JPH03211817A - Exposure aligner - Google Patents

Exposure aligner

Info

Publication number
JPH03211817A
JPH03211817A JP2007621A JP762190A JPH03211817A JP H03211817 A JPH03211817 A JP H03211817A JP 2007621 A JP2007621 A JP 2007621A JP 762190 A JP762190 A JP 762190A JP H03211817 A JPH03211817 A JP H03211817A
Authority
JP
Japan
Prior art keywords
undulator
pattern
reticle
aligner
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007621A
Other languages
Japanese (ja)
Other versions
JPH0612755B2 (en
Inventor
Hideo Konuki
小貫 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2007621A priority Critical patent/JPH0612755B2/en
Publication of JPH03211817A publication Critical patent/JPH03211817A/en
Publication of JPH0612755B2 publication Critical patent/JPH0612755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To realize the short time exposure of a pattern whose line width is 0.4mum or less, by constituting an aligner by using a spiral orbit type undulator inserted into an electronic storage ring, and an exposing chamber provided with a reflection optical system which performs demagnification projection applying the undulator radiation generated from the undulator to a light source. CONSTITUTION:The title aligner is constituted of the following; a spiral orbit type undulator 10 inserted into an electronic storage ring 11, and an exposing chamber provided with a reflection optical system which performs demagnification projection applying the undulator radiation generated from said undulator 20 to a light source. The undulator radiation 20 is projected on a wafer 25 by a Schwarzschild's reflecting mirror 24, after being vertically reflected by a reflecting mirror 21 and passing a reticle 22. A pattern on the reticle 22 is reduced to be about 1/4 and forms an image on the wafer 25. Thereby an aligner capable of the short time exposure of a pattern whose line width is 0.4mum or less can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野1 この発明は、半導体集積回路、プリント回路。[Detailed description of the invention] [Industrial application field 1 This invention relates to semiconductor integrated circuits and printed circuits.

光デバイス(回折格子、導波路)および超音波デバイス
等の製造過程におけるリングラフィ技術に関し、特に光
源に螺旋軌道型電子蛇行装置(アンジュレータ)による
、高速電子ビームから発生する短波長・高輝度アンジュ
レータ放射光を用い、光学系にパターンを縮小投影する
反射光学系を備えた露光装置に関するものである。
Regarding phosphorography technology in the manufacturing process of optical devices (diffraction gratings, waveguides) and ultrasonic devices, etc., we particularly use short-wavelength, high-intensity undulator radiation generated from high-speed electron beams using a spiral orbit type electronic meandering device (undulator) as a light source. The present invention relates to an exposure apparatus equipped with a reflective optical system that reduces and projects a pattern onto an optical system using light.

〔従来の技術〕[Conventional technology]

第4図は従来の露光装置の一例を示す構成図で、1は水
銀ランプ、2は照明レンズ、3はレクチル、4は投影レ
ンズ、5はウェーハ、6はステッパーである。
FIG. 4 is a block diagram showing an example of a conventional exposure apparatus, in which 1 is a mercury lamp, 2 is an illumination lens, 3 is a reticle, 4 is a projection lens, 5 is a wafer, and 6 is a stepper.

半導体集積回路のフォトリングラフィに用いられる従来
の上記露光装置には、光源の水銀ランプ1として超高圧
水銀アークランプやキセノン・水銀アークランプが用い
られている。水銀ランプ1の場合、露光に利用されるス
ペクトル線は主としてg線(波長435.8nm)とh
線(404゜7nm)の紫外線であり、さらに短波長を
狙ってi線(365nm)による縮小投影露光が検討さ
れている。縮小投影は一般に、第4図に示すようにレチ
クル3 (IC回路パターンの原版)と呼ばれる実際の
パターンを5倍乃至10倍に拡大したものを作り、レン
ズ系により縮小したパターンをウェーハ5上のレジスト
に露光させる方法である。レチクル3は、普通いくつか
のチップを含むパターンを持っており、これをステッパ
ー6でウェーハ5上に次々に露光させていく。それでこ
の装置全体をステッパーと略称している。
In the above conventional exposure apparatus used for photolithography of semiconductor integrated circuits, an ultra-high pressure mercury arc lamp or a xenon/mercury arc lamp is used as the mercury lamp 1 as a light source. In the case of mercury lamp 1, the spectral lines used for exposure are mainly g-line (wavelength 435.8 nm) and h-line.
This is ultraviolet ray (404°7 nm), and reduction projection exposure using i-line (365 nm) is being considered to aim for even shorter wavelengths. Generally speaking, reduction projection is performed by creating a 5 to 10 times enlarged version of the actual pattern called a reticle 3 (original version of the IC circuit pattern), as shown in Figure 4, and using a lens system to project the reduced pattern onto the wafer 5. This method involves exposing the resist to light. The reticle 3 usually has a pattern including several chips, which are successively exposed onto the wafer 5 by a stepper 6. Therefore, this entire device is abbreviated as a stepper.

[発明が解決しようとする課題1 しかしながら、従来のリングラフィ技術は、レチクル3
に描かれた微細なパターンを照明レンズ2で投影するの
で、パターンがあまりに微細になると、パターン転写に
用いる光の波長と同じ程度のボケ(回折)を生じる。し
たがって、パターンの微細化に伴って、使う光の波長も
短かくしなければならない。現在、露光用に使われてい
るのは水銀ランプ1であり、その波長は約0.4μmで
ある。したがって線幅が約0.5μm、あるいはそれ以
下の超々LSIにはこの光は使用できない。そこでもっ
と短い波長の光(11m波)として、例えばエキシマレ
ーザ(ArFの場合0. 193μm)やX線管あるい
は電子蓄積リングの偏向電磁石部分で発生するx #j
A領域の放射光(電磁波)の利用が試みられているが、
エキシマレーザの場合には連続発振の持続時間の問題等
が指摘されている。放射光のX線については、等信置光
のためウェーハ5上のパターンと同じ寸法の微細なパタ
ーンをマスク(第4図のレチクル3に相当する)上に作
る必要があり、マスクのパターン製作が難しくなる。ま
た、X線照射にはマスク上での放射線損傷や熱負荷がパ
ターンを歪ませる等の問題点があった。
[Problem to be solved by the invention 1 However, in the conventional phosphorography technology, the reticle 3
Since a fine pattern drawn on the surface is projected by the illumination lens 2, if the pattern becomes too fine, blurring (diffraction) of the same degree as the wavelength of the light used for pattern transfer will occur. Therefore, as patterns become finer, the wavelength of the light used must also be made shorter. Currently, a mercury lamp 1 is used for exposure, and its wavelength is about 0.4 μm. Therefore, this light cannot be used for ultra-super LSIs with a line width of about 0.5 μm or less. Therefore, as light with a shorter wavelength (11 m wave), for example, x #j is generated in an excimer laser (0.193 μm in the case of ArF), an X-ray tube, or the bending electromagnet part of an electron storage ring.
Attempts have been made to utilize synchrotron radiation (electromagnetic waves) in region A, but
In the case of excimer lasers, problems such as the duration of continuous oscillation have been pointed out. Regarding X-ray synchrotron radiation, it is necessary to create a fine pattern on a mask (corresponding to reticle 3 in Fig. 4) with the same dimensions as the pattern on wafer 5 because it is an isometric beam, and mask pattern fabrication is required. becomes difficult. In addition, X-ray irradiation has problems such as radiation damage on the mask and heat load that distorts the pattern.

この発明は、上記従来の問題点を解決するためになされ
たもので、遠紫外・真空紫外線領域の高輝度の安定な光
源として螺旋軌道型アンジュレータを用い、反射の光学
系でパターンの縮小投影を行うことにより0.4μm以
下の線幅のパターンの露光が短時間でできる露光装置を
得ることを目的とする。
This invention was made to solve the above conventional problems, and uses a spiral orbit type undulator as a stable light source with high brightness in the deep ultraviolet and vacuum ultraviolet regions, and reduces and projects patterns using a reflection optical system. The object of the present invention is to obtain an exposure apparatus that can expose a pattern with a line width of 0.4 μm or less in a short time.

[課題を解決するための手段〕 この発明にかかる露光装置は、電子蓄積リングに挿入さ
れた螺旋軌道型アンジュレータと、この螺旋軌道型アン
ジュレータから発生するアンジュレータ放射光を光源と
して縮小投影する反射光学系を備えた露光チェンバーと
からなるものである。
[Means for Solving the Problems] An exposure apparatus according to the present invention includes a spiral trajectory undulator inserted into an electron storage ring, and a reflection optical system that uses the undulator radiation light generated from the spiral trajectory undulator as a light source to reduce and project the light. It consists of an exposure chamber equipped with.

[作用〕 この発明においては、螺旋軌道型アンジュレータから発
生するアンジュレータ放射光を用い、パターンを反射鏡
で縮小投影することにより0.4ユレータの構成を示す
図である。これらの図において、10は螺旋軌道型アン
ジュレータ、11は電子蓄積リング、12は露光チェン
バー 13は放射光取出用窓、14は偏向電磁石、15
は四重極マグネット、16は蓄積電子ビームにエネルギ
ーを加える高周波加速空洞、17はインフレクタ18は
バーターベーター 19は前記電子蓄積リング11に電
子ビームを入射させる線型加速器、20はアンジュレー
タ放射光、21は反射鏡、22はレチクル(マスク)、
23はレチクルステージ、24はシュバルトシルト型反
射鏡で、凸面m 24 aと円環状の凹面鏡24bとか
らなり、凸面鏡24aで反射した光は凹面鏡24bで反
射されウェーハ上に結像する。25はウェーハ、26は
ステップステージ、27は電子ビーム、28は永久磁石
列である。
[Operation] In the present invention, the undulator radiation light generated from the spiral orbit type undulator is used, and the pattern is reduced and projected with a reflecting mirror, thereby showing a configuration of 0.4 urator. In these figures, 10 is a spiral orbit type undulator, 11 is an electron storage ring, 12 is an exposure chamber, 13 is a synchrotron radiation extraction window, 14 is a bending electromagnet, and 15
16 is a quadrupole magnet, 16 is a high frequency acceleration cavity that adds energy to the stored electron beam, 17 is an inflector 18 is a converter, 19 is a linear accelerator that makes the electron beam enter the electron storage ring 11, 20 is undulator synchrotron radiation, 21 is a reflector, 22 is a reticle (mask),
Reference numeral 23 denotes a reticle stage, and 24 denotes a Schwartschild type reflecting mirror, which consists of a convex surface m 24 a and an annular concave mirror 24b, and the light reflected by the convex mirror 24a is reflected by the concave mirror 24b to form an image on the wafer. 25 is a wafer, 26 is a step stage, 27 is an electron beam, and 28 is a permanent magnet array.

次に、動作について説明する。Next, the operation will be explained.

アンジュレータ放射光2oを光源にすることにより、遠
紫外・真空紫外線領域で高輝度化が容易に行える。螺旋
軌道型アンジュレータ10は通過する高速電子を何回も
旋回させることにより特定の波長に干渉させる準単色光
源である。
By using the undulator synchrotron radiation 2o as a light source, high brightness can be easily achieved in the far ultraviolet and vacuum ultraviolet regions. The spiral orbit type undulator 10 is a quasi-monochromatic light source that rotates passing high-speed electrons many times to interfere with a specific wavelength.

第2図のような永久磁石列28を形成した螺旋軌道型ア
ンジュレータ10は、電子が常に電磁波を放出するので
、高輝度の光が得られるものであり、永久磁石列28の
各磁石の磁場強度を適当に変えたり、磁石列を変化させ
ることにより電子に種々の軌道上を走らせることができ
る。[電総研ニュース462号(1988,7月)、偏
光発生装置:特願昭59−137655号、 H,0n
ukiet al著Polarizing undul
ator with crossedand  ret
arded  magnetic  fields:R
ev、Sci、Instru−m、Vol、60(19
89)pp、1838 ] 、このことは照射面での光
の強度の均一化を容易にする。
The spiral orbit type undulator 10 formed with the permanent magnet array 28 as shown in FIG. 2 can obtain high-intensity light because the electrons constantly emit electromagnetic waves. By appropriately changing the magnetic field and the magnet array, electrons can be made to travel on various orbits. [Densokken News No. 462 (July 1988), Polarization generator: Patent application No. 137655, 1988, H, 0n
Polarizing undul by ukiet al
ator with cross and ret
arded magnetic fields:R
ev, Sci, Instru-m, Vol, 60 (19
89) pp. 1838], which facilitates homogenization of the light intensity on the illuminated surface.

螺旋軌道型アンジュレータ10を電子蓄積リング11の
直線部に挿入する。磁場の周期長は7゜6cm、周期数
39JI場のピーク強度は1.4KG(相対する磁石列
間のギャップ6cm)で、370MeVの蓄積電子から
第3図に示す150nm (0,15μm)にピークを
もつアンジュレータ放射光20が得られる。このピーク
波長は電子エネルギーにより変えることができる。(2
0On、 m以下の利用の場合、露光チェンバー12は
希ガス等で空気と置換する)。このアンジュレータ放射
光20はM g F 2からなる放射光取出用窓13を
通して露光チェンバー12に導かれる。アンジュレータ
放射光2oは反射鏡21により鉛直方向に反射されレチ
クル22を通ったあと、シュバルトシルト型反射鏡24
によりウェーハ25上に投影される。レチクル22上の
パターンは約1/4に縮小されウェーハ25上に結像す
る。また、0.4μm以下の線幅の露光ができる。全長
3mの螺旋軌道型アンジュレータ1oで、蓄積電流25
0mAのとき、約1秒で1回の露光ができる。
A spiral orbit type undulator 10 is inserted into the straight part of the electron storage ring 11. The periodic length of the magnetic field is 7°6cm, the number of periods is 39, and the peak strength of the JI field is 1.4KG (6cm gap between opposing magnet rows), and the peak strength is 150nm (0.15μm) from the accumulated electrons of 370MeV as shown in Figure 3. An undulator radiation light 20 having the following values is obtained. This peak wavelength can be changed by changing the electron energy. (2
In the case of use below 0On, m, the exposure chamber 12 is replaced with air by a rare gas, etc.). This undulator radiation 20 is guided to the exposure chamber 12 through a radiation extraction window 13 made of MgF2. The undulator radiation light 2o is reflected vertically by a reflecting mirror 21, passes through a reticle 22, and then passes through a Schwartschild type reflecting mirror 24.
is projected onto the wafer 25 by. The pattern on the reticle 22 is reduced to about 1/4 and is imaged onto the wafer 25. Furthermore, exposure with a line width of 0.4 μm or less is possible. A spiral track type undulator with a total length of 3 m has an accumulated current of 25
At 0 mA, one exposure can be performed in about 1 second.

[発明の効果1 以上説明したようにこの発明は、電子蓄積リングに挿入
された螺旋軌道型アンジュレータと、この螺旋軌道型ア
ンジュレータから発生するアンジュレータ放射光を光源
として縮小投影する反射光学系を備えた露光チェンバー
とからなるので、0.4μm以下の線幅のパターンの露
光が従来より短時間で実現できる。レチクル(マスク)
の製作も従来技術で製作でき、レジスト材も従来のもの
が使用できるのでマスク、レジストに対して新しい開発
は必要がない。光源として螺旋軌道型アンジュレータを
使うことにより従来の平面型アンジュレータより輝度が
高く、したがって電子蓄積リングの直線部は短かくて良
い。また螺旋軌道の電子からは高調波の発生が小さいの
で、電子蓄積リングから放射光をとりだすMgF2の窓
の劣化も最小限に抑えられる等の利点を有する。
[Effect of the Invention 1 As explained above, the present invention includes a spiral orbit type undulator inserted into an electron storage ring, and a reflection optical system that uses the undulator radiation light generated from the spiral orbit type undulator as a light source to reduce and project it. Since it consists of an exposure chamber, exposure of a pattern with a line width of 0.4 μm or less can be realized in a shorter time than conventionally. Reticle (mask)
can be manufactured using conventional techniques, and conventional resist materials can be used, so there is no need to develop new masks and resists. By using a spiral orbit type undulator as a light source, the brightness is higher than that of a conventional planar type undulator, so the straight part of the electron storage ring can be short. Further, since the generation of harmonics from the electrons in the spiral orbit is small, there is an advantage that the deterioration of the MgF2 window for extracting the synchrotron radiation from the electron storage ring can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はこの発明の一実施例を示すもの
で、第1図(a)は露光装置の全体と直線加速器の構成
を示す図、第1図(b)は第1図(a)の露光チェンバ
ーの主光学系の構成を示す図、第2図は第1図の露光装
置に使用される螺旋軌道型アンジュレータの構成を示す
図、第3図はアンジュレータ放射光のスペクトルを示す
図、第4図は従来の露光装置の一例を示す構成図である
。 図中、10は螺旋軌道型アンジュレータ、11は電子蓄
積リング、12は露光チェンバー 13は放射光取出用
窓、17はインフレクタ−19は線型加速器、20はア
ンジュレータ放射光、21は反射鏡、22はレチクル、
23はレチクルステージ、24はシュバルトシルト型反
射鏡・25はウェーハ、26はステップステージテする
。 第 1 図 ンO アノンユし りさJ灯元 第 第 2 図 第 3 鱈 波長(nm) 7 第 図
FIGS. 1(a) and 1(b) show an embodiment of the present invention. FIG. 1(a) shows the entire exposure apparatus and the configuration of the linear accelerator, and FIG. Figure 1(a) is a diagram showing the configuration of the main optical system of the exposure chamber, Figure 2 is a diagram showing the configuration of the spiral orbit type undulator used in the exposure apparatus of Figure 1, and Figure 3 is a diagram showing the configuration of the undulator-radiated light. FIG. 4, which is a diagram showing a spectrum, is a configuration diagram showing an example of a conventional exposure apparatus. In the figure, 10 is a spiral orbit type undulator, 11 is an electron storage ring, 12 is an exposure chamber, 13 is a synchrotron radiation extraction window, 17 is an inflector, 19 is a linear accelerator, 20 is an undulator synchrotron radiation, 21 is a reflecting mirror, 22 is the reticle,
23 is a reticle stage, 24 is a Schwartschild type reflector, 25 is a wafer, and 26 is a step stage. Figure 1 N O Anonyu Shirisa J Lamp Source Figure 2 Figure 3 Cod Wavelength (nm) 7 Figure

Claims (1)

【特許請求の範囲】[Claims] 電子蓄積リングに挿入された螺旋軌道型アンジュレータ
と、この螺旋軌道型アンジュレータから発生するアンジ
ュレータ放射光を光源として縮小投影する反射光学系と
からなることを特徴とする露光装置。
An exposure apparatus comprising: a spiral orbit type undulator inserted into an electron storage ring; and a reflection optical system that uses the undulator radiation light generated from the spiral orbit type undulator as a light source to reduce and project the radiation.
JP2007621A 1990-01-17 1990-01-17 Exposure equipment Expired - Lifetime JPH0612755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007621A JPH0612755B2 (en) 1990-01-17 1990-01-17 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007621A JPH0612755B2 (en) 1990-01-17 1990-01-17 Exposure equipment

Publications (2)

Publication Number Publication Date
JPH03211817A true JPH03211817A (en) 1991-09-17
JPH0612755B2 JPH0612755B2 (en) 1994-02-16

Family

ID=11670893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007621A Expired - Lifetime JPH0612755B2 (en) 1990-01-17 1990-01-17 Exposure equipment

Country Status (1)

Country Link
JP (1) JPH0612755B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198227A1 (en) * 2017-04-26 2018-11-01 ギガフォトン株式会社 Euv light generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198227A1 (en) * 2017-04-26 2018-11-01 ギガフォトン株式会社 Euv light generation device
JPWO2018198227A1 (en) * 2017-04-26 2020-05-14 ギガフォトン株式会社 EUV light generator
US10863613B2 (en) 2017-04-26 2020-12-08 Gigaphoton Inc. EUV light generator

Also Published As

Publication number Publication date
JPH0612755B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US7061576B2 (en) Exposure apparatus and method of cleaning optical element of the same
JP4298336B2 (en) Exposure apparatus, light source apparatus, and device manufacturing method
KR100536631B1 (en) Illumination system for extreme ultraviolet radiation and its application in lithographic projection apparatus
Kawamura et al. Deep uv submicron lithography by using a pulsed high‐power excimer laser
JP2003007611A (en) Lithographic projection system, method of manufacturing element, and element manufactured by the method
JP2003022950A (en) Debris remover for x-ray light source and aligner comprising it
JP2001284240A (en) Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system
JP2005032972A (en) Light condensing optical system, light source unit, lighting optical apparatus, and aligner
JP3904765B2 (en) Lithographic apparatus
JP2004134794A (en) Lithography projector and reflector assembly for using it
US5147742A (en) Photomask and fabrication of the same
US20160170309A1 (en) Light exposure method, and light exposure apparatus
JP2005303315A (en) Method of manufacturing device
JPH03211817A (en) Exposure aligner
JP3618856B2 (en) X-ray exposure apparatus and device production method using the same
JP3673431B2 (en) Lithographic projection apparatus
EP1032098B1 (en) Laser oscillating apparatus
EP0965888B1 (en) Lithography apparatus
EP0969325B1 (en) Lithographic projection apparatus
JP3631010B2 (en) Projection exposure apparatus and device manufacturing method using the same
JP3618853B2 (en) X-ray generator, and exposure apparatus and device production method using the same
JP4551666B2 (en) Illumination apparatus and exposure apparatus
JP4303350B2 (en) Laser oscillation apparatus, exposure apparatus, and device manufacturing method
JPS5915380B2 (en) Fine pattern transfer device
JP6262891B2 (en) Exposure method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term