 2 shows the waveform of the sensor signal input to the microphone. In order to match the voltage level of the microcomputer, the sensor output shown in FIG. 6 is DC-cut and has a waveform similar to f-wave rectification. (&) The figure shows a signal for a very common reheating case. When heating starts and the signal reaches 1 at a predetermined time, the microcomputer 14 reads the signal, repeats measurement at regular intervals until time T2, and calculates the maximum value measured during that time period (TIT2). Representative value Dm
1, and determine the threshold value Di from equation (1). Therefore, the blasphemy threshold D corresponding to 7 is level A/Dull
l+ is determined, and vapor detection is performed based on it in the next time period (r2 to T5). In the time period (T2 to T5), measurements are made continuously at time intervals to as in the previous time period, and at the same time, the maximum value DI12e, which is the noise level, is searched, and at the same time, the measured data is detected at the detection threshold value Dl. The number of times exceeding i is counted, and when a predetermined number of times n is reached, it is determined that a steam signal has been detected.

時限(T2〜Ts )で蒸気検知がない場合その時限で
同時進行しているノイズレベル探索で決定したノイズレ
ベIvDm2i基忙次時限での検知レベルDl2を(1
)式に基づいて決定する。以降このようにノイズレベル
および検知しきい値を更新しながらtd時間で蒸気検知
にいたる。
If there is no vapor detection in a time period (T2~Ts), the detection level Dl2 in the next busy time period is determined by the noise level IvDm2i determined by the noise level search that is running simultaneously in that time period (1
) is determined based on the formula. Thereafter, while updating the noise level and detection threshold in this manner, vapor detection is reached at time td.

時限での検知レベルDl2を(1)式に基づいて決定す
る。以降このように検知しきい値を更新しながらtd時
間で蒸気検知にいたる。
The detection level Dl2 at the time limit is determined based on equation (1). Thereafter, while updating the detection threshold in this manner, vapor detection is reached at the td time.

次に検知までに長時間を要する調理、例えば冷凍食品を
解凍して且つあたためるという解凍あたため、あるいは
カレー.シチュー等煮込調埋などの場合、(b)図に示
すように蒸気検知前のノイズレベルが徐々に増加する傾
向となることがわかっている。これは、機械室内の電力
部品の発熱あるいはオーブン曜内の壁面で発生する誘導
加熱による熱等、食品からの蒸気以外の熱の影響によっ
て焦電素子1oに熱気が導かれるためである。従来のよ
うに、加熱の初期段階に獲得したノイズレベルを基に検
知レベルを決定する方式ではこのような熱的外乱による
ノイズレベルの増大を蒸気信号と見誤って誤検知する場
合があったが、本発明の検知方式ではこのような問題を
回避することができる。
Next, cooking that requires a long time to be detected, such as thawing and warming frozen food, or curry. It has been found that in the case of cooking stew or the like, the noise level before steam detection tends to gradually increase, as shown in Figure (b). This is because hot air is led to the pyroelectric element 1o due to the influence of heat other than the steam from the food, such as heat generated by power components in the machine room or heat due to induction heating generated on the wall inside the oven. In the conventional method of determining the detection level based on the noise level obtained during the initial stage of heating, there were cases where an increase in the noise level due to thermal disturbances could be mistaken for a steam signal, resulting in false detection. , the detection method of the present invention can avoid such problems.

(′b)図ではDI+ . Dl2 , Di,5・・
・・・・と検知しきい値がノイズレベルの増大に伴って
上昇し、蒸気信号発生の直前のノイズレベルから決定し
た最適の検知しきい値で蒸気検知が可能となる。
('b) In the figure, DI+. Dl2, Di,5...
..., the detection threshold value rises as the noise level increases, and vapor detection becomes possible at the optimum detection threshold value determined from the noise level immediately before the vapor signal is generated.

ここでは最初に設定した検知レベルD11から所定の更
新限界値α増加したDi6iもって検知しきい値の更新
を中止し、以降その直前に設定したDl5i検知しきい
値として蒸気検知をおこなっているため蒸気到来前のノ
イズレベルで決定した正確な検知しきい値によりtd時
間の蒸気検知が可能となる。もちろんその時点からノイ
ズレベルの探索も終了する。
Here, the update of the detection threshold value is stopped when Di6i increases by a predetermined update limit value α from the detection level D11 that was initially set, and thereafter, vapor detection is performed using the detection threshold value of Dl5i that was set just before that. Accurate detection thresholds determined by pre-arrival noise levels enable td time vapor detection. Of course, from that point on, the search for the noise level ends.

またこのように適当な増加方向の更新限界値αを設定す
ることによって、蒸気による信号レベルの増加を誤って
ノイズレベルの増加として更新し、高い検知しきい値全
設定してしまって検知遅れを生じるという問題は全く発
生しなくなり信頼性の高い検知性能をえることができる
In addition, by setting the update limit value α in the appropriate increasing direction, an increase in the signal level due to steam is erroneously updated as an increase in the noise level, and a high detection threshold value is all set, resulting in a detection delay. This problem no longer occurs, and highly reliable detection performance can be achieved.

次に、連続調理時に関しての検知の一例を(Cl図に示
す。連続使用時の特徴として、前回使用時の機械室内に
残留している熱あるいは庫内に残っている熱の影響で、
次回使用時の初期時点でむしろノイズレベルが高くなり
、その後徐々に冷却ファンの吸入した外気による焦電素
子1o近傍の冷却によってノイズレベルが逓減していく
という現象がある。このような状況においても本発明の
検知方式によると、検知しきい値を更新しているため蒸
気到来前の低いノイズレベルDm1で検知が可能となり
、正確に時間tdで蒸気検知が可能となる。
Next, an example of detection during continuous cooking is shown in Figure Cl.As a characteristic of continuous use, due to the influence of the heat remaining in the machine room from the previous use or the heat remaining in the refrigerator,
There is a phenomenon in which the noise level becomes rather high at the beginning of the next use, and then gradually decreases as the vicinity of the pyroelectric element 1o is cooled by the outside air sucked in by the cooling fan. Even in such a situation, according to the detection method of the present invention, since the detection threshold value is updated, detection can be performed at a low noise level Dm1 before the arrival of steam, and steam can be detected accurately at time td.

調理開始後一回目の検知しきい値D11で蒸気検知を行
えば検知時間が遅れ過Va熱になることは自明である。
It is obvious that if steam detection is performed at the first detection threshold value D11 after the start of cooking, the detection time will be delayed and excess Va heat will occur.

ここでは(b)図の例と同様に、最初に設定した検知し
きい値Di.から更新限界値β以上減少した検知しきい
値Dl5iもって検知しきい値の更新を終了している。
Here, as in the example shown in FIG. 3(b), the detection threshold value Di. The updating of the detection threshold value is completed when the detection threshold value Dl5i decreases by more than the update limit value β.

これによって蒸気信号による信号レベルの増加をノイズ
レベルの増加と誤り検知しきい値を更新していき、高い
検知しきい値で蒸気検知をおこなった結果検知が遅れて
過加熱になるという問題は発生しなくなる。
As a result, the increase in the signal level due to the steam signal is reflected in the increase in the noise level and the false detection threshold is updated, and the problem of overheating due to delayed detection as a result of steam detection performed with a high detection threshold occurs. I won't.

本実施例において、限界値α.βに関して検知しきい値
の増減に基づいて実施しているが、ノイズレベルの増減
量で規定してもいっこうに差し支えない。
In this embodiment, the limit value α. Although β is implemented based on an increase/decrease in the detection threshold, it may also be defined based on an increase/decrease in the noise level.

発明の効果 以上のように、本発明の自動加熱装置に関しては以下の
ような効果を得ることができる。
Effects of the Invention As described above, the automatic heating device of the present invention can provide the following effects.

すなわち、逐次継続して信号を検出し静的状態での信号
レベル(ノイズレベル)を更新し、それに応じた最適な
検知しきい値を決定しているため、機械室内の電力部品
から発生する熱、金属の加熱室壁面の誘電加熱による熱
、あるいは連続使用時の残留熱等,ターゲットとなる調
理物から発する蒸気の熱以外の様涜な熱的外乱に対して
、誤検知を生じるということはなくなる。
In other words, since signals are detected continuously, the signal level (noise level) in a static state is updated, and the optimal detection threshold is determined accordingly, the heat generated from power components in the machine room can be reduced. False detections may occur due to thermal disturbances other than the heat of steam emitted from the target cooking object, such as heat due to dielectric heating of the metal heating chamber wall, or residual heat from continuous use. It disappears.

また検知しきい値の更新についても、初期しきい値から
の変動欲に関する制限を設けているため、本来の食品の
蒸気を誤ってノイズレベルの増加として検知レベルを高
く設定してしまうということもなくより高精度で信頼性
の高い自動加熱装置金提供することが出来る。
In addition, when updating the detection threshold, there is a limit on the desire to change from the initial threshold, so there is a possibility that the detection level may be set high due to the fact that the original food vapor is mistakenly regarded as an increase in the noise level. It is possible to provide an automatic heating device with higher precision and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の自動加熱装置の制御システ
ムを示すブロック図,第2図は同装置の蒸気検知方式金
示す出力波形図、第3図は同装置の断面図、第4図は同
装置の検知回路の構成を示すブロック図、第6図は焦電
素子の出力波形図、第6図は従来の自動7JO熱装置の
蒸気検知方式を示す出力波形図である。 1・・・・・加熱室、4・・・・・・マグネトロン、1
o・・・・・焦電センサ、14・・・・・・マイクロコ
ンピューター(マイコン)、17・・・・・データ測定
手段、18・・・・・・ノイズレベル検知手段、19・
・・・・・検知しきい値演算手段、2o・・・・・・初
期検知しきい値保持手段、21・・・・・・誤差判定手
段、22・・・・・・検知しきい値保持手段、23・・
・・・・検知判定手段、24・・・・・・電力制御手段
。 代堆人の氏名 弁埋士 粟 野 重 孝 ほか1名 第 l 図 24 Iliフ 3 図 1 −一一 加 − 1 3 −−− 禰 加 一 − 10 曽電 竃 子 4 づ ネ ン 境 6 口 D7 −−−  ノ   イ  プ  レ  ベ  ル
DJ −−一 憚  匍  し  ’!   11  
 1lcノ
Fig. 1 is a block diagram showing the control system of an automatic heating device according to an embodiment of the present invention, Fig. 2 is an output waveform diagram showing the steam detection method of the device, Fig. 3 is a sectional view of the device, and Fig. 4 FIG. 6 is a block diagram showing the configuration of the detection circuit of the same device, FIG. 6 is an output waveform diagram of a pyroelectric element, and FIG. 6 is an output waveform diagram showing a steam detection method of a conventional automatic 7JO thermal device. 1... Heating chamber, 4... Magnetron, 1
o...Pyroelectric sensor, 14...Microcomputer, 17...Data measurement means, 18...Noise level detection means, 19.
...Detection threshold calculation means, 2o...Initial detection threshold holding means, 21...Error judgment means, 22...Detection threshold holding means Means, 23...
. . . Detection determination means, 24 . . . Power control means. Names and names of the bureau chief, Shigetaka Awano, and one other person No. 1 Figure 24 Ilifu 3 Figure 1 -11 Ka - 1 3 --- Ne Ka 1 - 10 Sodenkazu 4 Zunenkyo 6 Kuchi D7 -- − Noi Prebel DJ −−Ichika 匍し'! 11
1lcノ

Claims (1)

【特許請求の範囲】[Claims]  加熱室と、前記加熱室に結合され被加熱物を誘電加熱
するマイクロ波発生手段と、被加熱物から発生する水蒸
気やガスの熱気を検出する雰囲気センサと、前記雰囲気
センサからの信号を検出する信号検出手段と、前記信号
検出手段の信号を一定期間監視した結果をもとに所定の
しきい値を決定するしきい値決定手段と、前記信号検出
手段の信号レベルが前記しきい値以上に達したことを検
知し前記マイクロ波発生手段への電力の供給を制御する
制御手段とを備え、前記しきい値決定手段は加熱開始か
ら逐次継続してしきい値を更新し、しきい値が加熱開始
時点で決定したしきい値に対して一定量増加あるいは減
少した時しきい値の更新を停止する構成とした自動加熱
装置。
a heating chamber, a microwave generating means coupled to the heating chamber for dielectrically heating an object to be heated, an atmosphere sensor for detecting hot air of water vapor or gas generated from the object to be heated, and detecting a signal from the atmosphere sensor. a signal detecting means, a threshold determining means for determining a predetermined threshold based on the result of monitoring the signal of the signal detecting means for a certain period, and a signal level of the signal detecting means exceeding the threshold; control means for detecting that the threshold value has been reached and controlling the supply of power to the microwave generating means, and the threshold value determining means continuously updating the threshold value from the start of heating, An automatic heating device configured to stop updating the threshold value when the threshold value determined at the start of heating increases or decreases by a certain amount.
JP1315890A 1990-01-22 1990-01-22 Automatic heating device Expired - Fee Related JP2658468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315890A JP2658468B2 (en) 1990-01-22 1990-01-22 Automatic heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1315890A JP2658468B2 (en) 1990-01-22 1990-01-22 Automatic heating device

Publications (2)

Publication Number Publication Date
JPH03216991A true JPH03216991A (en) 1991-09-24
JP2658468B2 JP2658468B2 (en) 1997-09-30

Family

ID=11825366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315890A Expired - Fee Related JP2658468B2 (en) 1990-01-22 1990-01-22 Automatic heating device

Country Status (1)

Country Link
JP (1) JP2658468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194626A (en) * 2019-05-24 2020-12-03 パナソニックIpマネジメント株式会社 Electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194626A (en) * 2019-05-24 2020-12-03 パナソニックIpマネジメント株式会社 Electronic apparatus

Also Published As

Publication number Publication date
JP2658468B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US4401884A (en) Method of controlling heating in food heating apparatus including infrared detecting system
US4097707A (en) Apparatus for controlling heating time utilizing humidity sensing
CA2014823A1 (en) Heating apparatus
JPS62154593A (en) Cooker
KR0154643B1 (en) Power signal of steam sensor for microwave oven
GB2243461A (en) Microwave oven control
JPH03216991A (en) Automatic heating device
TW201828568A (en) Method of detecting intruding metal for induction type power supply system and related supplying-end module
JPS60181518A (en) Cooker equipped with sensor
JPS59175588A (en) Automatic cooking device
JP2712697B2 (en) Automatic heating device
JPS5858565B2 (en) cooking oven
JPS5830506B2 (en) heating cooker
JPH0740207Y2 (en) Humidity detector for microwave oven
JP4176491B2 (en) Electromagnetic induction heating cooker
JPS6237624A (en) Electronic cooking range with piezoelectric element sensor
JPH04254113A (en) Device of cooking by heating
JPS5930964B2 (en) cooking oven
JPS5847611B2 (en) cooking oven
JP3579814B2 (en) Cooking device
KR910021180A (en) Microwave food recognition and automatic cooking
KR950001227B1 (en) Automatic heating apparatus for a range
JPH074671A (en) Heating apparatus
KR960001633A (en) Microwave temperature controller and cooking control method
JPS6026321Y2 (en) Cooking device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees