JPH032156A - Production of aromatic urethane - Google Patents

Production of aromatic urethane

Info

Publication number
JPH032156A
JPH032156A JP1136100A JP13610089A JPH032156A JP H032156 A JPH032156 A JP H032156A JP 1136100 A JP1136100 A JP 1136100A JP 13610089 A JP13610089 A JP 13610089A JP H032156 A JPH032156 A JP H032156A
Authority
JP
Japan
Prior art keywords
aromatic
compound
reaction
primary amine
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1136100A
Other languages
Japanese (ja)
Other versions
JPH0662544B2 (en
Inventor
Takao Ikariya
隆雄 碇屋
Masanori Itagaki
板垣 正紀
Toki Iemoto
勅 家本
Masatsugu Mizuguchi
水口 雅嗣
Tetsuo Yatani
哲男 八谷
Tomomichi Nakamura
知道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1136100A priority Critical patent/JPH0662544B2/en
Priority to US07/495,353 priority patent/US5130464A/en
Priority to CA002012624A priority patent/CA2012624A1/en
Priority to KR1019900004063A priority patent/KR940000812B1/en
Priority to EP90106307A priority patent/EP0400299A1/en
Publication of JPH032156A publication Critical patent/JPH032156A/en
Priority to US07/875,459 priority patent/US5306842A/en
Publication of JPH0662544B2 publication Critical patent/JPH0662544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an aromatic urethane in high yield at a low cost by carbonylating an aromatic mononitro compound and an aromatic primary amine with carbon monoxide and reacting the product with an organic compound having hydroxyl group. CONSTITUTION:An aromatic mononitro compound, an aromatic primary amine and carbon monoxide are made to react with each other in the presence of a catalyst composed mainly of a platinum group metal compound [e.g. Ru3(CO)12] using a compound capable of coordinating to a metal (e.g. N,N,N,' N,'-tetramethylurea) at 30-300 deg.C under 1-500kg/cm<2> pressure and the resultant N,N'-disubstituted urea is made to react with an organic compound containing hydroxyl group (e.g. monohydric alcohol) at 80-300 deg.C without using a catalyst to obtain the objective compound. The aromatic primary amine can be recycled.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は芳香族ウレタンの製造方法に関する。[Detailed description of the invention] [Industrial application field] This invention relates to a method for producing aromatic urethane.

[従来の技術及びその問題点] 従来芳香族ウレタンの製法が種々提案されているが、こ
れらは芳香族ニトロ化合物を出発原料とする方法と、芳
香族第一アミンを出発原料とする方法とに大別できる。
[Prior art and its problems] Various methods for producing aromatic urethanes have been proposed, but these include a method using an aromatic nitro compound as a starting material and a method using an aromatic primary amine as a starting material. It can be broadly classified.

芳香族ニトロ化合物を出発原料とする方法は、芳香族ニ
トロ化合物(例えばニトロベンゼン)と、水酸基を含有
する化合物(例えばアルコール類)と−酸化炭素とを、
パラジウム、ロジウム等の白金族金属化合物を主体とす
る触媒の存在下で反応させて還元的カルボニル化反応で
芳香族ウレタンを製造する方法である。この方法は、例
えば、特開昭51−98240号、特開昭54−223
39号、特公昭43−23939号等に提案されている
In the method using an aromatic nitro compound as a starting material, an aromatic nitro compound (e.g., nitrobenzene), a compound containing a hydroxyl group (e.g., an alcohol), and -carbon oxide,
This is a method for producing aromatic urethane through a reductive carbonylation reaction in the presence of a catalyst mainly consisting of a platinum group metal compound such as palladium or rhodium. This method is described, for example, in Japanese Patent Application Laid-open Nos. 51-98240 and 54-223.
No. 39, Japanese Patent Publication No. 43-23939, etc.

また芳香族第一アミンを出発原料とする方法は、酸素ま
たは有機ニトロ化合物などの酸化剤存在下に、芳香族第
一アミン(例えばアニリン)と水酸基を持つを濃化合物
(例えばアルコール類)と−酸化炭素とを、パラジウム
、ロジウム等の白金族金属化合物を主体とする触媒の存
在下に反応させて、酸化的カルボニル化反応で芳香族ウ
レタンを製造する方法である。この方法は、例えば、特
開昭55−124050、特開昭55−120551号
、特開昭59−172451号等に提案されている。
In addition, a method using an aromatic primary amine as a starting material involves combining an aromatic primary amine (e.g. aniline) with a concentrated compound (e.g. alcohols) having a hydroxyl group in the presence of an oxidizing agent such as oxygen or an organic nitro compound. This is a method for producing aromatic urethane through an oxidative carbonylation reaction in which carbon oxide is reacted with a catalyst mainly composed of a platinum group metal compound such as palladium or rhodium. This method has been proposed, for example, in Japanese Patent Application Laid-Open No. 55-124050, Japanese Patent Application Publication No. 55-120551, Japanese Patent Application Laid-Open No. 59-172451, etc.

この場合、いずれの方法も触媒主成分である白金族金属
化合物単独ではウレタン合成活性が低いため、助触媒と
して塩化鉄、オキシ塩化鉄、オキシ塩化バナジウム、ヨ
ウ化カリウム等のハロゲン化合物を用い、これを反応系
に溶解している。しかしハロゲン化合物は反応容器や配
管、バルブなどでの析出や、金属材料に対する腐蝕性が
大きく、このため耐蝕性に優れた高価な金属材料を使用
しなければならない。
In this case, since the urethane synthesis activity of the platinum group metal compound alone, which is the main catalyst component, is low in either method, a halogen compound such as iron chloride, iron oxychloride, vanadium oxychloride, potassium iodide, etc. is used as a promoter. is dissolved in the reaction system. However, halogen compounds precipitate in reaction vessels, piping, valves, etc., and are highly corrosive to metal materials. Therefore, expensive metal materials with excellent corrosion resistance must be used.

さらに、主触媒である白金族金属化合物を反応液中に溶
解させて使用する場合はもちろん、金属状態の固体とし
て使用する場合でも、白金族金属の一部が反応溶液中に
溶出することはさけられない。そのため反応終了後、反
応溶液中から白金族金属化合物を回収するには、煩雑な
操作と多大な費用を要する。
Furthermore, even when the platinum group metal compound, which is the main catalyst, is used dissolved in the reaction solution, and even when used as a solid metal, it is important to avoid part of the platinum group metal eluting into the reaction solution. I can't do it. Therefore, recovering the platinum group metal compound from the reaction solution after the completion of the reaction requires complicated operations and a large amount of cost.

また反応溶媒として、反応原料である水酸基を持つ有機
化合物を使用するが、芳香族ウレタンは、この水酸基を
持つ有機化合物に対する溶解度が非常に大きい。このた
め、反応後の溶液から芳香族ウレタンを晶析により分離
回収する場合、溶液を零下数十度の極低温まで冷却する
か、あるいは溶液の濃縮した後冷却して結晶を析出させ
る操作が必要となる。しかもこの操作を行っても芳香族
ウレタンと溶液中に溶解している触媒成分とを分別して
回収することは困難である。また芳香族ウレタンの別の
回収方法として、蒸留による方法も考えられる。しかし
この場合、溶解している触媒を蒸留残留物として回収す
るために、芳香族ウレタンを留出させなければならない
。ところが芳香族ウレタンは高沸点化合物であり、1+
omHg程度の高真空下、100〜150℃の中温度域
で蒸留を行わなければならない。
Further, as a reaction solvent, an organic compound having a hydroxyl group, which is a reaction raw material, is used, and aromatic urethane has a very high solubility in this organic compound having a hydroxyl group. Therefore, when aromatic urethane is separated and recovered from the solution after the reaction by crystallization, it is necessary to cool the solution to an extremely low temperature of several tens of degrees below zero, or to precipitate crystals by concentrating the solution and then cooling it. becomes. Moreover, even if this operation is performed, it is difficult to separate and recover the aromatic urethane and the catalyst component dissolved in the solution. Distillation may also be considered as another method for recovering aromatic urethane. However, in this case the aromatic urethane must be distilled off in order to recover the dissolved catalyst as a distillation residue. However, aromatic urethane is a high boiling point compound and has a 1+
Distillation must be carried out in a medium temperature range of 100 to 150° C. under a high vacuum of about 100 mHg.

以上のごとく、芳香族ウレタンを溶液から分離回収し、
さらに触媒を回収して再使用することは、晶析にせよ蒸
留にせよ困難である。
As described above, aromatic urethane is separated and recovered from the solution,
Furthermore, it is difficult to recover and reuse the catalyst, whether by crystallization or distillation.

さらにまた、芳香族ニトロ化合物を出発原料とする場合
には芳香族アミン及びN、N’ −ジ置換ウレアが、芳
香族第一アミンを出発原料とする場合にはN、N’ −
ジ置換ウレアが副生じ、芳香族ウレタンの収率が低下す
る欠点がある。
Furthermore, aromatic amines and N,N'-disubstituted ureas are used when aromatic nitro compounds are used as starting materials, and N,N'-disubstituted ureas are used when aromatic primary amines are used as starting materials.
There is a drawback that di-substituted urea is produced as a by-product and the yield of aromatic urethane is reduced.

また、二段の反応で芳香族ウレタンを製造する方法が、
特開昭62−111958、特願昭63−012018
に提案されている。しかし、特開昭62−111958
の場合には第一段目の反応の際にルテニウム錯体触媒が
析出し、生成物である尿素化合物の結晶と共に系外に出
てしまう可能性がある。さらに特願昭63−01201
8では、第一段目の反応の際に添加溶媒により触媒の析
出が抑えられるが、溶媒の添加による反応速度の増加は
認められない。
In addition, there is a method for producing aromatic urethane through a two-step reaction.
Japanese Patent Application Publication No. 62-111958, Patent Application No. 63-012018
has been proposed. However, JP-A-62-111958
In this case, there is a possibility that the ruthenium complex catalyst will precipitate during the first stage reaction and come out of the system together with the product urea compound crystals. Furthermore, patent application No. 63-01201
In No. 8, catalyst precipitation is suppressed by the added solvent during the first stage reaction, but no increase in the reaction rate due to the addition of the solvent is observed.

[発明が解決しようとする課題] この発明は上記事情に鑑みてなされたもので、その目的
とするところは、ハロゲン化合物を助触媒として使用せ
ず、この使用による各種問題を解消する芳香族ウレタン
の製造方法を提供するところにある。また、この発明の
目的とするところは、カルボニル化反応による尿素類の
製造と、生成した尿素類と水酸基を持つ化合物の反応と
の二段の反応で芳香族ウレタンを製造することにより、
全体としてその収率及び選択性を向上し、しかも触媒及
び生成した芳香族ウレタンの回収を容易に行う芳香族ウ
レタンの製造方法を提供することにある。さらにこの発
明の目的とするところは、−段目に行うカルボニル化反
応によるウレア生成工程において、溶媒の一部として金
属に配位力のある化合物を用いて反応速度をより高め、
かつ、触媒のリサイクルを効率よく行い、ひいては、効
率よく芳香族ウレタンを製造する方法を得んとするもの
である。
[Problems to be Solved by the Invention] This invention has been made in view of the above circumstances, and its purpose is to provide an aromatic urethane that does not use a halogen compound as a promoter and eliminates various problems caused by its use. The purpose is to provide a manufacturing method. In addition, the object of the present invention is to produce aromatic urethanes through a two-step reaction of producing ureas through a carbonylation reaction and reacting the produced ureas with a compound having a hydroxyl group.
The object of the present invention is to provide a method for producing aromatic urethane, which improves the overall yield and selectivity, and also allows easy recovery of the catalyst and the produced aromatic urethane. Furthermore, it is an object of the present invention to further increase the reaction rate by using a compound that has a coordinating ability to the metal as part of the solvent in the urea production step by carbonylation reaction performed in the -stage.
The present invention also aims to provide a method for efficiently recycling a catalyst and, furthermore, for efficiently producing aromatic urethane.

[課題を解決するための手段] この発明は、三つの工程を具備した芳香族ウレタンの製
造方法である。
[Means for Solving the Problems] The present invention is a method for producing aromatic urethane, which includes three steps.

第一の工程においは、芳香族モノニトロ化合物と芳香族
第一アミンと一酸化炭素とを、白金族金属化合物を主体
とする触媒を使用して反応させて、N、N’−ジ置換ウ
レアを生成する。ここでは、溶媒の一部として金属に配
位力のある化合物を用いて反応速度を高め、かつ、触媒
を安定に溶液中に溶存せしめる。次いで、生成したN、
N’ −ジ置換ウレアを反応液から分離回収する。
In the first step, an aromatic mononitro compound, an aromatic primary amine, and carbon monoxide are reacted using a catalyst mainly composed of a platinum group metal compound to produce an N,N'-disubstituted urea. generate. Here, a compound having a coordinating power to the metal is used as part of the solvent to increase the reaction rate and to stably dissolve the catalyst in the solution. Then, the generated N,
N'-disubstituted urea is separated and recovered from the reaction solution.

第二の工程においては、第一の工程において得られたN
、N’ −ジ置換ウレアと水酸基を有する有機化合物と
を反応させて、芳香族第一アミンと芳香族ウレタンとを
生成し、次いで芳香族第一アミンを分離して芳香族ウレ
タンを得る。
In the second step, the N obtained in the first step is
, N'-disubstituted urea and an organic compound having a hydroxyl group are reacted to produce an aromatic primary amine and an aromatic urethane, and then the aromatic primary amine is separated to obtain an aromatic urethane.

第三の工程においては、分離した第一アミンを前記第一
の工程へと循環する。
In the third step, the separated primary amine is recycled to the first step.

つぎに発明を具体的に説明する。Next, the invention will be specifically explained.

まず、第一の工程は、芳香族第一アミンと芳香族モノニ
トロ化合物と一酸化炭素とを、白金族金属化合物を主体
とする触媒を使用し、さらに溶媒の一部として金属に配
位力のある化合物を用いて反応させる。この反応は以下
の反応式にしたがって進行するものと考えられる。
First, the first step is to combine an aromatic primary amine, an aromatic mononitro compound, and carbon monoxide with a catalyst mainly consisting of a platinum group metal compound, and also as part of a solvent to impart a coordination force to the metal. React using a certain compound. This reaction is thought to proceed according to the following reaction formula.

ArNH2+ArNO2+3GO− ArNHCNHAr+2CO2 芳香族第一アミンとしては、アニリン類、アミノナフタ
レン類、アミノアントラセン類、アミノビフェニル類な
どがあり、具体的な化合物としては、アニリン、o−、
m−及びp−トルイジン、o−、m−及びp−クロロア
ニリン、α及びβ−ナフチルアミン、2−メチル−1〜
アミノナフタレン、ジアミノベンゼン各異性体、トリア
ミノベンゼン各異性体、アミノトルエン各異性体、ジア
ミノトルエン各異性体、アミノナフタリン各異性体、な
らびに、これらの混合物などがあげられる。
ArNH2+ArNO2+3GO- ArNHCNHAr+2CO2 Examples of aromatic primary amines include anilines, aminonaphthalenes, aminoanthracenes, aminobiphenyls, etc. Specific compounds include aniline, o-,
m- and p-toluidine, o-, m- and p-chloroaniline, α- and β-naphthylamine, 2-methyl-1~
Examples include aminonaphthalene, diaminobenzene isomers, triaminobenzene isomers, aminotoluene isomers, diaminotoluene isomers, aminonaphthalene isomers, and mixtures thereof.

芳香族モノニトロ化合物としては、ニトロベンゼン類、
ニトロナフタレン類、ニトロアントラセン類、ニトロビ
フェニル類あるいは少なくとも一個の水素が他の置換基
、例えば、ハロゲン原子、シアノ基、脂環基、芳香族基
、アルキル基、アルコキシ基、スルホン基、スルホキシ
ド基、カルボニル基、エステル基、アミド基などによっ
て置換されているニトロ化合物などがあり、具体的な化
合物として、ニトロベンゼン、o+、m−及びpニトロ
トルエン、0−ニトロ−p−キシレン、2−メチル−1
−ニトロナフタレン、ジニトロベンゼン各異性体、トリ
ニトロベンゼン各異性体、ジニトロトルエン各異性体、
ニトロナフタレン各異性体、o −、m−及びp−クロ
ロニトロベンゼン、1−ブロモ−4−二トロベンゼン、
並びにこれらの混合物などがあげられる。ただし、芳香
族第一アミンに対応するニトロ化合物を用いるほうが好
ましい。
Aromatic mononitro compounds include nitrobenzenes,
Nitronaphthalenes, nitroanthracenes, nitrobiphenyls, or at least one hydrogen substituent, such as a halogen atom, a cyano group, an alicyclic group, an aromatic group, an alkyl group, an alkoxy group, a sulfone group, a sulfoxide group, There are nitro compounds substituted with carbonyl groups, ester groups, amide groups, etc., and specific compounds include nitrobenzene, o+, m- and p-nitrotoluene, 0-nitro-p-xylene, 2-methyl-1
-Nitronaphthalene, dinitrobenzene isomers, trinitrobenzene isomers, dinitrotoluene isomers,
Nitronaphthalene isomers, o-, m- and p-chloronitrobenzene, 1-bromo-4-nitrobenzene,
and mixtures thereof. However, it is preferable to use nitro compounds corresponding to aromatic primary amines.

添加する配位性のアミド化合物としては、アミド類、具
体的にはN、N−ジメチルアセトアミド、N、N−ジメ
チルホルムアミド、N−メチル−2−ピロリジノン等、 一般式RI R2NCNR3R4 で表される置換尿素化合物(RI  R2R3R4はア
ルキル基及び炭素鎖で連結した3内至5の炭素原子を含
むアルキレン)、具体時にはN。
Examples of the coordinating amide compound to be added include amides, specifically N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidinone, etc. Substituted compounds represented by the general formula RI R2NCNR3R4 Urea compounds (RI R2R3R4 is an alkyl group and alkylene containing 3 to 5 carbon atoms connected by a carbon chain), specifically N.

N、N’ 、N’−テトラメチル深索、1.3−ジメチ
ル−2−イミダゾリジノン、1,3−ジメチルテトラヒ
ドロ−2(IH)−ピリミジノン等、表されるホスフィ
ン−アミド化合物、(R1R2は炭素数1内至5のアル
キル基で、nは1内至5)、 R2 れるホスフィン−アミド化合物(RI  R2は炭素数
1内至6のアルキル基、及び炭素鎖で連結した炭素数3
内至5のアルキレン)、並びにこれらの異性体、さらに
はこれらの混合物などがあげられる。
The phosphine-amide compounds represented by N,N',N'-tetramethyl sulfate, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyltetrahydro-2(IH)-pyrimidinone, (R1R2 is an alkyl group having 1 to 5 carbon atoms, n is 1 to 5), R2 is an alkyl group having 1 to 6 carbon atoms, and a phosphine-amide compound (RI R2 is an alkyl group having 1 to 6 carbon atoms, and 3 carbon atoms connected by a carbon chain)
Examples include 5-alkylene), isomers thereof, and mixtures thereof.

含酸素有機イオウ化合物、例えばスルホキシド類は、一
般式R1−5o−R2もしくはRISo2−R2で表さ
れる。ここでR1,R2は1内至8個の炭素原子を含む
アルキル、アルコキシ置換、またはフェニル置換、さら
にRt、R2は炭素鎖で連結した4内至7個の炭素原子
を含むアルキレンである。具体的にはジメチルスルホキ
シド、ジフェニルスルホキシド、スルホラン等である。
Oxygen-containing organic sulfur compounds, such as sulfoxides, are represented by the general formula R1-5o-R2 or RISo2-R2. Here, R1 and R2 are alkyl containing 1 to 8 carbon atoms, substituted with alkoxy, or substituted with phenyl, and Rt and R2 are alkylene containing 4 to 7 carbon atoms connected by a carbon chain. Specific examples include dimethyl sulfoxide, diphenyl sulfoxide, and sulfolane.

本発明方法においては、添加する配位力のある化合物の
みをそのまま溶媒として用いることもできるが、適当な
他の溶媒との混合液中で行うことも好ましい方法である
。このような他の溶媒としては、例えば、ベンゼン、ト
ルエン、キシレン、メシチレンなどの芳香族炭化水素類
、クロロヘキサン、クロロシクロヘキサン等ハロゲン化
脂肪族炭化水素類、クロロベンゼン、ブロモベンゼン、
ジクロロベンゼン、トリクロロベンゼン等のハロゲン化
芳香族炭化水素類などが用いられる。
In the method of the present invention, it is possible to use only the compound with coordinating power to be added as a solvent, but it is also preferable to carry out the reaction in a mixed solution with another suitable solvent. Examples of such other solvents include aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene, halogenated aliphatic hydrocarbons such as chlorohexane and chlorocyclohexane, chlorobenzene, bromobenzene,
Halogenated aromatic hydrocarbons such as dichlorobenzene and trichlorobenzene are used.

−酸化炭素は、純粋なものであってもよく、また、窒素
、アルゴン、ヘリウム、炭酸ガス、ハロゲン化炭化水素
などを含むものであってもよい。
- Carbon oxide may be pure or may contain nitrogen, argon, helium, carbon dioxide, halogenated hydrocarbons, and the like.

白金族金属を含む化合物は、ルテニウム、ロジウム、パ
ラジウム、白金などの白金族元素と、−酸化炭素、ホス
フィン類等の配位子、または、有機基を有する有機金属
化合物類などの化合物であるが、ハロゲン元素を含まな
いものが好ましい。具体的には、Ru 3  (CO)
 12゜H4Ru4  (Co)+2+ [Ru  2   (CO)  4  (HCOO) 
 2  コ 。 。
Compounds containing platinum group metals are compounds such as platinum group elements such as ruthenium, rhodium, palladium, and platinum, and ligands such as carbon oxide and phosphines, or organometallic compounds having an organic group. , those containing no halogen elements are preferred. Specifically, Ru 3 (CO)
12゜H4Ru4 (Co)+2+ [Ru 2 (CO) 4 (HCOO)
2 ko. .

Ru  (Co)3  (dppe)、  Ru  (
Co)3(PPh3)2.Ru (acac)3等のル
テニウム錯体化合物、Rh 6  (CO) +6 、
 Rh H(Co)  (PPh3  )  3  、
  Rh  (acac)(Co)   (PPh  
3 )  、  Rh  (acac)(Co)2 、
Rh (acac)3などのロジウム錯体化合物などが
あげられる。ただし、pph3はトリフェニルホスフィ
ン、dppeはジフェニルホスフィノエタン、acac
はアセチルアセトナトを示す。
Ru (Co)3 (dppe), Ru (
Co)3(PPh3)2. Ruthenium complex compounds such as Ru (acac)3, Rh 6 (CO) +6,
Rh H(Co) (PPh3) 3,
Rh (acac) (Co) (PPh
3), Rh(acac)(Co)2,
Examples include rhodium complex compounds such as Rh (acac)3. However, pph3 is triphenylphosphine, dppe is diphenylphosphinoethane, acac
indicates acetylacetonate.

またこれらの錯化合物以外にも、反応系中で活性種へと
変化するような無機白金族金属化合物を用いることもで
きる。具体的には、RuO□nH2O、Ru−ブラック
、Ruカーボン等があげられる。これらの化合物は、反
応系中でカルボニル錯体へと変化して活性種を与えてい
ると考えられる。
In addition to these complex compounds, inorganic platinum group metal compounds that convert into active species in the reaction system can also be used. Specifically, RuO□nH2O, Ru-black, Ru carbon, etc. can be mentioned. It is thought that these compounds convert into carbonyl complexes in the reaction system and provide active species.

さらに、これらの白金族金属にコバルト、鉄、ロジウム
、パラジウム等を複合して使用することもてきる。
Furthermore, cobalt, iron, rhodium, palladium, etc. can be used in combination with these platinum group metals.

反応温度は、通常30〜300℃、好ましくは120〜
200℃の温度範囲で行われる。反応圧力は1〜500
 kg / cd 、好ましくは10〜150kg/c
−の範囲であり、反応時間は他の条件によって異なるが
通常数分から数時間である。
The reaction temperature is usually 30-300°C, preferably 120-300°C.
It is carried out in a temperature range of 200°C. Reaction pressure is 1-500
kg/cd, preferably 10-150kg/c
The reaction time varies depending on other conditions, but is usually several minutes to several hours.

この発明方法で得られたN、N’ ジ置換ウレアは、溶
媒、及び原料である芳香族アミン、芳香族ニトロ化合物
に対する溶解度が小さい。このため、反応終了後の溶液
を室温程度に冷却するだけで、生成したN、N’  ジ
置換ウレアが結晶として析出してくる。従ってこの溶液
を濾過することにより、N、N’  ジ置換ウレアを固
形物として効率よく得られる。一方、触媒は加えた配位
性の溶媒により安定化されて濾液中に析出することなく
存在しているので、これをそのまま再使用できる。反応
後、室温に冷却し晶析する際、反応混合物中のジ置換ウ
レア以外の成分は、トルエン、ベンゼン等の溶剤で洗浄
することにより容易に分離でき、ジ置換ウレアのみを単
独で取り出すことができる。
The N,N'-disubstituted urea obtained by the method of this invention has low solubility in solvents and raw materials such as aromatic amines and aromatic nitro compounds. Therefore, simply by cooling the solution after the reaction to about room temperature, the produced N,N'-disubstituted urea will precipitate out as crystals. Therefore, by filtering this solution, N,N'-disubstituted urea can be efficiently obtained as a solid. On the other hand, the catalyst is stabilized by the added coordinating solvent and exists in the filtrate without being precipitated, so it can be reused as is. After the reaction, when cooling to room temperature and crystallizing, components other than di-substituted urea in the reaction mixture can be easily separated by washing with a solvent such as toluene or benzene, making it possible to take out only the di-substituted urea alone. can.

つぎに、第二の工程では、得られたN、N’ジ置換ウレ
アと水酸基を持つ有機化合物とを下式のごとく反応させ
て、芳香族第一アミンと芳香族ウレタンとを生成する。
Next, in the second step, the obtained N,N'-disubstituted urea and an organic compound having a hydroxyl group are reacted as shown in the following formula to produce an aromatic primary amine and an aromatic urethane.

A  r−NHCNH−A  r  +ROH→A r
−NHCOOR+A  r−NH2(2)水酸基を持つ
有機化合物としては、−価アルコール類、−価フエノー
ル類などがあり、具体的には、メチル、エチル、n−プ
ロピル、イソプロピル、n−ブチル、イソブチル、及び
t−ブチルのごとき一価アルコール、ならびにフェノー
ル、クロロフェノール、メチル、エチル、n−プロピル
、イソプロピルのごときアルキル基を持つアルキルフェ
ノールなどがあげられる。
A r-NHCNH-A r +ROH→A r
-NHCOOR+A r-NH2 (2) Organic compounds with hydroxyl groups include -hydric alcohols, -valent phenols, etc. Specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and monohydric alcohols such as t-butyl, and alkylphenols having alkyl groups such as phenol, chlorophenol, methyl, ethyl, n-propyl, and isopropyl.

反応温度は、通常80〜300℃、好ましくは120〜
200℃の温度範囲で行うのがよい。圧力は、通常使用
する水酸基を含む有機化合物あるいは、溶媒の反応温度
における自生圧下で行う。
The reaction temperature is usually 80-300°C, preferably 120-300°C.
It is preferable to carry out at a temperature range of 200°C. The pressure is set at the autogenous pressure at the reaction temperature of the organic compound containing a hydroxyl group or the solvent that is commonly used.

