JPH0321620B2 - - Google Patents

Info

Publication number
JPH0321620B2
JPH0321620B2 JP56175687A JP17568781A JPH0321620B2 JP H0321620 B2 JPH0321620 B2 JP H0321620B2 JP 56175687 A JP56175687 A JP 56175687A JP 17568781 A JP17568781 A JP 17568781A JP H0321620 B2 JPH0321620 B2 JP H0321620B2
Authority
JP
Japan
Prior art keywords
temperature
steel
rotor shaft
casing
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56175687A
Other languages
Japanese (ja)
Other versions
JPS5877557A (en
Inventor
Katsumi Iijima
Masayuki Sukegawa
Seishin Kirihara
Norio Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17568781A priority Critical patent/JPS5877557A/en
Publication of JPS5877557A publication Critical patent/JPS5877557A/en
Publication of JPH0321620B2 publication Critical patent/JPH0321620B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、新規な主蒸気温度600〜650℃、圧力
4000〜5000Psiの蒸気タービンに係り、特にター
ビンロータシヤフトに高温強度に優れ、なおかつ
加熱脆化のしにくい材料を使用した超高温高圧蒸
気タービンに関する。 近年化学技術の進歩に従いエネルギーの需要が
拡大する傾向にある。一方全エネルギーの輸入依
存率が88%と高い我国では世界的な石油資源の減
少等により代替エネルギーの開発もしくは発電プ
ラントの効率向上が早急に推進されつつある。さ
て蒸気発電プラントでは高温高圧化が検討されよ
うとしている。 現用、538℃の蒸気を使用する発電プラントに
おいては、ケーシング及びタービンロータシヤフ
ト材料としてCr−Mo−V鋼の低合金鋼が用いら
れている。しかし、蒸気温度が600℃、圧力が
4000Psiを超える高温高高圧発電プラントを対象
とした場合、これら低合金鋼ではクリープ強度を
はじめとした高温強度の低下が顕著となり使用は
困難である。 そこで、600℃以上の温度域では強度面の制御
よりオーステナイト系合金が適当となるが、これ
ら合金では高温において多種多様の析出相が分布
状態で析出するため脆化が助長され高温強度が著
しく低下する危険性がある。 本発明の目的は、信頼性の高い超高温高圧蒸気
タービンを提供するにあり、特に温度600〜650℃
の蒸気条件で高い高温強度を有し、高温延性が高
く、加熱脆化の少ないオーステナイト系鍛鋼を使
用したロータシヤフトからなる超高温高圧蒸気タ
ービンを提供するにある。 本発明は、ケーシング、該ケーシング内で蒸気
流の噴射を受けて回転する翼及び該翼を保持し回
転するロータシヤフトを備え、前記ケーシングが
前記蒸気流の案内をする静翼が保持された内部ケ
ーシングと該内部ケーシングを被いほぼ球型の外
形を有する外部ケーシングとによつて構成される
ものであつて、前記ロータシヤフトは650℃での
1000時間クリープ破断強度が25Kg/mm2以上を有
し、特定の組成からなるオーステナイト系鋼から
なることを特徴とする超高温高圧蒸気タービンに
ある。 前記ロータシヤフトの翼部は前記ケーシング内
の前記ロータシヤフトの軸方向に対し等間隔に配
置されていて、かつ前記軸方向に対しその中心位
置で左右が非対称になつているのが好ましい。 前記ロータシヤフトは重量で、C0.01〜0.035
%、Mn2%以下、Si1%以下、Cr10〜20%、Ni20
〜30%、Mo1〜2%、Ti1.5〜3%、V0.29〜0.32
%、Al0.1〜0.5%未満、B0.003〜0.007%及び残部
Feからなり、オーステナイト基地にγ′相が析出
したオーステナイト系鍛鋼からなるもので、650
℃での1000時間クリープ破断強度が25Kg/mm2以上
のものが得られる。 前記外部ケーシングはCr−Niオーステナイト
系鍛鋼又はベーナイト組織を現するCr−Mo−V
鋳鋼からなるものが好ましい。 前記内部ケーシングはCr−Niオーステナイト
系鋳鋼からなるものが好ましい。 Cは高温強度を高めるために0.01%以上加えら
れるが、加熱脆化を低減するため、特に炭素量を
0.035重量%以下とする。チタン、モリブデン、
クロムをある程度以上含有する合金ではMX型、
M23C6型、MC6型炭化物が高温、長時間加熱によ
り析出する。これらの炭化物には600〜650℃の温
度域において結晶粒界に優先的に析出し靭性及び
耐酸化性を低下させないように添加するのが好ま
しい。また、現用のロータ材である12Cr鋼及び
Cr−Mo−V鋼の吸収エネルギー値は一般に1.1Kg
−m及び0.69Kg−m以上とされている。これらの
値を満足するためには、0.030%C以下にするこ
とにより、長時間使用しても問題ないことを明ら
かにしている。一方、モリブデン等との炭化物は
粒内に析出し高温強度を向上することが期待され
るが、加熱脆化の点から上限を0.035重量%とす
る。 Mnは、製造上重要な脱酸成分である。靱性・
耐酸化性に対する悪影響を防止するには2重量%
以下である。特に、0.7〜1.5%が好ましい。 Niはオーステナイト生成元素であり高温強度
の向上のため20%以上である。ニツケル量を増加
するとバランス上耐酸化性を向上させるクロムを
増すことができるが、600〜650℃で高い高温延性
並びに耐力を維持するために30重量%以下とす
る。特に、23〜29%が好ましい。 Siは、Mnと同様、製造上重要な脱酸成分であ
る。高い靱性、延性及び溶接性を維持するため上
限を1.0重量%とする。 Moは、オーステナイト地を強化すると共に炭
化物を形成しクリープ強度を向上させるために1
%以上含有される。高い高温延性及び加工性を維
持するために2重量%以下とする。特に、1〜
1.5%が好ましい。 Crは耐酸化性を向上する重要な成分である。
600〜650℃で十分な耐酸化性を保持するには10重
量%以上が必要である。高温使用による脆化を防
止し、安定な組識とするために20重量%以下とす
る必要がある。特に12〜18%が好ましい。 Tiは、アルミニウムとともにγ′相〔Ni3(Al、
Ti)〕を形成する。γ′相は規則格子状の化合物で
オーステナイト地にほぼ完全な球形で均一に分散
するための析出硬化による600〜650℃で高い高温
強度を得るのに重要な因子であり、十分な高温強
度を得るには1.5重量%以上が必要である。延性
の低下を防止し切欠脆化を防止する量は3重量%
以下である。Vは炭化物を形成し高温強度を高め
るのに必要で、十分な強度を得るのに0.29%以上
必要であるが、0.32%以上では大きな効果が得ら
れないので0.32%以下とする。 Alは、チタンとともにγ′相を形成し、強化に寄
与する重要な因子である。時効硬化能のないη相
(Ni3Ti)の析出を防止する量は0.1重量%以上で
ある。また過剰のAlはクリープ速度度を増すの
で、0.5%未満とする。 Bは、結晶粒界を著しく強化し、特に長時間側
でのクリープ強度を高め、特に高温疲労を顕著に
高めるのに有効である。この効果は、0.003%程
度より顕著となるが、熱間加工性が低下するの
で、0.007%以下とする。 第1図は、本発明の超高温高圧蒸気タービンの
主要断の断面構成図の一例である。蒸気は主蒸気
管1より入り、内部ケーシング2に取付けられた
静翼3によつて所定の方向に噴射され、その噴射
によつてロータシヤフト4に取付けられた翼5を
回転させる。仕事をした蒸気は外部ケーシング6
と内部ケーシング2との間に設けられた空間を通
り、冷却蒸気出口7、排気出口8及び補助排気出
口9より排出される。さらにこの排出された蒸気
はより低い温度で作動する蒸気タービンへと送ら
れる。10はロータシヤフトの軸受中心、11は
グランド部及び12は中間グラドリーク出口、1
3はノズルボツクスである。矢印は蒸気の流れを
示すものである。 以下、内部ケーシングにCr−Niオーステナイ
ト系鋳鋼を用い、ロータシヤフトに同じくCr−
Niオーステナイト系鍛鋼を用いた場合の例につ
いて具体的に説明する。 第1表は供試材の化学成分を示す。 No.1〜10は、980℃で1時間加熱後水冷の溶体
化処理後、720℃で16時間加熱し、空冷する時効
処理を施した。その組織はオーステナイト基地に
γ′相が析出したものである。No.3、5、8、9は
比較鋼、No.10は従来鋼、他は本発明鋼である。 Cr−Mo−V鋼は970℃で15時間加熱後衝風冷
却し、次いで670℃で48時間加熱後炉冷したもの
である。 12Cr鋼は、1050℃×24h加熱後水噴霧冷却し、
570℃×20h加熱及び次いで、650℃×20h加熱の
焼戻しを行つたものである。これらの鋼種に対し
Vノツチチヤルピ衝撃試験及びクリープ破断試験
を実施した。 第2図は、650℃、1500時間加熱による加熱脆
化に及ぼすC量の影響を衝撃試験により明らかに
したものである。この結果によれば、素材の吸収
エネルギーはC量に依存せずほぼ一定であるのに
対し、650℃で1500時間加熱材ではC量の増加に
従い単調に減少しC量が多いほど加熱脆化が著し
い。現用ロータ材である12Cr鋼及びCr−Mo−V
鋼の20℃における吸収エネルギー値は一般にそれ
ぞれ1.1Kg−m及び0.69Kg−m以上と規定されて
いる。本発明鋼は加熱後も、C量0.035%で以下
では12%Cr鋼のそれより高く、またCr−Mo−V
鋼のそれより高い。 本発明材であるC量0.030重量%以下の材料で
は粒内破壊(白三角)が保たれるが、C量が
0.048重量%と高くなると破壊形態も粒界形(黒
三角)に移行している。この破壊形態の変化は、
MX型、M23C6型炭化物が粒界に析出し粒界を劣
化するためであることが分析の結果明らかとなつ
た。したがつて、加熱脆化を低減するにはC量を
0.035%以下に制限した本発明材が有効である。
[Industrial Application Field] The present invention is a novel main steam temperature 600-650℃, pressure
The present invention relates to a steam turbine of 4000 to 5000 Psi, and particularly to an ultra-high-temperature, high-pressure steam turbine in which the turbine rotor shaft is made of a material that has excellent high-temperature strength and is resistant to heat embrittlement. In recent years, the demand for energy has been increasing as chemical technology has progressed. On the other hand, in Japan, where the import dependence rate for all energy is as high as 88%, the development of alternative energy sources and the improvement of the efficiency of power generation plants are being promoted as a matter of urgency due to factors such as the decline in global oil resources. Now, consideration is being given to increasing the temperature and pressure of steam power plants. In current power plants that use steam at 538°C, low alloy steel such as Cr-Mo-V steel is used as the material for the casing and turbine rotor shaft. However, the steam temperature is 600℃ and the pressure is
When targeting high-temperature, high-pressure power generation plants exceeding 4000 Psi, these low-alloy steels are difficult to use because their high-temperature strength, including creep strength, decreases significantly. Therefore, in the temperature range of 600°C or higher, austenitic alloys are suitable for controlling strength, but in these alloys, a wide variety of precipitated phases precipitate in a distributed manner at high temperatures, which promotes embrittlement and significantly reduces high-temperature strength. There is a risk of An object of the present invention is to provide a highly reliable ultra-high-temperature, high-pressure steam turbine, particularly at temperatures between 600 and 650 degrees Celsius.
An object of the present invention is to provide an ultra-high-temperature, high-pressure steam turbine comprising a rotor shaft made of austenitic forged steel that has high high-temperature strength under steam conditions, high high-temperature ductility, and little heat embrittlement. The present invention includes a casing, a blade that rotates in response to injection of steam flow within the casing, and a rotor shaft that holds and rotates the blade, and the casing has an interior in which stationary blades that guide the steam flow are held. The rotor shaft is composed of a casing and an outer casing that covers the inner casing and has an approximately spherical outer shape, and the rotor shaft is heated at 650°C.
An ultra-high-temperature, high-pressure steam turbine characterized by having a 1000-hour creep rupture strength of 25 Kg/mm 2 or more and being made of austenitic steel having a specific composition. Preferably, the wing portions of the rotor shaft are arranged at equal intervals in the axial direction of the rotor shaft within the casing, and are asymmetrical at a center position with respect to the axial direction. The weight of the rotor shaft is C0.01~0.035
%, Mn2% or less, Si1% or less, Cr10~20%, Ni20
~30%, Mo1~2%, Ti1.5~3%, V0.29~0.32
%, Al0.1~less than 0.5%, B0.003~0.007% and the balance
It is made of austenitic forged steel with Fe and γ′ phase precipitated in the austenite base.
A product with a 1000 hour creep rupture strength at ℃ of 25 kg/mm 2 or more can be obtained. The outer casing is made of Cr-Ni austenitic forged steel or Cr-Mo-V exhibiting a bainitic structure.
Those made of cast steel are preferred. The inner casing is preferably made of Cr-Ni austenitic cast steel. C is added in an amount of 0.01% or more to increase high-temperature strength, but in order to reduce heat embrittlement, the amount of carbon is particularly reduced.
The content shall be 0.035% by weight or less. titanium, molybdenum,
For alloys containing more than a certain amount of chromium, MX type,
M 23 C 6 type and MC 6 type carbides precipitate due to high temperature and long heating. It is preferable to add these carbides so that they do not preferentially precipitate at grain boundaries in the temperature range of 600 to 650°C and reduce toughness and oxidation resistance. In addition, 12Cr steel, which is the current rotor material,
The absorbed energy value of Cr-Mo-V steel is generally 1.1Kg
-m and 0.69Kg-m or more. It has been clarified that in order to satisfy these values, by keeping the temperature below 0.030%C, there will be no problem even if it is used for a long time. On the other hand, carbides with molybdenum and the like are expected to precipitate within the grains and improve high-temperature strength, but the upper limit is set at 0.035% by weight in view of heat embrittlement. Mn is an important deoxidizing component in manufacturing. Toughness/
2% by weight to prevent negative effects on oxidation resistance.
It is as follows. In particular, 0.7 to 1.5% is preferable. Ni is an austenite-forming element and is 20% or more to improve high-temperature strength. If the amount of nickel is increased, chromium, which improves oxidation resistance, can be increased on balance, but in order to maintain high high-temperature ductility and yield strength at 600 to 650°C, the amount should be 30% by weight or less. In particular, 23 to 29% is preferable. Like Mn, Si is an important deoxidizing component in manufacturing. In order to maintain high toughness, ductility and weldability, the upper limit is set at 1.0% by weight. Mo is added to strengthen the austenite base and form carbides to improve creep strength.
% or more. In order to maintain high high-temperature ductility and workability, the content should be 2% by weight or less. In particular, 1~
1.5% is preferred. Cr is an important component that improves oxidation resistance.
10% by weight or more is required to maintain sufficient oxidation resistance at 600-650°C. The content must be 20% by weight or less to prevent embrittlement due to high temperature use and to create a stable structure. Particularly preferred is 12 to 18%. Along with aluminum, Ti forms a γ′ phase [Ni 3 (Al,
Ti)] is formed. The γ′ phase is a regular lattice-like compound that is uniformly dispersed in an almost perfect spherical shape in the austenite matrix, and is an important factor in obtaining high high temperature strength at 600 to 650℃ due to precipitation hardening. 1.5% by weight or more is required to obtain this. The amount that prevents a decrease in ductility and prevents notch embrittlement is 3% by weight.
It is as follows. V is necessary to form carbides and increase high-temperature strength, and 0.29% or more is required to obtain sufficient strength, but since no significant effect can be obtained with 0.32% or more, it is set to 0.32% or less. Al forms the γ' phase together with titanium and is an important factor contributing to strengthening. The amount that prevents precipitation of the η phase (Ni 3 Ti), which does not have age hardenability, is 0.1% by weight or more. Moreover, since excessive Al increases the creep rate, it is set to less than 0.5%. B is effective in significantly strengthening grain boundaries, increasing creep strength particularly over long periods of time, and in particular significantly increasing high temperature fatigue. This effect becomes more noticeable at about 0.003%, but hot workability decreases, so the content is set to 0.007% or less. FIG. 1 is an example of a cross-sectional configuration diagram of the main section of the ultra-high temperature and high pressure steam turbine of the present invention. Steam enters through a main steam pipe 1 and is injected in a predetermined direction by stationary blades 3 attached to an inner casing 2, which causes blades 5 attached to a rotor shaft 4 to rotate. The steam that has done the work is transferred to the outer casing 6.
and the inner casing 2, and is discharged from the cooling steam outlet 7, the exhaust outlet 8, and the auxiliary exhaust outlet 9. This discharged steam is then sent to a steam turbine operating at a lower temperature. 10 is the bearing center of the rotor shaft, 11 is the gland part, 12 is the intermediate gland leak outlet, 1
3 is a nozzle box. Arrows indicate the flow of steam. Below, Cr-Ni austenitic cast steel is used for the internal casing, and Cr-Ni is used for the rotor shaft.
An example in which Ni austenitic forged steel is used will be specifically explained. Table 1 shows the chemical composition of the test materials. Nos. 1 to 10 were subjected to solution treatment by heating at 980°C for 1 hour and cooling in water, and then subjected to aging treatment by heating at 720°C for 16 hours and cooling in air. The structure consists of γ′ phase precipitated on an austenite base. Nos. 3, 5, 8, and 9 are comparative steels, No. 10 is conventional steel, and the others are steels of the present invention. The Cr-Mo-V steel was heated at 970°C for 15 hours, blast cooled, then heated at 670°C for 48 hours, and then furnace cooled. 12Cr steel is heated to 1050℃ x 24h and then cooled with water spray.
It was heated at 570°C for 20 hours and then tempered at 650°C for 20 hours. V-notched Alpi impact tests and creep rupture tests were conducted on these steel types. Figure 2 shows the influence of the amount of C on heat embrittlement caused by heating at 650°C for 1500 hours using an impact test. According to these results, the absorbed energy of the material is almost constant regardless of the C content, whereas in the material heated at 650°C for 1500 hours, it monotonically decreases as the C content increases, and the higher the C content, the more heat embrittlement occurs. is remarkable. 12Cr steel and Cr-Mo-V, which are currently used rotor materials
The absorbed energy value of steel at 20°C is generally specified as 1.1 Kg-m and 0.69 Kg-m or more, respectively. Even after heating, the steel of the present invention has a C content of 0.035%, which is higher than that of 12% Cr steel, and Cr-Mo-V
higher than that of steel. In the material of the present invention with a C content of 0.030% by weight or less, intragranular fracture (white triangle) is maintained, but the C content is
As the content increases to 0.048% by weight, the fracture mode shifts to a grain boundary type (black triangle). This change in the form of destruction is
Analysis revealed that this is because MX type and M 23 C 6 type carbides precipitate at grain boundaries and deteriorate the grain boundaries. Therefore, to reduce heat embrittlement, the amount of C must be increased.
The present invention material limited to 0.035% or less is effective.

【表】【table】

【表】 第3図は現用566℃蒸気温度における最も厳し
い条件で運転する場合を想定した運用パターンで
ある。この運用パターンは本発明の超高温高圧蒸
気タービンにも適した場合、それに用いられるロ
ータシヤフトは起動停止時に図に示すように高い
応力による厳しい低サイクル疲労を受ける。ま
た、定常運転時には遠心力によるクリープを受け
る。 第2表は、本発明に係る鋼では650℃及び従来
鋼では550℃で行つた引張試験、クリープ破断試
験及び低サイクル疲労試験結果を示すものであ
る。表に示す如く、本発明材はCr−Mo−V鋼に
くらべ引張強さ及び0.2%耐力がそれと同等以上
であり、その伸び率が1.5〜1.57倍と高い。クリ
ープ破断強度は、1.1〜1.20倍高く、低サイクル
疲労もCr−Mo−V鋼と同等あるいはそれ以上で
ある。 低サイクル疲労試験は、保持なしで、歪速度
0.1%/秒、歪量1.0%及び0.65%において破断に
いたるまでのくり返し数を示したものである。
[Table] Figure 3 shows an operation pattern assuming operation under the most severe conditions at the current steam temperature of 566°C. If this operation pattern is also suitable for the ultra-high temperature and high pressure steam turbine of the present invention, the rotor shaft used therein will undergo severe low-cycle fatigue due to high stress during startup and shutdown, as shown in the figure. Also, during steady operation, it is subject to creep due to centrifugal force. Table 2 shows the results of tensile tests, creep rupture tests and low cycle fatigue tests conducted at 650°C for the steel according to the invention and at 550°C for the conventional steel. As shown in the table, the material of the present invention has tensile strength and 0.2% yield strength equal to or higher than Cr-Mo-V steel, and its elongation rate is 1.5 to 1.57 times higher. Creep rupture strength is 1.1 to 1.20 times higher, and low cycle fatigue is equivalent to or higher than Cr-Mo-V steel. Low cycle fatigue testing is performed without holding, strain rate
It shows the number of repetitions until breakage at 0.1%/sec and strain amounts of 1.0% and 0.65%.

【表】 第4図はNo.5〜10の合金について温度650℃、
ひずみ範囲1.0%及びひずみ速度(0.1%/秒)の
引張圧縮三角波形における破断繰返し数による疲
労寿命とB量との関係を示す線図である。図に示
す如く、疲労寿命はB量によつて著しく影響を受
けることが分かる。特に、本発明のB量0.003〜
0.007%のとき顕著に寿命が高いことが明らかで
ある。 以上の如く、本発明材によれば現用の550℃で
使用されているCr−Mo−V鋼に要求される特製
を650℃に温度上昇させてそのまま満足する結果
が得られ、蒸気温度600〜650℃及び蒸気圧力4000
〜5000Psiにおける超高温高圧蒸気タービンに十
分使用可能であることが明らかとなつた。
[Table] Figure 4 shows alloys No. 5 to 10 at a temperature of 650°C.
FIG. 2 is a diagram showing the relationship between fatigue life and B amount according to the number of repetitions of rupture in a tension-compression triangular waveform with a strain range of 1.0% and a strain rate (0.1%/sec). As shown in the figure, it can be seen that the fatigue life is significantly affected by the amount of B. In particular, the B amount of the present invention is from 0.003 to
It is clear that the lifespan is significantly longer at 0.007%. As described above, according to the material of the present invention, the special properties required for Cr-Mo-V steel currently used at 550°C can be raised to 650°C, and satisfactory results can be obtained. 650℃ and steam pressure 4000
It has become clear that it can be fully used in ultra-high temperature and high pressure steam turbines at ~5000 Psi.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超高温高圧蒸気タービン
の断面構成図の一例、第2図は本発明に係る材料
のC量と吸収エネルギーとの関係を示す線図及び
第3図は現用蒸気タービンの運転パターンによる
ロータシヤフトに発生する作用応力を示すグラ
フ、第4図はB量と破断繰返し数との関係を示す
線図である。 1……主蒸気管、2……内部ケーシング、3…
…静翼、4……ロータシヤフト、5……翼、6…
…外部ケーシング。
FIG. 1 is an example of a cross-sectional configuration diagram of an ultra-high-temperature, high-pressure steam turbine according to the present invention, FIG. 2 is a diagram showing the relationship between the amount of carbon and absorbed energy of the material according to the present invention, and FIG. 3 is a diagram showing a current steam turbine. FIG. 4 is a graph showing the acting stress generated on the rotor shaft depending on the driving pattern, and FIG. 4 is a diagram showing the relationship between the amount of B and the number of repeated fractures. 1...Main steam pipe, 2...Inner casing, 3...
...Stator blade, 4...Rotor shaft, 5...Wing, 6...
...external casing.

Claims (1)

【特許請求の範囲】[Claims] 1 ケーシング、該ケーシング内で蒸気流の噴射
を受けて回転する翼及び該翼を保持し回転するロ
ータシヤフトを備え、前記ケーシングが前記蒸気
流の案内をする静翼が保持された内部ケーシング
と該内部ケーシングを被う外部ケーシングとによ
つて構成されるものであつて、前記ロータシヤフ
トは重量で、C0.01〜0.035%、Mn2%以下、Si1
%以下、Cr10〜20%、Ni20〜30%、Mo1〜2%、
Ti1.5〜3%、V0.29〜0.32%、Al0.1〜0.5%未満、
B0.003〜0.007%及び残部Feからなり、オーステ
ナイト基地にγ′相が析出したオーステナイト系鍛
鋼からなることを特徴とする超高温高圧蒸気ター
ビン。
1. A casing, a rotor shaft that holds and rotates the blades that rotate in response to the injection of steam flow within the casing, and an inner casing that holds stationary blades that guide the steam flow; The rotor shaft is composed of an outer casing that covers an inner casing, and the rotor shaft has a weight of C0.01 to 0.035%, Mn2% or less, and Si1
% or less, Cr10~20%, Ni20~30%, Mo1~2%,
Ti1.5~3%, V0.29~0.32%, Al0.1~0.5%,
An ultra-high-temperature, high-pressure steam turbine characterized by being made of austenitic forged steel consisting of 0.003 to 0.007% B and the balance Fe, with a γ' phase precipitated in an austenite matrix.
JP17568781A 1981-11-04 1981-11-04 Superhigh temperature and pressure steam turbine Granted JPS5877557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17568781A JPS5877557A (en) 1981-11-04 1981-11-04 Superhigh temperature and pressure steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17568781A JPS5877557A (en) 1981-11-04 1981-11-04 Superhigh temperature and pressure steam turbine

Publications (2)

Publication Number Publication Date
JPS5877557A JPS5877557A (en) 1983-05-10
JPH0321620B2 true JPH0321620B2 (en) 1991-03-25

Family

ID=16000477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17568781A Granted JPS5877557A (en) 1981-11-04 1981-11-04 Superhigh temperature and pressure steam turbine

Country Status (1)

Country Link
JP (1) JPS5877557A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1263041A (en) * 1984-11-13 1989-11-21 William Lawrence Mankins Nickel-chromium-molybdenum alloy
JPS63137146A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Heat-resisting steel
JPH07116517B2 (en) * 1987-09-14 1995-12-13 三菱重工業株式会社 Ultra high temperature and high pressure steam turbine rotor manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046509A (en) * 1973-08-22 1975-04-25
JPS5051017A (en) * 1973-09-06 1975-05-07
JPS50109810A (en) * 1974-02-09 1975-08-29
JPS52117825A (en) * 1976-03-31 1977-10-03 Sumitomo Metal Ind Ltd Austenite stainless steel for high temperature
JPS53146921A (en) * 1977-04-07 1978-12-21 Us Government Nickelliron alloy having strengthened gamma prime phase
JPS5456018A (en) * 1977-10-12 1979-05-04 Sumitomo Metal Ind Ltd Austenitic steel with superior oxidation resistance for high temperature use
JPS54110917A (en) * 1978-02-21 1979-08-30 Hitachi Metals Ltd Improvement of feeniicr alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046509A (en) * 1973-08-22 1975-04-25
JPS5051017A (en) * 1973-09-06 1975-05-07
JPS50109810A (en) * 1974-02-09 1975-08-29
JPS52117825A (en) * 1976-03-31 1977-10-03 Sumitomo Metal Ind Ltd Austenite stainless steel for high temperature
JPS53146921A (en) * 1977-04-07 1978-12-21 Us Government Nickelliron alloy having strengthened gamma prime phase
JPS5456018A (en) * 1977-10-12 1979-05-04 Sumitomo Metal Ind Ltd Austenitic steel with superior oxidation resistance for high temperature use
JPS54110917A (en) * 1978-02-21 1979-08-30 Hitachi Metals Ltd Improvement of feeniicr alloy

Also Published As

Publication number Publication date
JPS5877557A (en) 1983-05-10

Similar Documents

Publication Publication Date Title
US5008072A (en) Heat resistant steel and gas turbine components composed of the same
US6224334B1 (en) Steam turbine, rotor shaft thereof, and heat resisting steel
EP0831203B1 (en) Blading for a steam turbine of a combined cycle power generation system
JPH0563544B2 (en)
RU2562175C2 (en) Cast iron containing niobium and structural element
JPH0319295B2 (en)
US5360318A (en) Compressor for gas turbine and gas turbine
CA2009120C (en) Steam turbine, rotor shaft thereof, and heat resisting steel
US4414024A (en) Martensitic heat-resistant steel
RU2639194C2 (en) Cast iron with niobium and structural part
JP4256311B2 (en) Rotor shaft for steam turbine, steam turbine, and steam turbine power plant
JPS6054385B2 (en) heat resistant steel
JP3215405B2 (en) High and low pressure integrated steam turbine
US5428953A (en) Combined cycle gas turbine with high temperature alloy, monolithic compressor rotor
JPH0321620B2 (en)
JPH0672286B2 (en) ▲ High ▼ Austenitic stainless steel with excellent temperature strength
JPS616256A (en) 12% cr heat resisting steel
JP2503180B2 (en) High efficiency gas turbine
JP4519722B2 (en) High and low pressure integrated steam turbine rotor and its manufacturing method, and high and low pressure integrated steam turbine and its manufacturing method
JP3106121B2 (en) Rotor shaft for high and low pressure integrated steam turbine
JP4368872B2 (en) High and low pressure integrated steam turbine blades and high and low pressure integrated steam turbine and combined power plant using the same
JP3296816B2 (en) Heat resistant steel and its applications
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
JPS58120764A (en) Moving vane of steam turbine with superior strength at high temperature and low creep crack propagating speed
US11788177B2 (en) Precipitation-hardened stainless steel alloys