JPH0321636A - Aromatic polyamide oligomer having terminal unsaturated group and production thereof - Google Patents

Aromatic polyamide oligomer having terminal unsaturated group and production thereof

Info

Publication number
JPH0321636A
JPH0321636A JP15802289A JP15802289A JPH0321636A JP H0321636 A JPH0321636 A JP H0321636A JP 15802289 A JP15802289 A JP 15802289A JP 15802289 A JP15802289 A JP 15802289A JP H0321636 A JPH0321636 A JP H0321636A
Authority
JP
Japan
Prior art keywords
aromatic
aromatic polyamide
unsaturated group
terminal unsaturated
polyamide oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15802289A
Other languages
Japanese (ja)
Other versions
JPH0725881B2 (en
Inventor
Tadayuki Hosogane
細金 忠幸
Eiichiro Takiyama
栄一郎 滝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP1158022A priority Critical patent/JPH0725881B2/en
Publication of JPH0321636A publication Critical patent/JPH0321636A/en
Publication of JPH0725881B2 publication Critical patent/JPH0725881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE:To obtain the subject oligomer useful as a raw material for thermosetting aromatic polyamide having excellent processability by reacting an aromatic diamine, an aromatic monoamine having terminal unsaturated group and an aromatic dicarboxylic acid dihalide in the presence of a hydrogen halide acceptor. CONSTITUTION:The objective oligomer of formula [A and A' are radically polymerizable unsaturated group (A may be same as A'); R is H or lower alkyl; R1 and R2 are bivalent aromatic group; n is 1-15] can be produced by reacting (A) an aromatic diamine (e.g. m-phenylenediamine), (B) an aromatic monoamine having terminal unsaturated group (e.g. m-isopropenylaniline) and (C) an aromatic dicarboxylic acid dihalide (preferably isophthaloyl dichloride) in the presence of a hydrogen halide acceptor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐熱性合成樹脂、特に熱硬化性を付与した耐熱
性芳香族ボリアミドとして有用な才リゴマー及びその製
造方法に関する. [従来の技術] プラスチック工業の需要が高度化するにつれて、特殊な
性質を持つ工業素材が必要とされるようになり,この傾
向は産業部門の高度化と相まって急速に展開しつつある
. 耐熱性向上の要求は、プラスチック、フィルム、繊維、
ラミネート、積層板,接着剤等耐熱性を要求される分野
の工業材料に耐熱性を付与し,市場を拡大すること及び
新しい機能をもって広範な新しい分野への進出を計るた
めでもある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polyoligomer useful as a heat-resistant synthetic resin, particularly a heat-resistant aromatic polyamide imparted with thermosetting properties, and a method for producing the same. [Prior Art] As the demands of the plastics industry become more sophisticated, industrial materials with special properties are required, and this trend is rapidly developing as the industrial sector becomes more sophisticated. The demand for improved heat resistance is felt in plastics, films, fibers,
This is also to add heat resistance to industrial materials in fields that require heat resistance, such as laminates, laminates, and adhesives, to expand the market, and to expand into a wide range of new fields with new functions.

このような要求に対し、芳香族ボリアミド、ボノイミド
、ボリスルホン,ポリフェニレン才キサイド等エンジニ
ャリングプラスチック又と呼ばれる一群の合成樹脂が既
に開発され、従来の合成樹脂とは毘なった新規な機能を
有するプラスチックとして工業生産され、新しい需要分
野を開拓しつつあり,アラミドの名称で知られている芳
香族ボリアミドはその中の一つである. 芳香族ボリアミドとしては、デュ・ボン社で開発された
ボリパラフェニレンテレフタルアミド(商品名:ケブラ
ー),ポリメタフェニレンイソフタルアミド(商品名:
ノーメックス又はHT−1)はその代表的なタイプであ
る. これらのボリアミド類は.そのすべてが熱可塑性合成樹
脂に分類されるもので,才リゴマーを熱硬化させるタイ
プのボリアミド類は未だ見出されていなかった. このため,通常の熱可塑性合成樹脂に比して高融点を有
するとは言え、温度の上昇に伴い,硬度,強度等の低下
は避けられず、軟化点以上での使用は事実上不可能であ
った. 熱硬化性の芳香族ボリアミドがなかった理由としては,
一般的に融点が従来の熱可塑性合成樹脂に比して充分高
かったこと、また不飽和結合の導入は成形工程中に好ま
しからざるゲル化を惹起する危険が多いと判断されてい
たためと考える.[発明が解決しようとする課題] 芳香族ボリアミドは、かなりの高温においても比較的安
定であり,電気特性、機械的強度も優れており,化学的
安定性も高く優れた耐熱性高分子である. 本発明はこれらの性質を失わずに,更に高温における機
械的強度、化学的安定性を高めることを目的としたもの
である. [課題を解決するための千段1 本発明者らは成形材料として、あるいは積層板として成
形加工する場合に、比較的融点が低く、加熱、加圧下で
所望の形状に成形可能であり、しかも比較的緩和な条件
で硬化でき、硬化後充分な耐熱性、機械的強度および化
学的安定性等を有する芳香族ボリアミドを得るために、
芳香族ジアミン、末端不飽和基を有する脂肪族モノアミ
ン及び芳香族ジカルボン酸ジハライドをハロゲン化水素
受容体の存在下で反応させて、一般式 で表わされる末端不飽和基を有する不飽和ポリアミドオ
リゴマーを得,このものはラジカル発生触媒の存在下で
硬化可能であり,この硬化した芳香族ボリアミドは前記
の優れた性質を有することを見出し,本発明を完成する
に至った. 本発明の末端不飽和基を有する芳香族ポリアミドオリゴ
マーは,一例として次の反応式によって示すことができ
る. (以下余白) (芳香族ジカルポン酸ジハライド) (芳香族ポリアミドオリゴマー) 反応を円滑に進行させるために、副生する塩化水素の受
容体が必要であって、一般的には第3級アミン又は苛性
アルカリの使用が便利である.この場合のnはlから1
5、好ましくは3ないし7程度の値が成形性の容易さか
ら有利であり、この段階での高分子化は特に必要でない
.この反応は一般にアミン類を水相に,酸クロライドを
水に溶解しない不活性有機溶媒に混合して、界面重縮合
反応を行なうか、あるいは両者を不活性有機溶媒に溶解
し、低温で縮合させる低温溶液重縮合反応により行なう
ことができる. 本発明に使用できる芳香族ジアミンとしては、例えばメ
タフエニレンジアミン、4.4゛−ジアミノジフェニル
メタン、4.4゛−ジアミノジフエニルプロパン. 3
.3’−ジメチル−4.4゛−ジアミノジフエニルメタ
ン、4、4゜−ジアミノジフエニルエーテル、3.4゜
−ジアミノジフェニルエーテル、3.3゜一ジアミノジ
フエニルスルホン、4.4゜−ジアミノジフエニルスル
ホン,ジアニシジン、2.4−t−ルイレンジアミン、
2.4/2.6 − }ルイレンジアミン混合物,1.
3−ビス(3−アミノフエノキシ)ベンゼンなどが利用
可能であり,二種類又はそれ以上の混合使用ら可能であ
る. 末端不飽和基を有する芳香族モノアミンとしては、m−
イソブロベニルアニリン、p−インプロベニルアニリン
,0−アミノスチレン、m−アミノスチレン、p−アミ
ノスチレンなどが挙げられるが、末端不飽和ポリアミド
オリゴマーを低温で合成可能なこと,生成ポリアミドオ
リゴマーの安定性,人手性、価格等の点からm−イソブ
ロベニルアニリン、p−イソブロベニルアニリン,pー
アミノスチレンが最も普通に用いられる.なお,このア
ミンは遊離のアミンであっても、またハロゲン化水素酸
塩であっても良いが、ハロゲン化水素酸塩の場合は同時
にハロゲン化水素と結合する第3級アミン等の併用が必
要となる. また,本発明に使用できる芳香族ジカルボン酸ジハライ
ドとしては、芳香族二塩基酸のジクロライドが便利であ
り、例えばテレフタル酸ジクロライド,イソフタル酸ジ
クロライド、フタル酸ジクロライドあるいはその混合物
などが代表的である. 実用性から言えば、フタル酸ジクロライドは生成芳香族
ポリアミドの耐熱性が不充分であり,テレフタル酸ジク
ロライドを使用するときは耐熱性は充分であるが、得ら
れる芳香族ポリアミドオリゴマーの融点が高くなって取
扱性が困難になる傾向があり、イソフタル酸ジクロライ
ドが最も良く本発明の目的に合致する. この合成反応は比較的に化学量論的に反応は進行するの
で、前記[Al式のnを計算した上、必要量の末端不飽
和芳香族モノアミン、芳香族ジアミンおよび芳香族ジカ
ルボン酸ジハライドを反応させればよく,もし精密な調
整を必要とするときは簡単なテストによりそのモル比は
決定できる.この反応によって得られる芳香族ポリアミ
ドオリゴマーは既に説明した如く,その組成を容易に選
ぶことができ,200℃以下の温度で成形可能である. 本発明により合成された不飽和末端基を有する芳香族ポ
リアミドオリゴマーは、熱硬化あるいはラジカル発生触
媒の併用により硬化させることができ、耐熱性を格段に
向上させることが可能となる. ラジカル発生触媒は制限を加える必要はないが、工業的
にはバーオキザイドタイプが適しており,成形温度が1
00℃以上になる場合はいわゆる高温分解型の、例えば
ジクミルパーオキサイドタイプが用いられる. 使用量は1〜3phrが適当である. また,不飽和結合と共重合可能なモノマーの併用は、モ
ノマーが芳香族ポリアミドオリゴマーを溶解する場合に
可能であり、特に前記[AI式中のnが小さい値の場合
その適用範囲が広い.モノマーの併用は、縮合系全体の
軟化を促進し、成形性,作業性を良好にする反面、硬化
した芳香族ボリアミドの耐熱性を低下させる傾向がある
ので、目的に応じた添加量とすることが必要である。
In response to these demands, a group of synthetic resins called engineering plastics, such as aromatic polyamide, bonoimide, borisulfone, and polyphenylene oxide, have already been developed, and these plastics have new functions different from conventional synthetic resins. Aromatic polyamides, also known as aramids, are one of them, and are being industrially produced as industrial products and are opening up new demand fields. Examples of aromatic polyamides include polyparaphenylene terephthalamide (product name: Kevlar) and polymetaphenylene isophthalamide (product name:
Nomex or HT-1) is a typical type. These polyamides are. All of them are classified as thermoplastic synthetic resins, and a type of polyamide that can thermoset oligomers has not yet been discovered. For this reason, although it has a higher melting point than normal thermoplastic synthetic resins, as the temperature rises, hardness, strength, etc. inevitably decrease, and it is virtually impossible to use it above the softening point. there were. The reason why there was no thermosetting aromatic polyamide is as follows.
This is thought to be because the melting point was generally much higher than that of conventional thermoplastic synthetic resins, and the introduction of unsaturated bonds was considered to have a high risk of causing undesirable gelation during the molding process. [Problem to be solved by the invention] Aromatic polyamide is an excellent heat-resistant polymer that is relatively stable even at considerably high temperatures, has excellent electrical properties and mechanical strength, and has high chemical stability. .. The purpose of the present invention is to further improve mechanical strength and chemical stability at high temperatures without losing these properties. [1,000 Steps to Solve the Problems The present inventors have found that when molded as a molding material or as a laminate, it has a relatively low melting point, can be molded into a desired shape under heat and pressure, and is In order to obtain an aromatic polyamide that can be cured under relatively mild conditions and has sufficient heat resistance, mechanical strength, chemical stability, etc. after curing,
An aromatic diamine, an aliphatic monoamine having a terminal unsaturated group, and an aromatic dicarboxylic acid dihalide are reacted in the presence of a hydrogen halide acceptor to obtain an unsaturated polyamide oligomer having a terminal unsaturated group represented by the general formula. They discovered that this product can be cured in the presence of a radical-generating catalyst, and that this cured aromatic polyamide has the above-mentioned excellent properties, leading to the completion of the present invention. The aromatic polyamide oligomer having a terminal unsaturated group of the present invention can be illustrated by the following reaction formula as an example. (Left below) (Aromatic dicarboxylic acid dihalide) (Aromatic polyamide oligomer) In order for the reaction to proceed smoothly, an acceptor for the by-produced hydrogen chloride is required, and generally tertiary amine or caustic It is convenient to use alkali. In this case, n is 1 from l
A value of about 5, preferably about 3 to 7 is advantageous because of ease of moldability, and polymerization at this stage is not particularly necessary. This reaction is generally performed by mixing amines in an aqueous phase and acid chloride in an inert organic solvent that does not dissolve in water to perform an interfacial polycondensation reaction, or by dissolving both in an inert organic solvent and condensing them at low temperatures. It can be carried out by low-temperature solution polycondensation reaction. Examples of aromatic diamines that can be used in the present invention include metaphenylene diamine, 4.4'-diaminodiphenylmethane, and 4.4'-diaminodiphenylpropane. 3
.. 3'-dimethyl-4.4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3.4'-diaminodiphenyl ether, 3.3'-diaminodiphenyl sulfone, 4.4'-diaminodiphenyl ether enylsulfone, dianisidine, 2,4-t-lylenediamine,
2.4/2.6 - }Lylene diamine mixture, 1.
3-bis(3-aminophenoxy)benzene and the like can be used, and two or more types can be used in combination. As the aromatic monoamine having a terminal unsaturated group, m-
Examples include isobrobenylaniline, p-improbenylaniline, 0-aminostyrene, m-aminostyrene, p-aminostyrene, etc., but terminally unsaturated polyamide oligomers can be synthesized at low temperatures, and the resulting polyamide oligomers are stable. m-isobrobenylaniline, p-isobrobenylaniline, and p-aminostyrene are most commonly used from the viewpoints of efficiency, manpower, cost, etc. Note that this amine may be a free amine or a hydrohalide salt, but in the case of a hydrohalide salt, it is necessary to use a tertiary amine etc. that binds to the hydrogen halide at the same time. becomes. Further, as the aromatic dicarboxylic acid dihalide that can be used in the present invention, dichlorides of aromatic dibasic acids are convenient, and typical examples include terephthalic acid dichloride, isophthalic acid dichloride, phthalic acid dichloride, or mixtures thereof. From a practical standpoint, phthalic acid dichloride produces an aromatic polyamide that has insufficient heat resistance, and when terephthalic acid dichloride is used, the heat resistance is sufficient, but the resulting aromatic polyamide oligomer has a high melting point. Therefore, isophthalic acid dichloride is the most suitable for the purpose of the present invention. This synthesis reaction proceeds relatively stoichiometrically, so after calculating n in the [Al formula], the necessary amounts of terminally unsaturated aromatic monoamine, aromatic diamine, and aromatic dicarboxylic acid dihalide are reacted. If precise adjustment is required, the molar ratio can be determined by a simple test. As already explained, the composition of the aromatic polyamide oligomer obtained by this reaction can be easily selected, and it can be molded at temperatures below 200°C. The aromatic polyamide oligomer with unsaturated end groups synthesized according to the present invention can be cured by heat curing or in combination with a radical-generating catalyst, making it possible to significantly improve heat resistance. There is no need to limit the radical generation catalyst, but the peroxide type is suitable industrially, and the molding temperature is 1.
If the temperature exceeds 00°C, a so-called high-temperature decomposition type, such as dicumyl peroxide type, is used. The appropriate amount to use is 1 to 3 phr. Further, the combined use of a monomer copolymerizable with an unsaturated bond is possible when the monomer dissolves the aromatic polyamide oligomer, and the range of application is particularly wide when n in the formula AI is small. Although the combined use of monomers promotes the softening of the entire condensation system and improves moldability and workability, it tends to reduce the heat resistance of the hardened aromatic polyamide, so the amount added should be determined according to the purpose. is necessary.

本発明による不飽和末端基を有する芳香族ポリアミドオ
リゴマーは、補強剤、フィラー、離型剤、着色剤,低収
縮剤としての他のボリマー等を必要に応じ併用できるこ
とはもちろんである。
It goes without saying that the aromatic polyamide oligomer having unsaturated end groups according to the present invention can be used in combination with reinforcing agents, fillers, mold release agents, coloring agents, other polymers as low shrinkage agents, etc., as necessary.

次に本発明の理解を助けるために、以下に実施例を示す
. 【実施例1 (実施例1) 還流冷却器、滴下濾斗、温度計、撹拌機を備えたIβの
四ツロのセバラブルフラスコにイソフタル酸ジクロライ
ド20.3g (0.1モル)、ジメチルフォルムアミ
ド(DMF)longを仕込み、lO℃以下に冷却する
. 次に3.4゛−ジアミノジフェニルエーテル16.67
g (0.083モル)、トリエチルアミン16.87
g (0.167モル).DMF75gを秤量混合し、
セバラブルフラスコに滴下する.続いてp−インブロペ
ニルアニリン4.43g(0.033モル)、トリエチ
ルアミン3.33g(0.033モル) 、DMF25
gを秤量混合し、セバラブルフラスコに滴下する。その
間、反応混合物の温度はlO℃以下に保つ.i下終了後
、反応混合物の温度を10℃以下に保ち,2hr.撹拌
を継続する. 次に激しく撹拌している大量の水中に反応混合物を徐々
に加え、結晶を析出させる。析出した結晶を吸引濾過し
,水で洗浄後乾燥する.m.p.170〜185℃,こ
のちのの赤外吸収スペクトルを第1図に示す. 元素分析値は、 C, 74.05%:H.4.シ2%:N.  8.1
3%で理論値は、 C. 73.90%:H.4.59%:N.  8.2
1%と良好な一致を示した. (実施例2〜5) (以下余白) 第1表 重縮合処方 FIB位・g) 芳香族モノアミン化合物のRのsi.置換基の位g1お
よびnを変えた以外は実施例1と同じ操作で不飽和末端
基を有する芳香族ポリアミドオリゴマーの合成を行なっ
た. (以下余白) (以下余白) 合成した不飽和末端基を有する芳香族ポリアミドオリゴ
マーのm p.および元素分析値は次に示す表の通りで
ある.また、それらの赤外線吸収スペクトルを実施例番
号に対応して第2〜5図に示す. (以下余白) (実施例6) C.  71.32  % ,H,4.91% ;N,
   7.24  %と良好な一致を示した. (実施例7) 原料としてイソフタル酸クロライド20.3g(0.1
モル) . 3.3゜−ジアミノジフエニルスルホ:/
12.4g (0.05モル).m−イソブロペニルア
ニリン13.3g(0.1モル)を用いた以外は実施例
lと同じ操作により合成した.合成した不飽和末端基を
有する芳香族ポリアミドオリゴマーのm.p.は125
〜135℃.このものの赤外吸収スペクトルを第6図に
示す。
Next, examples are shown below to help understand the present invention. [Example 1 (Example 1) 20.3 g (0.1 mol) of isophthalic acid dichloride and dimethylformamide were placed in a four-piece Iβ separable flask equipped with a reflux condenser, a dropping funnel, a thermometer, and a stirrer. Charge (DMF) long and cool to below 10°C. Next, 3.4′-diaminodiphenyl ether 16.67
g (0.083 mol), triethylamine 16.87
g (0.167 mol). Weigh and mix 75g of DMF,
Pour into a separable flask. Next, 4.43 g (0.033 mol) of p-imbropenylaniline, 3.33 g (0.033 mol) of triethylamine, and 25 DMF.
Weigh and mix 10g of the mixture and drop it into a separable flask. During this time, keep the temperature of the reaction mixture below 10°C. After completion of the reaction under i, the temperature of the reaction mixture was kept at 10°C or less, and the reaction was continued for 2 hours. Continue stirring. The reaction mixture is then gradually added to a large amount of water with vigorous stirring to precipitate crystals. The precipitated crystals are filtered with suction, washed with water, and dried. m. p. Figure 1 shows the infrared absorption spectrum at 170-185°C. The elemental analysis value is C, 74.05%: H. 4. 2%:N. 8.1
The theoretical value at 3% is C. 73.90%: H. 4.59%:N. 8.2
Good agreement was shown at 1%. (Examples 2 to 5) (The following is a blank space) Table 1 Polycondensation recipe FIB position/g) si. of R of aromatic monoamine compound. An aromatic polyamide oligomer having an unsaturated terminal group was synthesized in the same manner as in Example 1 except that the substituent positions g1 and n were changed. (Hereinafter in the margin) (Hereinafter in the margin) m p. of the synthesized aromatic polyamide oligomer having an unsaturated terminal group. and elemental analysis values are shown in the table below. Further, their infrared absorption spectra are shown in Figs. 2 to 5 in correspondence with the example numbers. (The following is a blank space) (Example 6) C. 71.32%, H, 4.91%; N,
Good agreement was shown at 7.24%. (Example 7) 20.3 g (0.1
mole). 3.3゜-diaminodiphenyl sulfo:/
12.4g (0.05mol). Synthesis was carried out in the same manner as in Example 1, except that 13.3 g (0.1 mol) of m-isobropenylaniline was used. m. of the synthesized aromatic polyamide oligomer having unsaturated end groups. p. is 125
~135℃. The infrared absorption spectrum of this product is shown in FIG.

元素分析値は, C. 71.51%:H.5.[+3%: N.  7
−0!l 96テ理論値は、 原料としてイソフタル酸クロライド20.3g(0.1
モル)、ジアニシジン21.3EB(0.0875モル
)、m−イソブロペニルアニリン3.25g (0.0
25モル)を用いた以外は実施例lと同じ操作により合
成した.合成した不飽和末端基を有する芳香族ポリアミ
ドオリゴマーのm.p.は145〜160℃、このもの
の赤外吸収スペクトルを第7図に示す.元素分析値は, C. 71.73  % :H,5.01% 二 N.
理論値は, C. 71.67%;H.4.98%二N.と良好な一
致を示した. (実施例8) 7.38%で 7.43 % イソフクル酸クロライド20.3g (0.1モル) 
. 2.4 − : 2.6一混合トルイレンジアミン
(80:20)10.17g (0。083モル)、p
−アミノスチレン3、97g (0.033モル〕を用
いた以外は実施例1と同じ操作を行なった. 合成した不飽和末端基を有する芳香族ポリアミドオリゴ
マーのm.p.は190〜205℃,このものの赤外吸
収スペクトルを第8図に示す。
The elemental analysis value is C. 71.51%: H. 5. [+3%: N. 7
-0! The theoretical value of l96te is 20.3g (0.1g) of isophthalic acid chloride as raw material.
mol), dianisidine 21.3EB (0.0875 mol), m-isobropenylaniline 3.25g (0.0
Synthesis was carried out in the same manner as in Example 1, except that 25 mol) was used. m. of the synthesized aromatic polyamide oligomer having unsaturated end groups. p. is 145-160°C, and the infrared absorption spectrum of this product is shown in Figure 7. The elemental analysis value is C. 71.73%: H, 5.01% 2 N.
The theoretical value is C. 71.67%;H. 4.98%2N. showed good agreement. (Example 8) 20.3 g (0.1 mol) of 7.43% isofucuric acid chloride at 7.38%
.. 2.4-: 2.6-mixed toluylene diamine (80:20) 10.17 g (0.083 mol), p
The same operation as in Example 1 was carried out except that 97 g (0.033 mol) of -aminostyrene was used. The m.p. of the synthesized aromatic polyamide oligomer having unsaturated end groups was 190 to 205°C The infrared absorption spectrum of this product is shown in FIG.

元素分析値は、 C.  73.11  % :  H.  4.95%
 .N.lロ.21  %で理論値は, C. 72.97%. H, 4.91%: N. 1
0.32%と良好な一致を示した. [効 果J 従来の芳香族ボリアミドは熱可塑性樹脂であったため,
耐薬品性,電気的特性等に優れた性質を備えていたにも
かかわらず,高温における強度が著しく低下して使用分
野に制限を受けていた.本発明はこれらの欠点を改良し
、同じ芳香族ボリアミドでありながら加工性の優れた熱
硬化性の芳香族ポリアミドの原料として使用可能な新規
な末端不飽和基を有する芳香族ポリアミドオリゴマーを
開発することに成功した. このオリゴマーは低温で合成でき、また重合可能な二重
結合を有するにもかかわらず、比較的安定であって成形
工程中でのゲル化もなく且つラジカル発生触媒の作用に
より簡単に硬化できる優れた性質を有するものである. このオリゴマーを硬化した芳香族ボリアミドは,高温で
あっても強度の低下を起こさない耐熱性に優れた芳香族
ボリアミドである.
The elemental analysis value is C. 73.11%: H. 4.95%
.. N. l b. The theoretical value at 21% is C. 72.97%. H, 4.91%: N. 1
Good agreement was shown at 0.32%. [Effect J Since conventional aromatic polyamides were thermoplastic resins,
Although it had excellent properties such as chemical resistance and electrical properties, its strength at high temperatures decreased significantly, limiting its field of use. The present invention improves these drawbacks and develops an aromatic polyamide oligomer having a novel terminal unsaturated group that can be used as a raw material for a thermosetting aromatic polyamide with excellent processability, although it is the same aromatic polyamide. It was very successful. This oligomer can be synthesized at low temperatures, and although it has a polymerizable double bond, it is relatively stable, does not gel during the molding process, and can be easily cured by the action of a radical-generating catalyst. It is something that has properties. The aromatic polyamide obtained by curing this oligomer has excellent heat resistance and does not lose strength even at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜8図は,それぞれ対応する実施例1〜8において
製造した芳香族ポリアミドオリゴマーの赤外吸収スペク
トル図である.
1 to 8 are infrared absorption spectra of aromatic polyamide oligomers produced in corresponding Examples 1 to 8, respectively.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ 〔但し、式中A、A′はラジカル重合可能な不飽和基(
A=A′でも可)、Rは水素原子又は低級アルキル基、
R_1、R_2は2価の芳香族基、nは1〜15の任意
の数値である。 で表わされる末端不飽和基を有する芳香族ポリアミドオ
リゴマー。
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [However, in the formula, A and A' are radically polymerizable unsaturated groups (
A=A′), R is a hydrogen atom or a lower alkyl group,
R_1 and R_2 are divalent aromatic groups, and n is any numerical value from 1 to 15. An aromatic polyamide oligomer having a terminal unsaturated group represented by:
(2)芳香族ジアミン、末端不飽和基を有する芳香族モ
ノアミン及び芳香族ジカルボン酸ジハライドをハロゲン
化水素受容体の存在下で反応することよりなる末端不飽
和基を有する芳香族ポリアミドオリゴマーの製造方法。
(2) A method for producing an aromatic polyamide oligomer having a terminal unsaturated group, which comprises reacting an aromatic diamine, an aromatic monoamine having a terminal unsaturated group, and an aromatic dicarboxylic acid dihalide in the presence of a hydrogen halide acceptor. .
JP1158022A 1989-06-19 1989-06-19 Aromatic polyamide oligomer having terminal unsaturated group and method for producing the same Expired - Lifetime JPH0725881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1158022A JPH0725881B2 (en) 1989-06-19 1989-06-19 Aromatic polyamide oligomer having terminal unsaturated group and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158022A JPH0725881B2 (en) 1989-06-19 1989-06-19 Aromatic polyamide oligomer having terminal unsaturated group and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0321636A true JPH0321636A (en) 1991-01-30
JPH0725881B2 JPH0725881B2 (en) 1995-03-22

Family

ID=15662564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158022A Expired - Lifetime JPH0725881B2 (en) 1989-06-19 1989-06-19 Aromatic polyamide oligomer having terminal unsaturated group and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0725881B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649967A (en) * 1987-06-12 1989-01-13 Boeing Co Polyamide oligomer and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649967A (en) * 1987-06-12 1989-01-13 Boeing Co Polyamide oligomer and manufacture

Also Published As

Publication number Publication date
JPH0725881B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JPH0321636A (en) Aromatic polyamide oligomer having terminal unsaturated group and production thereof
JPH03185017A (en) Thermosetting resin composition
JPH04132733A (en) Unsaturated group-containing aromatic polyamide oligomer and production thereof
JPH02218711A (en) Aromatic polyamide oligomer having thermal unsaturated group and production thereof
JPH0350217A (en) Unsaturated group-terminated aromatic polyamide oligomer and its production
JPH075835B2 (en) Thermosetting resin composition
JPH03252410A (en) Unsaturated group-containing aromatic polyamide oligomer and production thereof
JPH03166210A (en) Aromatic polyamide oligomer containing terminal unsaturated group and production thereof
JPH02258868A (en) Curable resin composition
JPH0350219A (en) Polymerizable unsaturated group-terminated aromatic polyamide oligomer and its production
JPH0450217A (en) Aromatic polyamide oligomer and production thereof
JPH0450218A (en) Thermosetting polyamide and composition thereof
JPH03185016A (en) Terminal unsaturated group-containing aromatic polyamide oligomer and production thereof
JPH04130115A (en) Unsaturated aromatic polyamide oligomer and its production
JPH03185015A (en) Thermosetting polyamide and composition thereof
JPH04130134A (en) Unsaturated aromatic polyamide oligomer and its production
JPH03277629A (en) Aromatic polyamide oligomer and its production
JPH0321616A (en) Thermosetting aromatic polyamide and its composition
JPH0643475B2 (en) Curable resin composition
JPH02258835A (en) Thermosetting aromatic polyamide and composition thereof
JPH03277614A (en) Thermosetting polyamide and its composition
JPH03166209A (en) Thermo-setting resin composition
JPH04130116A (en) Heat-resistant aromatic polyamide and composition
JPH0350222A (en) Thermosetting aromatic polyamide and its composition
JPH04132735A (en) Thermosetting resin composition