そしてこの反応は、触媒を使用することなく行うことが
できる。
And this reaction can be carried out without using a catalyst.

この反応終了後、蒸留操作を行い、芳香族ウレタンを蒸
留残留物として回収し、一方蒸留により芳香族第一アミ
ンを回収する。この芳香族第一アミンは、−段目のN、
N’ −ジ置換ウレアの生成反応に再使用する。
After completion of this reaction, a distillation operation is performed to recover the aromatic urethane as a distillation residue, while the aromatic primary amine is recovered by distillation. This aromatic primary amine has - stage N,
It is reused in the reaction for producing N'-disubstituted urea.

以上の様に第一の工程(反応式(1))及び、第二の工
程(反応式(2))とを連続、して行えば、芳香族第一
アミンは形式的には変化せず、芳香族ニトロ化合物のみ
が反応にあずかり、全体として、芳香族ニトロ化合物が
還元的に芳香族ウレタンに転換することになり、芳香族
第一アミンを出発物質として用いるよりも経済的となる
As mentioned above, if the first step (reaction formula (1)) and the second step (reaction formula (2)) are carried out consecutively, the aromatic primary amine will not change formally. , only the aromatic nitro compound participates in the reaction, and overall the aromatic nitro compound is reductively converted to the aromatic urethane, which is more economical than using aromatic primary amines as starting materials.

[発明の作用、効果] この発明によれば、−段目の反応において生成するN、
N’ −ジ置換ウレアが溶媒、及び原料である芳香族ア
ミン、芳香族ニトロ化合物に対して溶解度が小さいので
、これを室温まで冷却することにより容易に晶析でき、
濾過によ°り効率よ(N。
[Operations and Effects of the Invention] According to the present invention, N generated in the -th stage reaction,
Since N'-disubstituted urea has low solubility in solvents and raw materials such as aromatic amines and aromatic nitro compounds, it can be easily crystallized by cooling it to room temperature.
Filtration increases efficiency (N.

N′−ジ置換ウレアを回収することができる。しかも触
媒は添加した配位性の溶媒により安定化されて溶液中に
存在するので、これをそのまま−段目の反応に再使用で
き経済的である。
N'-disubstituted urea can be recovered. Moreover, since the catalyst is stabilized by the added coordinating solvent and exists in the solution, it can be reused as it is in the second-stage reaction, which is economical.

またこの発明では、ハロゲン化合物を使用する必要がな
いので、装置材料の腐蝕がきわめて少なく、反応器に高
価な材料を使用する必要がない。
Further, in this invention, since there is no need to use a halogen compound, corrosion of equipment materials is extremely low, and there is no need to use expensive materials for the reactor.

さらにこの−段目の反応は副反応が少なく、高い収率で
N、N’ −ジ置換ウレアを得ることができる。
Furthermore, this second stage reaction has fewer side reactions and can provide N,N'-disubstituted urea in high yield.

また、二段目の反応では、触媒を使用する必要がないの
で、芳香族ウレタンを留出させず蒸留残留物として回収
できる。しかも蒸留する物質である芳香族第一アミンと
残留する水酸基を持つ有機化合物とは、比較的低沸点の
物質であるため、穏和な条件で蒸留操作を行うことがで
き、操作が容易となる。しかも、回収した芳香族第一ア
ミンは、−段目のN、N’ −ジ置換ウレア生成反応に
再使用できる。さらにまた、二段目の反応は、無触媒反
応でほぼ定量的に進行し、副反応が少ない。このため二
段階反応ではあるが、高い収率で芳香族ウレタンを製造
することができる。
Further, in the second stage reaction, since it is not necessary to use a catalyst, the aromatic urethane can be recovered as a distillation residue without being distilled off. Furthermore, since the aromatic primary amine that is the substance to be distilled and the remaining organic compound having a hydroxyl group have relatively low boiling points, the distillation operation can be carried out under mild conditions, making the operation easy. Moreover, the recovered aromatic primary amine can be reused in the -stage N,N'-disubstituted urea production reaction. Furthermore, the second stage reaction proceeds almost quantitatively without any catalyst, and there are few side reactions. Therefore, although it is a two-step reaction, aromatic urethane can be produced in high yield.

[実施例] つぎに本発明の実施例について説明する。なお、各実施
例では、一般的な慣用名である「ウレタン」の用語にか
えて、「カルバミン酸アルキル」の用語を用い、個々の
物質名を明確に表示している。
[Example] Next, an example of the present invention will be described. In addition, in each example, the term "alkyl carbamate" is used instead of the term "urethane", which is a common name, and the names of the individual substances are clearly indicated.

実施例1 内容積200 ml、電磁撹拌式オートクレーブに、ニ
トロベンゼン5.6g、アニリン7.8 g、  )ル
エン27m1、N、N、N’ 、N’  −テトラメチ
ル尿素(以下TMUと略す) 8.3 gs Ru 3
(Co)+:+20+ngを入れ、系内を一酸化炭素に
置換した後、−酸化炭素を50kg/cdとなるように
圧入した。撹拌しなから160’Cで2.0時間反応さ
せた。反応終了後、室温まで冷却し、排気後、反応溶液
を濾過してN、N’ −ジフェニル尿素の結晶3.5g
を得た。濾液をガスクロマトグラフ及び高速液体クロマ
トグラフで分析したところ、N。
Example 1 In a magnetic stirring autoclave with an internal volume of 200 ml, 5.6 g of nitrobenzene, 7.8 g of aniline, 27 ml of ) toluene, and N, N, N', N'-tetramethylurea (hereinafter abbreviated as TMU) 8. 3 gs Ru 3
(Co)+:+20+ng was added, and after replacing the inside of the system with carbon monoxide, -carbon oxide was press-injected at a rate of 50 kg/cd. The reaction was carried out at 160'C for 2.0 hours without stirring. After the reaction was completed, the reaction solution was cooled to room temperature, evacuated, and filtered to obtain 3.5 g of N,N'-diphenylurea crystals.
I got it. When the filtrate was analyzed by gas chromatography and high performance liquid chromatography, it was found to be N.

N′−ジフェニル尿素0.1g、ニトロベンゼン2゜9
gが含まれていた。これより、N、N’ジフェニル尿素
生成の触媒金属原子基準でのT OF (Turn 0
verFrequency )は100h−1、ニトロ
ベンゼン基準での選択率は94%であった。
N'-diphenylurea 0.1g, nitrobenzene 2°9
g was included. From this, T OF (Turn 0
verFrequency) was 100 h-1, and the selectivity based on nitrobenzene was 94%.

次に、単離されたN、N’ −ジフェニル尿素の結晶3
.0g、メタノール50gを、別の内容積200 ml
の電磁撹拌式オートクレーブに仕込み、撹拌しながら1
60℃で3時間反応させた。反応終了後反応溶液をガス
クロマトグラフで分析した結果、N−フェニルカルバミ
ン酸メチルの収率は96%、アニリンの収率は95%で
あった。
Next, isolated N,N'-diphenylurea crystal 3
.. 0 g, methanol 50 g, another internal volume 200 ml
Place in a magnetic stirring autoclave and stir while stirring.
The reaction was carried out at 60°C for 3 hours. After the reaction was completed, the reaction solution was analyzed by gas chromatography, and the yield of methyl N-phenylcarbamate was 96% and the yield of aniline was 95%.

実施例2 次に、実施例1で示したのと同様の装置、同様の操作に
おいて、TMUの量を18.4g、 トルエンを15m
1に変えて、N、N’ −ジフェニル尿素の生成実験を
行った結果を表1に示す。
Example 2 Next, using the same apparatus and the same operation as shown in Example 1, the amount of TMU was 18.4 g, and the amount of toluene was 15 m
Table 1 shows the results of an experiment to produce N,N'-diphenylurea instead of Example 1.

さらに、ここで単離されたN、N’ −ジフェニル尿素
3.0gと、メタノール50gとを、実施例1と同様の
装置及び操作において反応させたところ、N−フェニル
カルバミン酸メチルおよびアニリンが、それぞれ収率9
5%および94%で得られた。
Furthermore, when 3.0 g of N,N'-diphenylurea isolated here and 50 g of methanol were reacted in the same apparatus and operation as in Example 1, methyl N-phenylcarbamate and aniline were produced. Yield 9 each
5% and 94% were obtained.

比較例1 実施例1で示したのと同様の装置、同様の操作において
、TMUを加えず、トルエンの量を32m1に変えて、
N、N’ −ジフェニル尿素の生成実験を行った結果を
表1に示す。
Comparative Example 1 Using the same equipment as in Example 1 and using the same operation, TMU was not added and the amount of toluene was changed to 32 ml.
Table 1 shows the results of an experiment for producing N,N'-diphenylurea.

比較例2 実施例1で示したのと同様の装置、同様の操作において
、TMUのかわりに、ピリジンを加えて、N、N’ −
ジフェニル尿素の生成実験を行った結果を表1に示す。
Comparative Example 2 In the same apparatus and the same operation as shown in Example 1, pyridine was added instead of TMU, and N, N'-
Table 1 shows the results of the diphenyl urea production experiment.

比較例3 実施例1で示したのと同様の装置、同様の操作において
、TMUのかわりに、ベンゾニトリルを加えて、N、N
’ −ジフェニル尿素の生成実験を行った結果を表1に
示す。
Comparative Example 3 In the same apparatus and the same operation as shown in Example 1, benzonitrile was added instead of TMU, and N,N
Table 1 shows the results of the experiment for producing '-diphenylurea.

実施例3〜8 実施例1で示したのと同様の装置、同様の操作において
、加える配位性溶媒を変えて、N、N’−ジフェニル尿
素の生成実験を行った結果を表2に示す。
Examples 3 to 8 Table 2 shows the results of N,N'-diphenylurea production experiments conducted using the same apparatus and the same operation as shown in Example 1, but with different coordinating solvents added. .

さらに、ここで単離されたN、N’ −ジフェニル尿素
3.0gと、メタノール50gとを、各々、実施例1と
同様の装置及び操作において反応させ、N−フェニルカ
ルバミン酸メチルおよびアニリンの生成実験を行った結
果を、表3に示す。
Furthermore, 3.0 g of N,N'-diphenylurea isolated here and 50 g of methanol were each reacted in the same apparatus and operation as in Example 1 to produce methyl N-phenylcarbamate and aniline. The results of the experiment are shown in Table 3.

実施例9 実施例1で示したのと同様の装置、同様の操作において
、用いる触媒を[Ru2  (Co)4(HCOO)2
 ]。に変えて、N、N’ −ジフェニル尿素の生成実
験を行った結果を表4に示す。
Example 9 In the same apparatus and in the same operation as shown in Example 1, the catalyst used was [Ru2(Co)4(HCOO)2
]. Table 4 shows the results of an experiment to produce N,N'-diphenylurea instead of .

さらに、ここで単離されたN、N’ −ジフェニル尿素
3.0gと、メタノール50gとを、実施例1と同様の
装置及び操作において反応させたところ、N−フェニル
カルバミン酸メチルおよびアニリンが、それぞれ収率9
5%および95%で得られた。
Furthermore, when 3.0 g of N,N'-diphenylurea isolated here and 50 g of methanol were reacted in the same apparatus and operation as in Example 1, methyl N-phenylcarbamate and aniline were produced. Yield 9 each
5% and 95% were obtained.

表 MPC: N−フェニルカルバミ ン酸メチルtable MPC: N-phenylcarbami Methyl acid

Claims (3)

【特許請求の範囲】[Claims] (1)芳香族第一アミンと芳香族ニトロ化合物と一酸化
炭素とを反応させる際に、白金族金属を含む化合物を主
体とする触媒を使用し、かつそれらの金属に配位力のあ
るアミド化合物あるいは含酸素イオウ化合物を溶媒の一
部あるいは配位子として使用してN、N′−ジ置換ウレ
アを生成し、ついで生成したN、N′−ジ置換ウレアを
反応液から分離回収するウレア生成工程と、 前記ウレア生成工程で得られたN、N′−ジ置換ウレア
と水酸基を含有する有機化合物とを反応させて芳香族第
一アミンと芳香族ウレタンとを生成し、次いで、芳香族
第一アミンを分離して芳香族ウレタンを得る工程と、 分離した芳香族第一アミンを前記ウレア生成工程へ循環
する工程と、 を具備してなる芳香族ウレタンの製造方法。
(1) When reacting an aromatic primary amine, an aromatic nitro compound, and carbon monoxide, a catalyst mainly consisting of a compound containing a platinum group metal is used, and an amide with coordination power to those metals is used. Urea in which N,N'-disubstituted urea is produced using a compound or an oxygen-containing sulfur compound as part of the solvent or a ligand, and then the produced N,N'-disubstituted urea is separated and recovered from the reaction solution. producing an aromatic primary amine and an aromatic urethane by reacting the N,N'-disubstituted urea obtained in the urea producing step with an organic compound containing a hydroxyl group; A method for producing an aromatic urethane, comprising: a step of separating a primary amine to obtain an aromatic urethane; and a step of circulating the separated aromatic primary amine to the urea production step.
(2)前期ウレア生成工程は、ハロゲン化合物を使用す
ることなくおこなう特許請求の範囲第一項記載の芳香族
ウレタンの製造方法。
(2) The method for producing aromatic urethane according to claim 1, wherein the first urea production step is carried out without using a halogen compound.
(3)反応N、N′−ジ置換ウレアと水酸基を含有する
有機化合物との反応を、触媒を使用することなく行う特
許請求の範囲第一項記載の芳香族ウレタンの製造方法。
(3) Reaction A method for producing an aromatic urethane according to claim 1, in which the reaction between the N,N'-disubstituted urea and the organic compound containing a hydroxyl group is carried out without using a catalyst.
JP1136100A 1989-05-31 1989-05-31 Method for producing aromatic urethane Expired - Fee Related JPH0662544B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1136100A JPH0662544B2 (en) 1989-05-31 1989-05-31 Method for producing aromatic urethane
US07/495,353 US5130464A (en) 1989-05-31 1990-03-16 Method of manufacturing aromatic urethanes
CA002012624A CA2012624A1 (en) 1989-05-31 1990-03-20 A method of manufacturing aromatic urethanes
KR1019900004063A KR940000812B1 (en) 1989-05-31 1990-03-26 Method of manufacturing aromatic urethanes
EP90106307A EP0400299A1 (en) 1989-05-31 1990-04-02 A method of manufacturing aromatic urethanes
US07/875,459 US5306842A (en) 1989-05-31 1992-04-29 Method of manufacturing aromatic urethanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136100A JPH0662544B2 (en) 1989-05-31 1989-05-31 Method for producing aromatic urethane

Publications (2)

Publication Number Publication Date
JPH032156A true JPH032156A (en) 1991-01-08
JPH0662544B2 JPH0662544B2 (en) 1994-08-17

Family

ID=15167274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136100A Expired - Fee Related JPH0662544B2 (en) 1989-05-31 1989-05-31 Method for producing aromatic urethane

Country Status (1)

Country Link
JP (1) JPH0662544B2 (en)

Also Published As

Publication number Publication date
JPH0662544B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
CA1153386A (en) Process for the preparation of urethanes
CA1056847A (en) Process for producing an aromatic urethane
US4134880A (en) Process for producing an aromatic urethane from nitro compounds, hydroxyl compounds and carbon monoxide using metal-Lewis acid-ammonia catalyst systems
US4339592A (en) Process for the production of urethanes
US4304922A (en) Process for the preparation of urethane
KR890005036B1 (en) Process for the preparation of aromatic urethane and intermediate thereof
JPH032156A (en) Production of aromatic urethane
US4219661A (en) Process for the production of urethanes
JPH0159267B2 (en)
JPH0529349B2 (en)
US5306842A (en) Method of manufacturing aromatic urethanes
JPH058697B2 (en)
JPH0460464B2 (en)
JPH0460463B2 (en)
JPH032157A (en) Production of ureas
JPH0667891B2 (en) Method for producing aromatic urethane
JPH02124866A (en) Production of aromatic urethane
JPH04134058A (en) Production of aromatic urea compound
JPH059421B2 (en)
JPS5811942B2 (en) Aromatic urethane purification method
JPS5811943B2 (en) Method for producing aromatic urethane compounds
JPS58110554A (en) Production of aromatic urethane
JPH02263A (en) Production of ureas
JPS63297356A (en) Production of carbamic acid ester
JPH0338558A (en) Production of aromatic carbamic acid ester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees