JPH03215800A - X-ray exposing method - Google Patents

X-ray exposing method

Info

Publication number
JPH03215800A
JPH03215800A JP2011129A JP1112990A JPH03215800A JP H03215800 A JPH03215800 A JP H03215800A JP 2011129 A JP2011129 A JP 2011129A JP 1112990 A JP1112990 A JP 1112990A JP H03215800 A JPH03215800 A JP H03215800A
Authority
JP
Japan
Prior art keywords
ray
light
rays
window
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011129A
Other languages
Japanese (ja)
Inventor
Shigeru Maruyama
繁 丸山
Kenji Sugishima
賢次 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011129A priority Critical patent/JPH03215800A/en
Publication of JPH03215800A publication Critical patent/JPH03215800A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To increase an X-ray taking out area and to take out the strongest possible X-ray intensity by taking out the X-ray of a specified shape obtd. by reflecting and condensing synchrotron radiation light into the atmosphere via a beryllium window. CONSTITUTION:A troidal mirror (or cylindrical mirror) 2 is disposed in a beam line 15 consisting of a vacuum duct and the X-ray of the specified shape formed by reflecting and condensing the divergent light of the synchrotron radiation light 1 is taken out into the atmosphere via the beryllium window 5. The X-ray of this specified shape is used as a light source. The beryllium window 5 is formed by welding the beryllium window 5 by a sealing metal 4 with an electron beam to a beam line 15 consisting of the vacuum duct. The X-ray of the specified shape is taken out into the atmosphere in such a manner and a substrate to be exposed is disposed in the immediate neighborhood thereof. The substrate to be exposed is exposed by applying a required sufficient exposure thereto by the X-ray of the high intensity if the substrate is scanned by the X-ray.

Description

【発明の詳細な説明】 〔概 要〕 X線露光方法における光源に関し、 大気中へのX線の取り出し面積を出来るだけ大きくし、
且つ、出来るだけ強いX線強度を取り出すようにするこ
とを目的とし、 シンクロトロン放射光を光源とするX線露光方法におい
て、 高真空中において前記シンクロトロン放射光をビームラ
インより取り出し、シンクロトロン放射光の発散光をト
ロイダルミラーあるいはシリンドリカルミラーによって
反射させて集光し、集光させて幅をもった一定形状のX
線を同様形状のベリリウム窓を介して大気中に取り出し
、該一定形状のX線を照射光として利用して露光するよ
うにしたことを特徴とする。
[Detailed Description of the Invention] [Summary] Regarding the light source in the X-ray exposure method, the area for extracting X-rays into the atmosphere is made as large as possible,
In an X-ray exposure method using synchrotron radiation as a light source, the synchrotron radiation is extracted from a beam line in a high vacuum, and the purpose is to extract as strong an X-ray intensity as possible. The diverging light is reflected and focused by a toroidal mirror or cylindrical mirror, and the light is focused to create an X with a certain width.
The X-ray is extracted into the atmosphere through a beryllium window having a similar shape, and the X-ray having a certain shape is used as irradiation light for exposure.

〔産業上の利用分野〕[Industrial application field]

本発明はX線露光方法にかかり、特にその光源に関して
いる。
The present invention relates to an X-ray exposure method, and particularly to a light source thereof.

LSIなどの半導体デバイスは3.4年毎に集積度を約
4倍に向上する傾向が続いており、この集積度の向上の
ためにはデバイスの寸法を減少させることが要求される
。本発明は限界に達した従来のフォト露光法に代わるX
線露光法の光源Gこ関する提案である。
There is a continuing trend for the degree of integration of semiconductor devices such as LSIs to increase approximately four times every 3.4 years, and this increase in degree of integration requires a reduction in the dimensions of the devices. The present invention provides an alternative to the conventional photo exposure method, which has reached its limit.
This is a proposal regarding the light source G of the line exposure method.

〔従来の技術) 従来、紫外線または遠紫外線を用いてマスク(あるいは
レチクル)に描画したデバイスパターンをウエハー面に
転写していた。しかし、ウエノ−一面に転写すべきデハ
イスパターンの寸法が紫外線,遠紫外線の露光波長と同
程度あるいはその約2倍程度の大きさに微細化されてき
たために、ウエハー面にパターンを精度良く転写するこ
とが極めて困難になってきた。そのため、露光装置の高
NA化.露光の短波長化,処理法の改善などを工夫して
きたが、それらはいずれも技術的限界に近づきつつある
[Prior Art] Conventionally, a device pattern drawn on a mask (or reticle) was transferred onto a wafer surface using ultraviolet rays or deep ultraviolet rays. However, because the dimensions of the high-speed pattern to be transferred onto the entire surface of the wafer have been miniaturized to the same size or about twice the exposure wavelength of ultraviolet and deep ultraviolet rays, it has become difficult to accurately transfer the pattern onto the wafer surface. It has become extremely difficult to do so. Therefore, the NA of exposure equipment has to be increased. Efforts have been made to shorten the exposure wavelength and improve processing methods, but these are all approaching their technical limits.

この難題を解決するために、露光波長が2〜3桁小さい
X線を利用する技術の開発が進められている。しかし、
これまでのX線源は熱電子衝撃型やピンチ・プラズマの
発生であって、X線強度が小さく、また、発散光源のた
めに露光装置、特に位置合わせ構造に負担が掛かる等の
欠点があった。
In order to solve this difficult problem, a technology is being developed that uses X-rays whose exposure wavelength is two to three orders of magnitude smaller. but,
Conventional X-ray sources are thermionic bombardment type or pinch plasma generation, which has low X-ray intensity, and has drawbacks such as a diverging light source that places a burden on the exposure equipment, especially the alignment structure. Ta.

従って、極めて大きな強度のX線源としてシンクロトロ
ン放射光(Synchrotron Radiatio
n ; SR)を利用する露光方法が研究されており、
スループットの改善なども期待されるとして注目されて
いる方法である。
Therefore, synchrotron radiation (Synchrotron radiation) is used as an extremely strong X-ray source.
Exposure methods using n ; SR) are being researched;
This method is attracting attention as it is expected to improve throughput.

以下に、そのシンクロトロン放射光を用いたX線リソグ
ラフィ技術について概要を説明すると、このシンクロト
ロン放射光(以下、SR光と称する)はそれから得られ
る軟X線を照射してパターン転写をおこなうもので、そ
のようなSR光は電子蓄積リングで作成される。この電
子蓄積リングとは電子を制御する偏向電磁石などの各種
電磁石,電子にエネルギーを補給するための加速空胴,
その他を配した超高真空の環状真空ダクトからなり、直
線加速器から加速された電子線を蓄積リングに入射させ
てリング中を周回させておき、光速に近い速度で運動し
ているときに進行方向を変化させて接線方向に強い光を
放射させ、そのSR光をビームラインから取り出して微
細加工のリソグラフィ技術に利用するものである。
The following is an overview of the X-ray lithography technology using synchrotron radiation. This synchrotron radiation (hereinafter referred to as SR light) is used to transfer patterns by irradiating soft X-rays obtained from the synchrotron radiation. Then, such SR light is created with an electron storage ring. This electron storage ring consists of various electromagnets such as bending electromagnets that control electrons, an accelerating cavity that replenishes energy to electrons,
The electron beam accelerated from the linear accelerator is made to enter the storage ring and circulate inside the ring, and when moving at a speed close to the speed of light, The SR light is emitted in the tangential direction by changing the SR light, and the SR light is extracted from the beam line and used in lithography technology for microfabrication.

第5図はその電子蓄積リングの概要図を示しており、1
0は直線加速器,11は蓄積リング,12は偏向電磁石
, 13は加速空胴,14は真空ダクトl5はビームラ
イン,托はSR光である。なお、電磁石として他に四極
電磁石,六極電磁石,補正電磁石などが偏向電磁石と同
様に配設されている。
Figure 5 shows a schematic diagram of the electron storage ring.
0 is a linear accelerator, 11 is a storage ring, 12 is a bending electromagnet, 13 is an acceleration cavity, 14 is a vacuum duct, 15 is a beam line, and the pole is an SR light. In addition, other electromagnets such as a quadrupole electromagnet, a sextupole electromagnet, and a correction electromagnet are arranged in the same manner as the bending electromagnet.

ところで、このような電子蓄積リングから放射されたS
R光を照射するX線露光方法においては、SR光がマイ
クロ波帯からX線領域までの広い波長領域の連続スペク
トルをもっているために、全反射ミラーによる短波長X
線成分の除去とベリリウム窓などの吸収フィルタによる
長波長成分の除去をおごなって、5人より少し長い波長
、例えば、5〜15人の波長帯のX線を利用して露光す
るものである。
By the way, the S emitted from such an electron storage ring
In the X-ray exposure method that irradiates R light, since SR light has a continuous spectrum in a wide wavelength range from the microwave band to the X-ray region, short-wavelength
It removes line components and removes long wavelength components using an absorption filter such as a beryllium window, and then exposes using X-rays with a wavelength slightly longer than 5, for example, in the wavelength range of 5 to 15. be.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、SR光によるX線であっても、大気中を
長距離に亙って引き出すと減衰が激しく、出来れば真空
中で露光するとか、あるいは、大気中の走行距離が10
mm以下にすることが重要で、そのために高真空(真空
度10−’〜10−” Torr)に保持したビームラ
イン(真空ダクトで構成されている)を用いて、発生し
たX線を減衰させることなく必要な位置まで高真空中に
導びく方法が採られている。しかし、高真空中では取扱
が困難になる等の理由から、露光は大気中でおこなうこ
とが望まれ、ビームラインの終端にはX線を透過し易い
ベリリウム(Be)窓が用いられて、大気中に取り出す
方法が考えられている。このベリリウムは原子番号が小
さく、機械的強度が大きいためにX線透過窓として適し
ているが、厚みを10〜100μm程度にすることが適
当で、厚みを薄くすると機械的強度が弱くて破損し易く
、又、厚みを厚くするとX線が減衰してX線強度が低下
することになる。
However, even if X-rays are produced by SR light, they will attenuate significantly if they are extracted through the atmosphere over a long distance.
It is important to make the X-rays less than mm, and for this purpose, a beam line (consisting of a vacuum duct) maintained in a high vacuum (vacuum level 10-' to 10-' Torr) is used to attenuate the generated X-rays. However, for reasons such as the difficulty of handling in a high vacuum, it is preferable to carry out exposure in the atmosphere. A method is being considered in which a beryllium (Be) window, which is easily transparent to X-rays, is used to extract it into the atmosphere.Beryllium has a small atomic number and high mechanical strength, making it suitable as an X-ray transparent window. However, it is appropriate to set the thickness to about 10 to 100 μm; if the thickness is too thin, the mechanical strength will be weak and it will be easily damaged, and if the thickness is too thick, the X-rays will attenuate and the X-ray intensity will decrease. become.

一方、ベリリウム(Be)窓の厚みと大きさ(幅×長さ
)との関係は大気圧に耐える限度で決定されるが、その
値は大気圧によって生じるベリリウムの内部応力を約4
5Kg/ms+z以下にする必要がある。しかも、X線
強度を大きくするためには取リ込み角(SR光から取り
出す面積)を大きくしなければならない。
On the other hand, the relationship between the thickness and size (width x length) of a beryllium (Be) window is determined by the limit with which it can withstand atmospheric pressure.
It is necessary to keep it below 5Kg/ms+z. Furthermore, in order to increase the X-ray intensity, the intake angle (the area from which the SR light is extracted) must be increased.

本発明はこのような問題点を改善して、大気中へのX線
の取り出し面積を出来るだけ大きくし、且つ、出来るだ
け強いX線強度を取り出すようにすることを目的とした
X線露光方法を提案するものである。
The present invention is an X-ray exposure method that aims to improve these problems, increase the area for extracting X-rays into the atmosphere as much as possible, and extract as strong an X-ray intensity as possible. This is what we propose.

(課題を解決するための手段〕 その課題は、高真空中において前記シンクロトロン放射
光をビームラインより取り出し、シンクロ1・ロン放射
光の発散光をトロイダルミラーあるいはシリンドリカル
ミラーによって反射させて集光し、集光させて幅をもっ
た一定形状のX線を同様形状のベリリウム窓を介して大
気中に取り出し、該一定形状のX線を照射光として利用
して露光するようにしたX線露光方法によって解決され
る。
(Means for solving the problem) The problem is to extract the synchrotron radiation from a beam line in a high vacuum, and to reflect and condense the diverging synchrotron radiation with a toroidal mirror or a cylindrical mirror. , an X-ray exposure method in which focused X-rays of a certain shape with a width are taken out into the atmosphere through a similarly shaped beryllium window, and the X-rays of a certain shape are used as irradiation light for exposure. solved by.

〔作 用〕[For production]

即ち、本発明は、真空ダクトからなるビームライン中に
トロイダルミラ−(Toroidal Mirror 
 ;環状面の鏡)あるいはシリンドリ力ルミラ−(Cy
1indrical Mirror ;円筒状面の鏡)
を配置し、反射させて集光した一定形状(例えば、弓状
)のX線をヘリリウム窓を介して大気中に取り出し、そ
の一定形状のX線を光源として用いる。
That is, the present invention provides a toroidal mirror in a beam line consisting of a vacuum duct.
; annular surface mirror) or cylindrical force mirror (Cy
1indrical Mirror; cylindrical mirror)
is placed, reflected and focused X-rays of a certain shape (for example, arcuate) are taken out into the atmosphere through a helium window, and the X-rays of a certain shape are used as a light source.

そうすると、ヘリリウム窓の形状をそれらのミラーで反
射させた一定形状にほぼ一致させて、ヘリリウム窓の幅
が小さくできる。且つ、例えば、一定形状の幅が3〜4
n+mの場合、ベリリウム窓の幅を4〜5IIllI1
程度に余裕を与えて作成しておく。
In this way, the width of the helium window can be reduced by making the shape of the helium window approximately match the fixed shape reflected by those mirrors. And, for example, the width of the certain shape is 3 to 4
For n+m, set the width of the beryllium window to 4 to 5IIllI1
Create it with some leeway.

そうすると、ヘリリウムの内部応力(45Kg/ mm
2)に耐えるために、ベリリウム窓の厚みを25μmま
で薄くでき、そのようにベリリウムを薄くすれば、大気
中に取り出すX線強度が大きくなる。
Then, the internal stress of helium (45Kg/mm
In order to withstand 2), the thickness of the beryllium window can be reduced to 25 μm, and by making the beryllium thinner, the intensity of X-rays extracted into the atmosphere will increase.

〔実 施 例] 以下に図面を参照して実施例によって詳細に説明する。〔Example] Examples will be described in detail below with reference to the drawings.

?1図は本発明にかかる一定形状のXiを作成する要部
図で、図は蓄積リング11がらビームラインに取り出し
・一定形状のX線を作成する高真空中の構成を示してい
る。記号1lは蓄積リング,lはSR光(シンクロトロ
ン放射光),2は1・ロイダルミラー.3は一定形状の
X線で、PH1は蓄積リングから取り出した]?光1の
横方向のビーム拡がり角度, Psiは蓄積リングから
取り出したSR光1の紺方向のビーム拡がり角度,Pは
蓄積リングとトロイダルミラーとの距離.Zはトロイダ
ルミラーと一定形状(弓状)のX線の距離で、定形状(
例えば、弓状)のX線3とはベリリウム窓を透過して大
気中に放射させる形状のX線のことである。
? FIG. 1 is a diagram of the main parts for creating a fixed-shaped Xi according to the present invention, and the figure shows a configuration in a high vacuum in which a storage ring 11 is taken out to a beam line and a fixed-shaped X-ray is created. The symbol 1l is the storage ring, l is the SR light (synchrotron radiation), and 2 is the 1-roidal mirror. 3 is an X-ray of a certain shape, PH1 was taken out from the storage ring]? The horizontal beam spread angle of light 1, Psi is the beam spread angle in the dark blue direction of SR light 1 extracted from the storage ring, and P is the distance between the storage ring and the toroidal mirror. Z is the distance between the toroidal mirror and the fixed-shaped (arcuous) X-ray;
For example, the arcuate X-rays 3 are X-rays that are transmitted through a beryllium window and radiated into the atmosphere.

第2図はトロイダルミラーの斜視図を示し、このトロイ
ダルミラーは−]二下左右の光を効率的に集めることが
できる形状の鏡で、SR光を反射し易い材質、例えば、
白金(Pt) ,金(Au) ,酸化シリコン(SiO
■)で作成する。図中の記号R,はミラーへのSR光の
入射方向に対する横方向の曲率半径,R2 ミラーへの
SR光の入射方向に対する縦方向の曲率半径を示してい
る。
Figure 2 shows a perspective view of a toroidal mirror, which has a shape that can efficiently collect light from the left and right sides, and is made of materials that easily reflect SR light, such as
Platinum (Pt), gold (Au), silicon oxide (SiO)
■). The symbol R in the figure indicates the radius of curvature in the horizontal direction with respect to the direction of incidence of the SR light on the mirror, and R2 indicates the radius of curvature in the vertical direction with respect to the direction of incidence of the SR light on the mirror.

なお、SR光はこのトロイダルミラーによって短波長X
線成分が除去され、次に説明するベリリウム窓によって
長波長成分が除去されて、波長5〜15人程度のX線が
放射光される。
Note that the SR light is converted into a short wavelength X by this toroidal mirror.
The line component is removed, and the long wavelength component is removed by a beryllium window, which will be described next, to emit X-rays with wavelengths of about 5 to 15.

次に、具体的数値と放射X線の形状例を説明すると、第
3図(a), (b)はX線の形状を示す図で、同図(
a)はトロイダルミラーに照射する形状.同図(b)は
ベリリウム窓に照射する形状(大気中に取り出す形状;
X線3の一定形状)である。そのための値を列記すると
、その値は R , = 165mm,    R 2= 1100
00mmP =3000mm,        GA=
34mradPsi = 1.4mrad,  PH1
 =35mradH= 18.0608mm ここに、G^はSR光がトロイダルミラーに入る入射角 Hはベリリウム窓に照射されるSR光の幅 とすると、第3図(a)のような形状のSR光が得られ
て、第3図(b)のような弓状のX線をベリリウム窓か
ら取り出すことができる。Z − 10000mmとす
ればそのX線3の弓状の幅は約3〜4mm・弓状全体を
含む方形の寸法は14.8mmX40mmとなる・従っ
て、弓状の幅が3〜4mmに対してベリリウム窓を幅4
〜5+nn+程度の余裕をもった弓形状の窓にすれば良
い。
Next, to explain specific numerical values and examples of the shape of emitted X-rays, Figures 3(a) and 3(b) are diagrams showing the shape of X-rays;
a) is the shape of the irradiation onto the toroidal mirror. The figure (b) shows the shape in which the beryllium window is irradiated (the shape in which it is taken out into the atmosphere;
(constant shape of X-ray 3). Listing the values for that, the values are R, = 165mm, R2 = 1100
00mmP=3000mm, GA=
34mradPsi = 1.4mrad, PH1
=35mradH= 18.0608mm Here, G^ is the incident angle at which the SR light enters the toroidal mirror, and H is the width of the SR light irradiated onto the beryllium window. As a result, arcuate X-rays as shown in FIG. 3(b) can be taken out from the beryllium window. If Z - 10,000 mm, the width of the arch of the X-ray 3 is approximately 3 to 4 mm.The dimensions of the rectangle including the entire arch are 14.8 mm x 40 mm.Therefore, the width of the arch is 3 to 4 mm, and the width of the arch is approximately 3 to 4 mm. window width 4
It is sufficient to use a bow-shaped window with a margin of about 5+nn+.

第4図(a), (b)に本発明にかかるベリリウム窓
を示す図であり、同図(a)はベリリウム窓部分の側断
面図,同図(b)はへリリウム窓の平面図で、真空ダク
トからなるビームラインl5に封止金属4によってヘリ
リウム窓5を電子ビーム溶着してあり、同図(b)に示
すヘリリウム窓5以外の平面部分も封止金属4(例えば
、ステンレススチール)から構成させている。なお、第
4図(b)においてへリリウム窓5は点線で囲んだ部分
を示し、その内に斜線で示しているのは一定形状のX線
3を示している。
FIGS. 4(a) and 4(b) are views showing the beryllium window according to the present invention, where (a) is a side sectional view of the beryllium window portion, and FIG. 4(b) is a plan view of the helillium window. , a helium window 5 is electron beam welded to a beam line 15 consisting of a vacuum duct using a sealing metal 4, and the plane portion other than the helium window 5 shown in FIG. It is composed of In addition, in FIG. 4(b), the helium window 5 is shown as a portion surrounded by a dotted line, and the diagonal line within the helium window 5 shows the X-ray 3 having a certain shape.

かくして、幅3〜4mmの弓形のX線形状に対してやや
余裕をもった幅4〜5IIIIl1の弓形のベリリウム
窓5を形成すると、ベリリウムの厚みを25μm程度に
薄くできて、大気中に取り出すX線の減衰を少なくして
、強度の強いX線を取り出すことができる。この場合、
もしベリリウム窓の形杖を14.8mn+ X 40m
mの方形窓にすれば、ベリリウムの厚みを50μm程度
に厚くしなければ内部応力を45Kg/mm2以下にで
きず、そのような厚いベリリウムの厚みはX線強度を指
数函数的に減衰させることになる。
In this way, by forming the arcuate beryllium window 5 with a width of 4 to 5IIIl1, which has a slight margin for the arcuate X-ray shape with a width of 3 to 4 mm, the thickness of the beryllium can be reduced to about 25 μm, and the X that can be taken out into the atmosphere. It is possible to reduce the attenuation of the rays and extract high-intensity X-rays. in this case,
If the beryllium window shape is 14.8m + x 40m
If the window is made into a rectangular window of m, the internal stress cannot be reduced to 45 Kg/mm2 or less unless the beryllium thickness is increased to about 50 μm, and such a thick beryllium thickness will exponentially attenuate the X-ray intensity. Become.

このようにして、一定形状(弓状)のX線を大気中に取
り出し、直ぐ近くに被露光基板を配置し、その被露光基
板をX線によってスキャンニングすると、強度の強いX
線のために所要の十分な露光量を与えて露光することが
でき、X線露光法におけるスループットを向上して、そ
の汎用化に大きく役立たせることができる。
In this way, X-rays of a certain shape (arcuous shape) are taken out into the atmosphere, a substrate to be exposed is placed nearby, and the substrate to be exposed is scanned by X-rays.
The X-ray exposure method can be exposed with a sufficient amount of light required for X-ray exposure, thereby improving the throughput of the X-ray exposure method and greatly contributing to its generalization.

且つ、上記例はトロイダルミラ−(環状面の鏡)を用い
た実施例で説明したが、その他にシリンドリカルミラ−
(円筒状面の鏡)を用い゜ζもほぼ同様の効果が得られ
て、本発明は上記のトロイダルミラーに限るものではな
い。
In addition, although the above example was explained using a toroidal mirror (mirror with an annular surface), it is also possible to use a cylindrical mirror.
(A mirror with a cylindrical surface) can be used to obtain substantially the same effect, and the present invention is not limited to the above-mentioned toroidal mirror.

〔発明の効果] 以上の説明から明らかなように・本発明“よれば十分な
強度をもったX線を光源として露光することができ、X
線露光の汎用化に大きく近づG)て、[、Slなど半導
体デバイスの性能向上に著しく寄与するものである。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, exposure can be performed using X-rays with sufficient intensity as a light source,
It will bring us closer to the generalization of line exposure, and will significantly contribute to improving the performance of semiconductor devices such as [, Sl, etc.].

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる一定形状のX線を作成する要部
図、 第2図はトロイダルミラーの斜視図、 第3図(a), (b)はX線の形状を示す図、第4図
(a). (b)は本発明にがかるヘリリウム窓を示す
図、 第5図は電子蓄積リングの概要図である。 図において、 lはSR光、 2はトロイダルミラ− 3は一定形状のX線、 5はベリリウム窓、 11は蓄積リング、 l5はビームライン 1111才1[リ>7ー 第 1 図 トロイ7゛ルミラーnヂ腎裡の J電}蓄4ゾ上7・・の7u芋m 第5図
Figure 1 is a diagram of the main parts for creating X-rays of a certain shape according to the present invention, Figure 2 is a perspective view of a toroidal mirror, Figures 3 (a) and (b) are diagrams showing the shape of X-rays, Figure 4(a). (b) is a diagram showing a helium window according to the present invention, and FIG. 5 is a schematic diagram of an electron storage ring. In the figure, l is the SR light, 2 is the toroidal mirror, 3 is the X-ray of a fixed shape, 5 is the beryllium window, 11 is the storage ring, l5 is the beam line Figure 5

Claims (1)

【特許請求の範囲】 シンクロトロン放射光を光源とするX線露光方法におい
て、 高真空中において前記シンクロトロン放射光をビームラ
インより取り出し、該シンクロトロン放射光の発散光を
トロイダルミラーあるいはシリンドリカルミラーによっ
て反射させて集光し、集光させて幅をもつた一定形状の
X線を同様形状のベリリウム窓を介して大気中に取り出
し、該一定形状のX線を照射光として利用して露光する
ようにしたことを特徴とするX線露光方法。
[Claims] In an X-ray exposure method using synchrotron radiation as a light source, the synchrotron radiation is extracted from a beam line in a high vacuum, and the diverging light of the synchrotron radiation is transmitted using a toroidal mirror or a cylindrical mirror. The X-rays are reflected and focused, the X-rays of a certain shape with a width are taken out into the atmosphere through a similarly shaped beryllium window, and the X-rays of the certain shape are used as irradiation light for exposure. An X-ray exposure method characterized by:
JP2011129A 1990-01-19 1990-01-19 X-ray exposing method Pending JPH03215800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129A JPH03215800A (en) 1990-01-19 1990-01-19 X-ray exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129A JPH03215800A (en) 1990-01-19 1990-01-19 X-ray exposing method

Publications (1)

Publication Number Publication Date
JPH03215800A true JPH03215800A (en) 1991-09-20

Family

ID=11769410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129A Pending JPH03215800A (en) 1990-01-19 1990-01-19 X-ray exposing method

Country Status (1)

Country Link
JP (1) JPH03215800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312998A (en) * 1992-05-13 1993-11-26 Hamamatsu Photonics Kk Ion generator
JP2009016120A (en) * 2007-07-03 2009-01-22 Ihi Corp Laser introduction-cum-x-ray extraction mechanism for x-ray generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312998A (en) * 1992-05-13 1993-11-26 Hamamatsu Photonics Kk Ion generator
JP2009016120A (en) * 2007-07-03 2009-01-22 Ihi Corp Laser introduction-cum-x-ray extraction mechanism for x-ray generating device

Similar Documents

Publication Publication Date Title
JP4353640B2 (en) Wafer container with gas screen for extreme ultraviolet lithography
US4692934A (en) X-ray lithography system
US4028547A (en) X-ray photolithography
JPH09330878A (en) X-ray reduction aligner and method for manufacturing device using the same
JP2002529927A5 (en)
JP3078872B2 (en) X-ray lithographic beamline method and apparatus
JPS61189636A (en) Exposure method for semiconductor wafer with xenon-mercury vapor discharge lamp
JPS62222634A (en) X-ray exposure method
JPH03215800A (en) X-ray exposing method
US20120127446A1 (en) Light exposure method, and light exposure apparatus
JPH021999A (en) X-ray laser beam generating method and device thereof
JPH07254539A (en) Electron beam exposure device
JPS61210634A (en) Apparatus for treatment in vacuum
JPH0527080B2 (en)
JPS62150720A (en) Surface treatment equipment applying radiation light
JPH10511810A (en) Exit window for beamline for X-ray lithography
JP3058603B2 (en) Beamline for X-ray lithography
JPH03211817A (en) Exposure aligner
JPH1138193A (en) X-ray illumination optical system and x-ray exposure device
Chaudhari et al. Electron Beam and X-Ray Lithography
JPS59222932A (en) Semiconductor device
JP2868028B2 (en) X-ray irradiation device
JPH03120714A (en) X-ray exposure device
JPH04245615A (en) X-ray demagnification exposure method and its equipment
JPH10289867A (en) X-ray exposure device and manufacture of the device