JP4176491B2 - Electromagnetic induction heating cooker - Google Patents

Electromagnetic induction heating cooker Download PDF

Info

Publication number
JP4176491B2
JP4176491B2 JP2003011095A JP2003011095A JP4176491B2 JP 4176491 B2 JP4176491 B2 JP 4176491B2 JP 2003011095 A JP2003011095 A JP 2003011095A JP 2003011095 A JP2003011095 A JP 2003011095A JP 4176491 B2 JP4176491 B2 JP 4176491B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
signal
value
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003011095A
Other languages
Japanese (ja)
Other versions
JP2004227804A (en
Inventor
剛 平野
真郎 横田
究 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2003011095A priority Critical patent/JP4176491B2/en
Publication of JP2004227804A publication Critical patent/JP2004227804A/en
Application granted granted Critical
Publication of JP4176491B2 publication Critical patent/JP4176491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ回路を使用して誘導加熱コイルに高周波電流を供給し電磁誘導で調理鍋を加熱する電磁誘導加熱調理器に係り、特に、誘導加熱コイルの上面に設置されたトッププレートの温度を測定し調理鍋の加熱が適正に行われているか判別できる機能を有した電磁誘導加熱調理器に関するものである。
【0002】
【従来の技術】
図5は、従来技術の電磁誘導加熱調理器の全体構成図である。
【0003】
図5において、IHは電磁誘導加熱調理器、PBは電磁誘導加熱調理器IHで誘導加熱される鍋を示し、上記電磁誘導加熱調理器IHはセラミックス等などで形成されるトッププレートPLと、渦巻き状に巻かれ、その中心部が円状に空白になっている誘導加熱コイルHLと、上記誘導加熱コイルHLを支えるコイルベースCBと、鍋PBの加熱温度を検出するための温度検出部TDと、上記誘導加熱コイルHLに高周波電流を供給するための高周波電源HSとから形成されている。
【0004】
温度検出部TDは、鍋PBの加熱温度をトッププレートPLを介して検出するために、温度検出部TDには図示省略のガラス封止のサーミスタなどの温度センサ素子と、上記温度センサ素子を保持するセンサ保持具と、上記センサ保持具とコイルベースCBとの間に設置され、上記センサ保持具を介して温度センサ素子を上記トッププレートPLの下面に接するようにするためのコイルバネと、誘導加熱コイルHLからの磁束が温度センサ素子のジュメット線などのリード線と磁性の上記コイルバネとに鎖交しないための磁気シールドの役目をする銅リングとから構成されている。
【0005】
上述より、温度センサ素子の周囲の側面部に設置された非磁性の導体、例えば、中空の銅リングにより、誘導加熱コイルHLからの磁束に対して磁気シールドの作用を持たせることができ、その結果、上記鍋の加熱温度の計測値の誤差を軽減できる。しかし、トッププレートPLに接触させるための複雑な固定止具が必要である。
(特許文献1参照)
【0006】
従来技術2の加熱調理装置は、調理物を入れた鍋をガス燃焼手段によって加熱することにより上記調理物を加熱調理する加熱調理装置である。この加熱調理装置には、鍋の外表面温度を検出するための温度検出手段と、鍋を加熱するガス燃焼手段の加熱制御手段を備えている。温度検出手段は、上記ガス燃焼手段上に設定されて上記鍋と非接触で上記鍋の外表面温度を検出する。そして、制御手段は、上記調理物の加熱に適した温度が設定され、上記温度検出手段で検出された上記鍋の外表面温度に対応して求められる定常偏差を、上記外表面温度から減算することにより、上記鍋内の調理物の温度を算出し、この算出温度と設定温度とを比較し、上記算出温度が設定温度以下であれば、上記ガス燃焼手段に対する燃焼ガスの供給量を増加させ、前記算出温度が設定温度を超えている場合には、上記ガス燃焼手段に対する燃焼ガスの供給量を減少させる。この結果、調理物に適した温度でその調理物を調理できる。
(特許文献2参照)
【0007】
【特許文献1】
特開2002−100466号公報
【特許文献2】
特開平8−178295号公報
【0008】
【発明が解決しようとする課題】
トッププレートの温度を測定するためにサーミスタ素子又はサーモスタット等を用い、上記トッププレートの下面に直接接触させて温度を測定していた。しかし、上記トッププレートに接触させるための複雑な固定止具が必要となる。また、トッププレートの温度を一点で検出するために測定温度の精度に問題がある。
【0009】
【課題を解決するための手段】
請求項1の発明は、共振コンデンサと、前記共振コンデンサとともに直列共振を形成する誘導加熱コイルと、商用交流電源を整流して直流電圧に変換する整流回路と、前記整流回路の直流電圧を入力として前記誘導加熱コイルに高周波電流を供給するインバータ回路と、前記インバータ回路の入力電力を演算して電力演算信号を出力する電力演算回路と、予め定めた電力設定信号を出力する電力設定回路と、前記電力演算信号と前記電力設定信号とを差動増幅する差動増幅回路と、前記差動増幅回路の差動増幅信号に応じて前記インバータ回路の出力周波数を制御する制御処理回路と、内部を冷却する送風ファンと、前記誘導加熱コイルの上面に近接して設置するトッププレートとを具備し、前記トッププレートの上面に鍋を置いて加熱する電磁誘導加熱調理器において、
前記トッププレートの下面の温度を非接触で検出して温度センサ信号を出力する非接触温度センサと、前記温度センサ信号の値が予め定めた正常温度上昇限界値を超えたときに前記送風ファンの回転数を増加させ鍋の温度上昇を緩やかにするファン制御回路と、前記温度センサ信号の値が前記正常温度上昇限界値より高い予め定めた第2の温度上昇限界値を超えたとき前記インバータ回路の出力を制御する前記電力設定信号の値を減衰する電力制限回路と、前記温度センサ信号の値が前記第2の温度上昇限界値より高い予め定めた温度上昇限界値を超えたときに前記インバータ回路の出力を遮断する温度保護回路とを、具備したことを特徴とする電磁誘導加熱調理器である。
【0011】
【発明の実施の形態】
本発明の実施の形態について、図面を参照して説明する。図1は、本発明の電磁誘導加熱調理器の電気接続図である。図3は、図1に示す電磁誘導加熱調理器の全体構成図である。
【0012】
図1において、整流回路DR1は、商用交流電源の出力を整流して直流電圧に変換し、平滑コンデンサC1は、直流に変換した電圧を平滑する。
【0013】
入力電流検出回路IDは、入力電流値を検出して入力電流検出信号Idを出力し、入力電圧検出回路IVは、入力電圧値を検出して入力電圧検出信号Ivを出力する。
【0014】
スイッチング素子TR1及びスイッチング素子TR2は、ハーフブリッジ形のインバータ回路を形成するスイッチング素子で、例えば、MOSFET又はIGBTが使用されている。誘導加熱コイルHLは共振コンデンサC2及び共振コンデンサC3とで直列共振を形成する。トッププレートPLは上記誘導加熱コイルHLの上面に近接して設置され鍋PBを置いて電磁誘導により加熱をおこなう。ファン駆動回路FDは、加熱スイッチTSの加熱開始信号Tsが入力されると通常回転数で回転するファン駆動信号Fdを出力する。送風ファンFAは上記ファン駆動信号Fdが入力すると通常の回転数でファンを回転させる。
【0015】
スイッチング素子駆動回路SDは、制御処理回路SCからの制御処算信号Scの値に応じて、パルス幅の比率が一定でパルス周波数を変調するPFM制御をして、スイッチング素子TR1、スイッチング素子TR2を交互に駆動する。
【0016】
電力演算回路SAは、入力電流検出信号Idと入力電圧検出信号Ivとを入力してインバータの入力電力を演算する。また、電力設定回路PCは、予め定めた電力設定信号Pcを設定する。
【0017】
非接触温度センサNCは、図3に示す、トッププレートPLの下面で誘導加熱コイルHLの中心部の予め定めた位置に設置し、上記非接触温度センサNCは高精度の2つのサーミスタと赤外線吸収膜で形成され、トッププレートPLから放射される赤外線を赤外線吸収膜で熱に変換し、この熱を検知用サーミスタで温度を測定し、もう一つのサーミスタは温度補償用として周囲温度を測定し、この2つのサーミスタの出力を演算してトッププレートPLの中央部周辺の温度を正確に検出して温度センサ信号Ncとして出力する。
【0018】
温度検出判別回路TAは、下記に示す温度上昇限界値T3未満の予め定めた第2の温度上昇限界値T2を設定し、温度センサ信号Ncの値と上記第2の温度上昇限界値T2とを比較して温度センサ信号Ncの値が上記第2の温度上昇限界値T2の値を超えている間は温度検出判別信号taを出力する。
【0019】
電力制限回路OAは、抵抗器R1、抵抗器R2、抵抗器R3、第1のアナログスイッチAS1、オペアンプOP1及びオペアンプOP2によって形成されている。上記電力制限回路OAは減衰回路として動作し、温度検出判別信号taが入力してアナログスイッチAS1が導通すると抵抗器R3と抵抗器R1とが並列に接続されて、通常の電力設定信号の値(例えば、1/2)を減衰し、電力設定信号Pcを小さくして電力制限信号Oaとして出力し、上記温度検出判別信号taが入力されずアナログスイッチAS1が遮断すると電力設定信号Pcの値を小さくせずに出力する。
【0020】
差動増幅回路COは、電力制限信号Oaと電力演算信号Saとを差動増幅して、差動増幅信号ΔIの値を出力する。制御処理回路SCは、加熱スイッチTSから加熱開始信号Scが入力されると動作を開始し、差動増幅信号ΔIの値に応じて演算を行い、上記差動増幅信号ΔIの値が大きいときに制御処理信号Scの値を小さくし、逆に差動増幅信号ΔIの値が小さいときは制御処理信号Scの値を大きくする。
【0021】
スイッチング素子駆動回路SDは、制御処理回路SCから入力される制御処理演算信号Scの値が小さいとき、PFM制御の周波数を高くして誘導加熱コイルHLと共振コンデンサC2及びC3からなる共振タンクのインピーダンス値を大きくして誘導加熱コイルHLに流れる電流を小さくする。逆に制御演算信号Scの値が大きいときは、PFM制御の周波数を低くして共振タンクのインピーダンス値を小さくして誘導加熱コイルHLに流れる電流を大きくすることによって、誘導加熱コイルHLに流れる電流制御をおこなう。
【0022】
温度保護回路TPは、第2の温度上昇限界値T2以上である予め定めた温度上昇限界値T3を設定し、温度センサ信号Ncの値と上記温度上昇限界値T3とを比較し、上記温度センサ信号Ncの値が上記温度上昇限界値T3を超えているときは温度保護信号Tpを出力する。制御処理回路SCは温度保護信号Tpが入力されると制御処理信号Scの出力を禁止するとともに上記インバータ回路の出力を遮断する。
【0023】
図4は、本発明のトッププレートPLの中央部周辺の動作時の温度特性図である。図4を用いて本発明の動作を説明する。
【0024】
電磁誘導加熱調理器IHは加熱スイッチTSを起動させると、電力設定回路PCによって設定された電力設定信号Pcの値に応じて加熱を開始し、加熱が正常なときは、トッププレートPLの中央部周辺の温度が図4に示すように、正常温度範囲内で温度が制御される。
【0025】
図4に示す時刻t=t1において、鍋PBの内部の水分等が蒸発して空炊きが発生すると急激な負荷変動が生じ、鍋PBの急激な温度上昇によって接したトッププレートPLの温度も上昇する。更に温度が上昇して時刻t=t3において、温度センサ信号Ncの値が第2の温度上昇限界値T2を超えたときに温度検出判別回路TAは温度検出判別信号taを出力する。
【0026】
温度検出判別信号taが電力制限回路OAに入力されると、上記電力制限回路OAは電力設定信号を予め定めた値に小さくして電力制限信号Oaを出力する。差動増幅回路COは、上記電力制限信号Oaと乗算処理信号Saとを差動増幅して、差動増幅信号ΔIの値を出力する。このとき、差動増幅信号ΔIの値は大きくなると共に制御処理演算信号Scの値は小さくなる。
【0027】
スイッチング素子駆動回路SDは、制御処理演算信号Scの値が小さくなると、PFM制御の周波数を高くして共振タンクのインピーダンス値を大きくし誘導加熱コイルHLに流れる電流値を小さくして、図4に示す時刻t=t3以後の温度上昇を抑制する。
【0028】
上記電力設定信号を小さくしてもトッププレートPLの温度上昇を抑制しきれず、図4に示す時刻t=t5において、温度センサ信号Ncの値が温度上昇限界値T3を超えたときに、温度保護回路TPは温度異常と判断して温度保護信号Tpを出力し、制御処理回路SCの動作を禁止してインバータ回路の出力を遮断する。
【0029】
電磁誘導加熱調理器IHを復帰させるには、トッププレートPLの温度が低下して温度上昇限界値T3より低くい図示省略の予め定めた保護解除温度T4以下になると温度保護信号Tpが解除され、図1に示すリセット回路RSを起動することにより制御処理回路SCが動作可能となり、鍋PBの加熱が開始される。
【0030】
[実施例2]
図2は、実施例2の電磁誘導加熱調理器の電気接続図である。同図において、図1に示す本発明の電磁誘導加熱調理器の電気接続図と同一符号は、同一動作を行なうので説明は省略して相違する動作について説明する。
【0031】
ファン制御回路FPは、加熱開始信号Tsが入力されると動作を開始し、第2の温度上昇限界値T2未満である予め定めた正常温度上昇限界値T1を設定し、温度センサ信号Ncの値が上記正常温度上昇限界値T1より小さい間は送風ファンFAを通常で回転させ、温度センサ信号Ncの値が上記正常温度上昇限界値T1を超えたときに異常温度上昇が継続していると判断してファン制御信号Fpの値を増加して(例えば、通常駆動信号Fdの2倍)出力し、送風ファンFAの回転数を増加して電磁誘導加熱調理器の内部の冷却を強化する。
【0032】
図4は、実施例2のトッププレートPLの中央部周辺の動作時の温度特性図である。図4を用いて本発明の動作を説明する。
【0033】
電磁誘導加熱調理器IHは加熱スイッチTSを起動させると、電力設定回路PCによって設定された電力設定信号Pcの値に応じて加熱を開始し、加熱が正常のときは、トッププレートPLの中央部周辺の温度が図4に示すように、正常温度範囲内で温度が制御される。
【0034】
図4に示す時刻t=t1において、鍋PBの内部の水分等が蒸発して空炊きが発生すると急激な負荷変動が生じ、上記鍋PBの急激な温度上昇によって接したトッププレートPLの温度も上昇する。
【0035】
温度上昇が抑制しきれずに時刻t=t2において、上記温度センサ信号Ncの値が上記正常温度上昇限界値T1を超えたときは、ファン制御回路FPは異常温度上昇が発生したと判断してファン制御信号Fpの値を増加して送風ファンFAの回転数を増加して、電磁誘導加熱調理器の内部の冷却を強化して鍋PB又は上記トッププレートPLの温度上昇を抑制する。
【0036】
更に温度が上昇して時刻t=t4において、温度センサ信号Ncの値が第2の温度上昇限界値T2を超えているときは電力設定信号を所定の値に小さくしてインバータ回路の出力を低減して温度上昇を抑制する。
【0037】
【発明の効果】
トッププレートの温度を測定するためにサーミスタ素子又はサーモスタットを用いてトッププレートに直接接触させて温度を測定していたが、本発明では非接触温度センサを使用するために、上記トッププレートに接触させるための複雑な固定止具の必要がなくなる。また、サーミスタ素子又はサーモスタットではトッププレートの温度を一点で検出するために精度の問題があったが、非接触温度センサを使用することで上記トッププレートの温度を比較的広い範囲で測定可能となるために、上記トッププレートの測定温度の精度が大きく改善できる。
【図面の簡単な説明】
【図1】本発明の電磁誘導加熱調理器の電気接続図である。
【図2】実施例2の電磁誘導加熱調理器の電気接続図である。
【図3】本発明の電磁誘導加熱調理器の全体構成図である。
【図4】本発明のトッププレート中央部周辺の動作時の温度特性図である。
【図5】従来技術の電磁誘導加熱調理器の全体構成図である。
【符号の説明】
AS アナログスイッチ
CB コイルベース
CO 差動増幅回路
C1 平滑コンデンサ
C2 共振コンデンサ
C3 共振コンデンサ
DR1 整流回路
FA 送風ファン
FD ファン駆動回路
FP ファン制御回路
HL 誘導加熱コイル
HS 高周波電源
ID 入力電流検出回路
IH 電磁誘導加熱調理器
IV 入力電圧検出回路
NC 非接触温度センサ
OA 電力制限回路
OP1 第1の増幅回路
OP2 第2の増幅回路
PC 電力設定回路
PB 鍋
PL トッププレート
RS リセット回路
R1 抵抗器
R2 抵抗器
R3 抵抗器
SA 電力演算回路
SC 制御処理回路
SD スイッチング素子駆動回路
TA 温度検出判別回路
TD 温度検出部
TP 温度保護回路
TS 加熱スイッチ
TR1 スイッチング素子
TR2 スイッチング素子
Fd ファン駆動信号
Fp ファン制御信号
Id 入力電流検出信号
Iv 入力電圧検出信号
Nc 温度センサ信号
Oa 電力制限信号
Pc 電力設定信号
Sa 電力演算信号
Sc 制御処理信号
Ta 温度検出判別信号
Tp 温度保護信号
Ts 加熱開始信号
ΔI 差動増幅信号
T1 正常温度上昇限界値
T2 第2の温度上昇限界値
T3 温度上昇限界値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic induction heating cooker that uses an inverter circuit to supply a high-frequency current to an induction heating coil to heat a cooking pan by electromagnetic induction, and in particular, the temperature of a top plate installed on the upper surface of the induction heating coil. It is related with the electromagnetic induction heating cooking appliance which has the function which can measure and can discriminate | determine whether the cooking pan is heated appropriately.
[0002]
[Prior art]
FIG. 5 is an overall configuration diagram of a conventional electromagnetic induction heating cooker.
[0003]
In FIG. 5, IH indicates an electromagnetic induction heating cooker, PB indicates a pan that is induction heated by the electromagnetic induction heating cooker IH, and the electromagnetic induction heating cooker IH includes a top plate PL formed of ceramics or the like, and a spiral. An induction heating coil HL that is wound in a circular shape and has a blank in the center, a coil base CB that supports the induction heating coil HL, and a temperature detection unit TD for detecting the heating temperature of the pan PB, , And a high frequency power supply HS for supplying a high frequency current to the induction heating coil HL.
[0004]
In order to detect the heating temperature of the pan PB through the top plate PL, the temperature detection unit TD holds a temperature sensor element such as a glass-sealed thermistor (not shown) and the temperature sensor element. A sensor holder that is installed between the sensor holder and the coil base CB, and a coil spring for contacting the temperature sensor element to the lower surface of the top plate PL via the sensor holder, and induction heating. The magnetic flux from the coil HL is composed of a lead wire such as a jumet wire of the temperature sensor element and a copper ring that serves as a magnetic shield so as not to interlink with the magnetic coil spring.
[0005]
From the above, a nonmagnetic conductor, for example, a hollow copper ring, installed on the side surface around the temperature sensor element, can have a magnetic shielding action against the magnetic flux from the induction heating coil HL. As a result, the error of the measured value of the heating temperature of the pan can be reduced. However, a complicated fixing stop for contacting the top plate PL is required.
(See Patent Document 1)
[0006]
The cooking device of prior art 2 is a cooking device that heats and cooks the cooked product by heating a pan containing the cooked product by gas combustion means. This cooking device includes temperature detecting means for detecting the outer surface temperature of the pan and heating control means for gas combustion means for heating the pan. The temperature detection means is set on the gas combustion means and detects the outer surface temperature of the pan without contact with the pan. Then, the control means sets a temperature suitable for heating the cooked food, and subtracts a steady deviation obtained corresponding to the outer surface temperature of the pan detected by the temperature detecting means from the outer surface temperature. By calculating the temperature of the cooked food in the pan, the calculated temperature is compared with the set temperature, and if the calculated temperature is equal to or lower than the set temperature, the amount of combustion gas supplied to the gas combustion means is increased. When the calculated temperature exceeds the set temperature, the supply amount of the combustion gas to the gas combustion means is decreased. As a result, the food can be cooked at a temperature suitable for the food.
(See Patent Document 2)
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-100466 [Patent Document 2]
Japanese Patent Laid-Open No. 8-178295
[Problems to be solved by the invention]
In order to measure the temperature of the top plate, a thermistor element, a thermostat or the like is used, and the temperature is measured by directly contacting the lower surface of the top plate. However, a complicated fixing stop for contacting the top plate is required. Further, since the temperature of the top plate is detected at a single point, there is a problem in the accuracy of the measured temperature.
[0009]
[Means for Solving the Problems]
The invention of claim 1 includes a resonant capacitor, an induction heating coil that forms a series resonance with the resonant capacitor, a rectifier circuit that rectifies a commercial AC power source and converts it into a DC voltage, and a DC voltage of the rectifier circuit as an input. An inverter circuit that supplies a high-frequency current to the induction heating coil; a power calculation circuit that calculates an input power of the inverter circuit and outputs a power calculation signal; a power setting circuit that outputs a predetermined power setting signal; A differential amplifier circuit that differentially amplifies a power calculation signal and the power setting signal, a control processing circuit that controls an output frequency of the inverter circuit according to the differential amplification signal of the differential amplifier circuit, and an internal cooling And a top plate installed close to the top surface of the induction heating coil, and a pan is placed on the top surface of the top plate for heating. In magnetic induction heating cooker,
A non-contact temperature sensor for detecting the temperature of the lower surface of the top plate in a non-contact manner and outputting a temperature sensor signal; and when the value of the temperature sensor signal exceeds a predetermined normal temperature rise limit value, A fan control circuit for increasing the number of revolutions to moderate the temperature rise of the pan, and the inverter circuit when the value of the temperature sensor signal exceeds a predetermined second temperature rise limit value higher than the normal temperature rise limit value A power limiting circuit for attenuating the value of the power setting signal for controlling the output of the inverter, and the inverter when the value of the temperature sensor signal exceeds a predetermined temperature rise limit value higher than the second temperature rise limit value An electromagnetic induction heating cooker comprising a temperature protection circuit that cuts off an output of the circuit.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an electrical connection diagram of an electromagnetic induction heating cooker according to the present invention. FIG. 3 is an overall configuration diagram of the electromagnetic induction heating cooker shown in FIG. 1.
[0012]
In FIG. 1, the rectifier circuit DR1 rectifies the output of the commercial AC power source and converts it into a DC voltage, and the smoothing capacitor C1 smoothes the voltage converted into DC.
[0013]
The input current detection circuit ID detects an input current value and outputs an input current detection signal Id, and the input voltage detection circuit IV detects an input voltage value and outputs an input voltage detection signal Iv.
[0014]
The switching element TR1 and the switching element TR2 are switching elements that form a half-bridge type inverter circuit, and for example, MOSFETs or IGBTs are used. The induction heating coil HL forms a series resonance with the resonance capacitor C2 and the resonance capacitor C3. The top plate PL is installed close to the upper surface of the induction heating coil HL, and is heated by electromagnetic induction with a pan PB. When the heating start signal Ts of the heating switch TS is input, the fan drive circuit FD outputs a fan drive signal Fd that rotates at the normal rotation speed. The blower fan FA rotates the fan at a normal rotational speed when the fan drive signal Fd is input.
[0015]
The switching element drive circuit SD performs PFM control that modulates the pulse frequency with a constant pulse width ratio according to the value of the control processing signal Sc from the control processing circuit SC, and controls the switching element TR1 and the switching element TR2. Drive alternately.
[0016]
The power calculation circuit SA inputs the input current detection signal Id and the input voltage detection signal Iv and calculates the input power of the inverter. The power setting circuit PC sets a predetermined power setting signal Pc.
[0017]
The non-contact temperature sensor NC is installed at a predetermined position in the center of the induction heating coil HL on the lower surface of the top plate PL shown in FIG. 3, and the non-contact temperature sensor NC includes two high-precision thermistors and infrared absorption. An infrared ray film is used to convert infrared rays emitted from the top plate PL into heat, and this heat is measured with a detection thermistor. The other thermistor measures ambient temperature for temperature compensation, The outputs of the two thermistors are calculated to accurately detect the temperature around the central portion of the top plate PL and output it as a temperature sensor signal Nc.
[0018]
The temperature detection determination circuit TA sets a predetermined second temperature rise limit value T2 less than the temperature rise limit value T3 shown below, and calculates the value of the temperature sensor signal Nc and the second temperature rise limit value T2. In comparison, while the value of the temperature sensor signal Nc exceeds the second temperature rise limit value T2, the temperature detection determination signal ta is output.
[0019]
The power limiting circuit OA is formed by a resistor R1, a resistor R2, a resistor R3, a first analog switch AS1, an operational amplifier OP1, and an operational amplifier OP2. The power limiting circuit OA operates as an attenuation circuit. When the temperature detection determination signal ta is input and the analog switch AS1 is turned on, the resistor R3 and the resistor R1 are connected in parallel, and the value of the normal power setting signal ( For example, when 1/2) is attenuated, the power setting signal Pc is decreased and output as the power limit signal Oa, and the temperature detection determination signal ta is not input and the analog switch AS1 is cut off, the value of the power setting signal Pc is decreased. Output without
[0020]
The differential amplifier circuit CO differentially amplifies the power limit signal Oa and the power calculation signal Sa, and outputs the value of the differential amplified signal ΔI. The control processing circuit SC starts operation when the heating start signal Sc is input from the heating switch TS, performs calculation according to the value of the differential amplification signal ΔI, and when the value of the differential amplification signal ΔI is large The value of the control processing signal Sc is decreased, and conversely, when the value of the differential amplification signal ΔI is small, the value of the control processing signal Sc is increased.
[0021]
When the value of the control processing calculation signal Sc input from the control processing circuit SC is small, the switching element drive circuit SD increases the frequency of the PFM control to increase the impedance of the resonant tank including the induction heating coil HL and the resonant capacitors C2 and C3. The value is increased to reduce the current flowing through the induction heating coil HL. Conversely, when the value of the control calculation signal Sc is large, the current flowing through the induction heating coil HL is increased by lowering the frequency of the PFM control and decreasing the impedance value of the resonant tank to increase the current flowing through the induction heating coil HL. Take control.
[0022]
The temperature protection circuit TP sets a predetermined temperature rise limit value T3 that is equal to or greater than the second temperature rise limit value T2, compares the value of the temperature sensor signal Nc with the temperature rise limit value T3, and compares the temperature sensor When the value of the signal Nc exceeds the temperature rise limit value T3, the temperature protection signal Tp is output. When the temperature protection signal Tp is input, the control processing circuit SC prohibits the output of the control processing signal Sc and cuts off the output of the inverter circuit.
[0023]
FIG. 4 is a temperature characteristic diagram during operation around the center of the top plate PL of the present invention. The operation of the present invention will be described with reference to FIG.
[0024]
When the electromagnetic induction heating cooker IH activates the heating switch TS, it starts heating according to the value of the power setting signal Pc set by the power setting circuit PC. When the heating is normal, the central portion of the top plate PL As shown in FIG. 4, the ambient temperature is controlled within a normal temperature range.
[0025]
At time t = t1 shown in FIG. 4, when the water in the pan PB evaporates and empty cooking occurs, a rapid load fluctuation occurs, and the temperature of the top plate PL that is in contact with the pan PB rises rapidly. To do. When the temperature further rises and at time t = t3, the temperature detection determination circuit TA outputs the temperature detection determination signal ta when the value of the temperature sensor signal Nc exceeds the second temperature increase limit value T2.
[0026]
When the temperature detection determination signal ta is input to the power limit circuit OA, the power limit circuit OA reduces the power setting signal to a predetermined value and outputs the power limit signal Oa. The differential amplifier circuit CO differentially amplifies the power limiting signal Oa and the multiplication processing signal Sa, and outputs a value of the differential amplified signal ΔI. At this time, the value of the differential amplification signal ΔI increases and the value of the control processing calculation signal Sc decreases.
[0027]
When the value of the control processing calculation signal Sc decreases, the switching element drive circuit SD increases the frequency of the PFM control to increase the impedance value of the resonant tank, thereby reducing the value of the current flowing through the induction heating coil HL. The temperature rise after the time t = t3 shown is suppressed.
[0028]
Even if the power setting signal is reduced, the temperature rise of the top plate PL cannot be suppressed, and when the value of the temperature sensor signal Nc exceeds the temperature rise limit value T3 at time t = t5 shown in FIG. The circuit TP determines that the temperature is abnormal and outputs a temperature protection signal Tp, prohibits the operation of the control processing circuit SC, and cuts off the output of the inverter circuit.
[0029]
In order to return the electromagnetic induction heating cooker IH, the temperature protection signal Tp is canceled when the temperature of the top plate PL decreases and becomes lower than a predetermined protection release temperature T4 (not shown) that is lower than the temperature rise limit value T3, By starting the reset circuit RS shown in FIG. 1, the control processing circuit SC becomes operable, and heating of the pan PB is started.
[0030]
[Example 2]
FIG. 2 is an electrical connection diagram of the electromagnetic induction heating cooker according to the second embodiment. In the figure, the same reference numerals as those in the electrical connection diagram of the electromagnetic induction heating cooker of the present invention shown in FIG.
[0031]
The fan control circuit FP starts operating when the heating start signal Ts is input, sets a predetermined normal temperature rise limit value T1 that is less than the second temperature rise limit value T2, and sets the value of the temperature sensor signal Nc. Is smaller than the normal temperature rise limit value T1, the blower fan FA is rotated normally, and it is determined that the abnormal temperature rise continues when the value of the temperature sensor signal Nc exceeds the normal temperature rise limit value T1. Then, the value of the fan control signal Fp is increased and output (for example, twice the normal drive signal Fd), and the number of rotations of the blower fan FA is increased to enhance the cooling inside the electromagnetic induction heating cooker.
[0032]
FIG. 4 is a temperature characteristic diagram during operation around the center of the top plate PL of the second embodiment. The operation of the present invention will be described with reference to FIG.
[0033]
When the electromagnetic induction heating cooker IH activates the heating switch TS, it starts heating according to the value of the power setting signal Pc set by the power setting circuit PC. When the heating is normal, the central portion of the top plate PL As shown in FIG. 4, the ambient temperature is controlled within a normal temperature range.
[0034]
At time t = t1 shown in FIG. 4, when the water in the pan PB evaporates and empty cooking occurs, a rapid load fluctuation occurs, and the temperature of the top plate PL in contact with the rapid temperature rise of the pan PB is also To rise.
[0035]
If the temperature sensor signal Nc exceeds the normal temperature rise limit value T1 at time t = t2 when the temperature rise cannot be suppressed, the fan control circuit FP determines that an abnormal temperature rise has occurred and the fan The value of the control signal Fp is increased to increase the rotational speed of the blower fan FA, and the cooling inside the electromagnetic induction heating cooker is strengthened to suppress the temperature rise of the pan PB or the top plate PL.
[0036]
Further, when the temperature rises and the value of the temperature sensor signal Nc exceeds the second temperature rise limit value T2 at time t = t4, the output of the inverter circuit is reduced by reducing the power setting signal to a predetermined value. To suppress the temperature rise.
[0037]
【The invention's effect】
In order to measure the temperature of the top plate, the temperature is measured by directly contacting the top plate using a thermistor element or thermostat. In the present invention, the non-contact temperature sensor is used to contact the top plate. Eliminates the need for complicated fixing stops. Further, the thermistor element or thermostat has a problem of accuracy because the temperature of the top plate is detected at a single point. However, the temperature of the top plate can be measured in a relatively wide range by using a non-contact temperature sensor. Therefore, the accuracy of the measurement temperature of the top plate can be greatly improved.
[Brief description of the drawings]
FIG. 1 is an electrical connection diagram of an electromagnetic induction heating cooker according to the present invention.
FIG. 2 is an electrical connection diagram of the electromagnetic induction heating cooker according to the second embodiment.
FIG. 3 is an overall configuration diagram of an electromagnetic induction heating cooker according to the present invention.
FIG. 4 is a temperature characteristic diagram during operation around the central portion of the top plate of the present invention.
FIG. 5 is an overall configuration diagram of a conventional electromagnetic induction heating cooker.
[Explanation of symbols]
AS analog switch CB coil base CO differential amplifier circuit C1 smoothing capacitor C2 resonant capacitor C3 resonant capacitor DR1 rectifier circuit FA blower fan FD fan drive circuit FP fan control circuit HL induction heating coil HS high frequency power supply ID input current detection circuit IH electromagnetic induction heating Cooker IV Input voltage detection circuit NC Non-contact temperature sensor OA Power limiting circuit OP1 First amplifier circuit OP2 Second amplifier circuit PC Power setting circuit PB Pan PL Top plate RS Reset circuit R1 Resistor R2 Resistor R3 Resistor SA Power calculation circuit SC Control processing circuit SD Switching element drive circuit TA Temperature detection discrimination circuit TD Temperature detection part TP Temperature protection circuit TS Heating switch TR1 Switching element TR2 Switching element Fd Fan drive signal Fp Fan control signal Id input Current detection signal Iv Input voltage detection signal Nc Temperature sensor signal Oa Power limit signal Pc Power setting signal Sa Power calculation signal Sc Control processing signal Ta Temperature detection determination signal Tp Temperature protection signal Ts Heating start signal ΔI Differential amplification signal T1 Normal temperature rise Limit value T2 Second temperature rise limit value T3 Temperature rise limit value

Claims (1)

共振コンデンサと、前記共振コンデンサとともに直列共振を形成する誘導加熱コイルと、商用交流電源を整流して直流電圧に変換する整流回路と、前記整流回路の直流電圧を入力として前記誘導加熱コイルに高周波電流を供給するインバータ回路と、前記インバータ回路の入力電力を演算して電力演算信号を出力する電力演算回路と、予め定めた電力設定信号を出力する電力設定回路と、前記電力演算信号と前記電力設定信号とを差動増幅する差動増幅回路と、前記差動増幅回路の差動増幅信号に応じて前記インバータ回路の出力周波数を制御する制御処理回路と、内部を冷却する送風ファンと、前記誘導加熱コイルの上面に近接して設置するトッププレートとを具備し、前記トッププレートの上面に鍋を置いて加熱する電磁誘導加熱調理器において、
前記トッププレートの下面の温度を非接触で検出して温度センサ信号を出力する非接触温度センサと、前記温度センサ信号の値が予め定めた正常温度上昇限界値を超えたときに前記送風ファンの回転数を増加させ鍋の温度上昇を緩やかにするファン制御回路と、前記温度センサ信号の値が前記正常温度上昇限界値より高い予め定めた第2の温度上昇限界値を超えたとき前記インバータ回路の出力を制御する前記電力設定信号の値を減衰する電力制限回路と、前記温度センサ信号の値が前記第2の温度上昇限界値より高い予め定めた温度上昇限界値を超えたときに前記インバータ回路の出力を遮断する温度保護回路とを、具備したことを特徴とする電磁誘導加熱調理器。
A resonant capacitor; an induction heating coil that forms a series resonance with the resonant capacitor; a rectifier circuit that rectifies a commercial AC power supply to convert it into a DC voltage; and a high-frequency current in the induction heating coil using the DC voltage of the rectifier circuit as an input An inverter circuit that supplies power, a power calculation circuit that calculates an input power of the inverter circuit and outputs a power calculation signal, a power setting circuit that outputs a predetermined power setting signal, the power calculation signal and the power setting A differential amplifier circuit for differentially amplifying a signal; a control processing circuit for controlling an output frequency of the inverter circuit in accordance with a differentially amplified signal of the differential amplifier circuit; a blower fan for cooling the interior; and the induction An electromagnetic induction heating cooker comprising: a top plate installed close to the top surface of the heating coil; and a pan placed on the top plate for heating Oite,
A non-contact temperature sensor for detecting the temperature of the lower surface of the top plate in a non-contact manner and outputting a temperature sensor signal; and when the value of the temperature sensor signal exceeds a predetermined normal temperature rise limit value, A fan control circuit for increasing the number of revolutions to moderate the temperature rise of the pan, and the inverter circuit when the value of the temperature sensor signal exceeds a predetermined second temperature rise limit value higher than the normal temperature rise limit value A power limiting circuit for attenuating the value of the power setting signal for controlling the output of the inverter, and the inverter when the value of the temperature sensor signal exceeds a predetermined temperature rise limit value higher than the second temperature rise limit value An electromagnetic induction heating cooker comprising a temperature protection circuit that cuts off an output of the circuit.
JP2003011095A 2003-01-20 2003-01-20 Electromagnetic induction heating cooker Expired - Fee Related JP4176491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011095A JP4176491B2 (en) 2003-01-20 2003-01-20 Electromagnetic induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011095A JP4176491B2 (en) 2003-01-20 2003-01-20 Electromagnetic induction heating cooker

Publications (2)

Publication Number Publication Date
JP2004227804A JP2004227804A (en) 2004-08-12
JP4176491B2 true JP4176491B2 (en) 2008-11-05

Family

ID=32900096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011095A Expired - Fee Related JP4176491B2 (en) 2003-01-20 2003-01-20 Electromagnetic induction heating cooker

Country Status (1)

Country Link
JP (1) JP4176491B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307924B (en) * 2008-06-06 2010-06-16 叶小舟 Electromagnetic oven with magnetic induction temperature measuring device
JP5517720B2 (en) * 2010-04-21 2014-06-11 日立アプライアンス株式会社 Induction heating cooker
US9444266B2 (en) 2013-07-17 2016-09-13 Koninklijke Philips N.V. Wireless inductive power transfer with temperature control of the receiver
KR101938217B1 (en) * 2017-02-08 2019-01-15 엘지전자 주식회사 Induction heat cooking apparatus and method for driving the same

Also Published As

Publication number Publication date
JP2004227804A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
EP2405712B1 (en) Induction heating device
US9491808B2 (en) Induction heating cookware
WO2014068648A1 (en) Induction heating cooker
JP4444062B2 (en) Induction heating cooker
JP4176491B2 (en) Electromagnetic induction heating cooker
JP2005011618A (en) Induction heating cooking device
KR20050103704A (en) Inverter circuit's control apparatus of induction heating cooker
JP5747178B2 (en) Induction heating cooker and its program
JP5218286B2 (en) Induction heating cooker
JP5590987B2 (en) Induction heating cooker
JP3281732B2 (en) Induction heating device
JP5182172B2 (en) Induction heating cooker
JP2877435B2 (en) Cooker
JP4115384B2 (en) Electromagnetic cooker
CN115429093B (en) Cooking device
CN217011235U (en) Signal detection assembly and household appliance
JP2004247237A (en) Induction heating cooker
JP2005353533A (en) Induction heating cooking device
JP5661141B2 (en) rice cooker
JP2010146933A (en) Induction heating cooker
JPH08148266A (en) Induction heating cooker
JP2009238686A (en) Induction heating cooker
JPH0439197B2 (en)
KR20220096972A (en) Induction heating type cooktop and operating method thereof
JPS62180984A (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees