JPH0321557B2 - - Google Patents

Info

Publication number
JPH0321557B2
JPH0321557B2 JP58129449A JP12944983A JPH0321557B2 JP H0321557 B2 JPH0321557 B2 JP H0321557B2 JP 58129449 A JP58129449 A JP 58129449A JP 12944983 A JP12944983 A JP 12944983A JP H0321557 B2 JPH0321557 B2 JP H0321557B2
Authority
JP
Japan
Prior art keywords
group
formula
ester
reaction
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58129449A
Other languages
Japanese (ja)
Other versions
JPS6023384A (en
Inventor
Hiroo Momose
Kyohiko Yoshitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP58129449A priority Critical patent/JPS6023384A/en
Publication of JPS6023384A publication Critical patent/JPS6023384A/en
Publication of JPH0321557B2 publication Critical patent/JPH0321557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルキルフエノール類のシリルエステ
ル(以下、アルキルシリルエステルともいう)の
新規な製造方法に関する。 従来、アルキルシリルエステルの製法として、
アルキルフエノール類を原料として用い、これと
テトラクロルシランとを反応させる方法が知られ
ている。しかしながら、上記方法は一般に原料で
あるアルキルフエノール類を得るための反応操作
が複雑であり、またフエノキシ基が高次にアルキ
ル化されたアルキルシリルエステルを得るため
に、アルキルフエノール類のアルキル基の数を増
すと該アルキルフエノール類が常温で固体状とな
り、テトラクロルシランとの反応において反応温
度の上昇、或いは大量の溶媒が必要となるなど、
アルキルシリルエステルを工業的に製造するため
に必ずしも有利な方法とは言えなかつた。 本発明は上記した従来法の欠点を改良した、ア
ルキルシリルエステルの全く新規な製造方法を提
供するものである。即ち、本発明はフエノール類
のシリルエステル(以下、単にシリルエステルと
もいう)をルイス酸触媒の存在下でアルキル化剤
と反応させることを特徴とするアルキルフエノー
ル類のシリルエステルの製法である。 本発明の方法は、原料のシリルエステルが、後
述する如く、フエノール類とハロゲン化シラン類
又はアルコキシシラン類との反応によつて容易に
得られるため、非常に経済的である。また、フエ
ノキシ基が高次にアルキル化されたアルキルシリ
ルエステルを得る場合でも、シリルエステルを原
料とするため、前記した従来法に比べて原料が液
状として存在し易く、反応を円滑に行なうことが
できる。また、溶媒の使用量も少なく、場合によ
つては必要ないなどの多くのメリツトを有する。 本発明において、シリルエステルは下記式
()に示す如く、フエノキシ基の1〜4個が珪
素原子(Si)とシロキサン結合(Si−O)の形で
結合したものが特に制限なく使用される。 (但し、式中mは0〜3の整数,nは0〜3の
整数,Xは置換基,X′はSiとの結合基を夫々示
す。) 上記()式においてフエノキシ基の数は1〜
4個であればよいが、特に3〜4個が、後述する
用途において好ましい。また、置換基(X)の数
は0〜3であればよいが、0又は1が一般的であ
る。置換基(X)の種類は後述するアルキル化の
条件で安定なものであれば特に制限されず、例え
ば炭素数1〜3のアルキル基、ハロゲン原子、ニ
トロ基、低級アルコキシ基等が挙げられるが、特
にアルキル基およびハロゲン原子が好適である。
置換基(X)の数が複数の場合、それぞれの置換
基(X)は同一のものであつてもよいし、異なる
ものであつてもよい。また、前記式()におい
てSiに結合した結合基(X′)は後述するアルキ
ル化の条件で安定なものであれば特に制限され
ず、例えばハロゲン原子,アルキル基,アリール
基,アルコキシ基等が一般的で、就中、ハロゲン
原子およびアルキル基が特に好適である。 本発明において好適に使用されるシリルエステ
ルを、フエノキシ基がo−クレゾキシ基の場合を
例にして具体的に示せば、例えばテトラ−O−ク
レジルシリルエステル モノクロル−トリ−O−クレジルシリルエステル モノブロム−トリ−O−クレジルシリルエステル ジクロル−ジ−O−クレジルシリルエステル ジブロム−ジ−O−クレジルシリルエステル トリクロル−モノ−O−クレジルシリルエステル トリブロム−モノ−O−クレジルシリルエステル モノメチル−トリ−O−クレジルシリルエステル ジメチル−ジ−O−クレジルシリルエステル モノメチル−モノクロル−ジ−O−クレジルシリ
ルエステル モノメトキシ−トリ−O−クレジルシリルエステ
ジメトキシ−ジ−O−クレジルシリルエステル 等が挙げられる。フエノキシ基として、上記のO
−クレゾキシ基以外に例えば m−クレゾキシ基
The present invention relates to a novel method for producing silyl esters of alkylphenols (hereinafter also referred to as alkylsilyl esters). Conventionally, the method for producing alkylsilyl esters is
A method is known in which alkylphenols are used as raw materials and are reacted with tetrachlorosilane. However, the above method generally requires complicated reaction operations to obtain the raw material alkylphenols, and in order to obtain alkylsilyl esters in which the phenoxy groups are highly alkylated, the number of alkyl groups in the alkylphenols must be When the alkylphenol is increased, the alkylphenol becomes solid at room temperature, and the reaction temperature with tetrachlorosilane increases or a large amount of solvent is required.
This method was not necessarily advantageous for industrially producing alkylsilyl esters. The present invention provides a completely new method for producing alkylsilyl esters, which improves the drawbacks of the conventional methods described above. That is, the present invention is a method for producing silyl esters of alkylphenols, which is characterized by reacting silyl esters of phenols (hereinafter also simply referred to as silyl esters) with an alkylating agent in the presence of a Lewis acid catalyst. The method of the present invention is very economical because the raw material silyl ester can be easily obtained by reacting phenols with halogenated silanes or alkoxysilanes, as described below. Furthermore, even when obtaining an alkylsilyl ester in which the phenoxy group is highly alkylated, since a silyl ester is used as a raw material, the raw material is more likely to exist in a liquid state than in the conventional method described above, and the reaction can be carried out smoothly. can. Furthermore, it has many advantages such as the amount of solvent used is small and in some cases it is not necessary. In the present invention, a silyl ester in which 1 to 4 phenoxy groups are bonded to a silicon atom (Si) in the form of a siloxane bond (Si--O) as shown in the following formula () can be used without particular limitation. (However, in the formula, m is an integer of 0 to 3, n is an integer of 0 to 3, X is a substituent, and X' is a bonding group with Si.) In the above formula (), the number of phenoxy groups is 1. ~
It may be 4 pieces, but 3 to 4 pieces is particularly preferable for the uses described below. Further, the number of substituents (X) may be 0 to 3, but 0 or 1 is common. The type of substituent (X) is not particularly limited as long as it is stable under the alkylation conditions described below, and examples thereof include an alkyl group having 1 to 3 carbon atoms, a halogen atom, a nitro group, a lower alkoxy group, etc. , particularly alkyl groups and halogen atoms.
When the number of substituents (X) is plural, each substituent (X) may be the same or different. In addition, in the above formula (), the bonding group (X') bonded to Si is not particularly limited as long as it is stable under the alkylation conditions described below, and for example, it may be a halogen atom, an alkyl group, an aryl group, an alkoxy group, etc. In general, halogen atoms and alkyl groups are particularly preferred. Examples of silyl esters preferably used in the present invention include tetra-O-cresyl silyl esters, for example, when the phenoxy group is an o-cresoxy group. Monochloro-tri-O-cresylsilyl ester Monobromo-tri-O-cresylsilyl ester Dichloro-di-O-cresylsilyl ester Dibrom-di-O-cresylsilyl ester Trichloro-mono-O-cresylsilyl ester Tribromo-mono-O-cresylsilyl ester Monomethyl-tri-O-cresylsilyl ester Dimethyl-di-O-cresylsilyl ester Monomethyl-monochloro-di-O-cresylsilyl ester Monomethoxy-tri-O-cresylsilyl ester Dimethoxy-di-O-cresylsilyl ester etc. As the phenoxy group, the above O
-In addition to cresoxy groups, for example, m-cresoxy groups

【式】 P−クレゾキシ基【formula】 P-cresoxy group

【式】 フエノキシ基【formula】 Phenoxy group

【式】 O−エチルフエノキシ基【formula】 O-ethylphenoxy group

【式】 m−エチルフエノキシ基
[Formula] m-ethylphenoxy group

【式】 P−エチルフエノキシ基
[Formula] P-ethylphenoxy group

【式】 2,3−キシレノキシ基【formula】 2,3-xylenoxy group

【式】 3,5−キシレノキシ基【formula】 3,5-xylenoxy group

【式】 2,5−キシレノキシ基【formula】 2,5-xylenoxy group

【式】 O−クロルフエノキシ基【formula】 O-chlorophenoxy group

【式】 m−クロルフエノキシ基【formula】 m-chlorophenoxy group

【式】 P−クロルフエノキシ基【formula】 P-chlorophenoxy group

【式】 O−ブロムフエノキシ基【formula】 O-bromophenoxy group

【式】 m−ブロムフエノキシ基【formula】 m-bromophenoxy group

【式】 P−ブロムフエノキシ基【formula】 P-bromophenoxy group

【式】 O−ヨードフエノキシ基【formula】 O-iodophenoxy group

【式】 m−ヨードフエノキシ基【formula】 m-iodophenoxy group

【式】 P−ヨードフエノキシ基【formula】 P-iodophenoxy group

【式】 O−フルオロフエノキシ基【formula】 O-fluorophenoxy group

【式】 m−フルオロフエノキシ基【formula】 m-fluorophenoxy group

【式】 P−フルオロフエノキシ基【formula】 P-fluorophenoxy group

【式】 O−ニトロフエノキシ基【formula】 O-nitrophenoxy group

【式】 m−ニトロフエノキシ基【formula】 m-nitrophenoxy group

【式】 P−ニトロフエノキシ基【formula】 P-nitrophenoxy group

【式】 O−メトキシフエノキシ基【formula】 O-methoxyphenoxy group

【式】 m−メトキシフエノキシ基
[Formula] m-methoxyphenoxy group

【式】 P−メトキシフエノキシ基
[Formula] P-methoxyphenoxy group

【式】 O−エトキシフエノキシ基【formula】 O-ethoxyphenoxy group

【式】 m−エトキシフエノキシ基
[Formula] m-ethoxyphenoxy group

【式】 P−エトキシフエノキシ基
[Formula] P-ethoxyphenoxy group

【式】 2−クロル−5−メチルフエノキシ基
[Formula] 2-chloro-5-methylphenoxy group

【式】 2−ニトロ−5−メチルフエノキシ基
[Formula] 2-nitro-5-methylphenoxy group

【式】 2−メトキシ−5−メチルフエノキシ基
[Formula] 2-methoxy-5-methylphenoxy group

【式】 2,3−ジメチル−5−ニトロフエノキシ基
[Formula] 2,3-dimethyl-5-nitrophenoxy group

【式】 等を有するシリルエステルも好適に使用される。 本発明において、上記した如きシリルエステル
は単独で使用してもよいが、数種類のシリルエス
テルの混合体として使用しても良い。また、該シ
リルエステルは前述した式()を有するもので
あればいかなる方法で得られたものでもよい。代
表的な製造方法を例示すれば、テトラクロルシラ
ン,メチルトリクロルシラン,ジメチルジクロル
シラン,トリメチルクロルシラン等のクロルシラ
ン類、テトラメトキシシラン,テトラエトキシシ
ラン,テトラプロポキシシラン等のアルコキシシ
ラン類とフエノール類との反応による方法が挙げ
られる。上記反応において、フエノール類はフエ
ノール及び前記式()の置換基(X)を有する
ものが一般に使用される。前記反応は公知の条件
が特に制限なく採用される。また、前記反応のう
ち、クロルシラン類とフエノール類との反応が工
業的に最も好ましい。上記方法をテトラクロルシ
ランを用いる場合について具体的に例示すれば以
下のようになる。即ち、使用するフエノール類に
もよるが、一般にフエノール類とテトラクロルシ
ランは室温でも反応が進行し、該フエノール類と
テトラクロルシランのモル比を変えることによつ
てSi原子1ケに対してフエノール類のフエノキシ
基が1〜4ケ、従つて該Si原子に未反応のクロル
原子が3〜0ケ置換した組成の異なる種々のシリ
ルエステルを容易に製造することができる。反応
を速やかに、かつ効率的に進行させる為に、反応
は通常室温下にテトラクロルシランをフエノール
類そのもの、あるいは溶媒に溶解させたフエノー
ル類の溶液の中に滴下し、しかる後に徐々に温度
を上昇させ最終的に100数十〜200数十℃で数時間
加熱する方法が好適に採用される。 また、本発明において、ルイス酸触媒は従来よ
りフリーデルクラフツ反応に使用されているもの
が特に制限なく使用される。例えば塩化アルミニ
ウム,臭化アルミニウム,塩化第2鉄,塩化亜
鉛,塩化第2スズ,塩化銅,塩化水銀,4塩化チ
タン等のハロゲン化金属が一般に使用される。特
に塩化アルミニウムが好適である。また、アルキ
ル化剤は後述する反応条件下で前記シリルエステ
ルとエステル交換し難いものが好適である。例え
ば、エチレン,プロピレン,n−ブテン,iso−
ブテン等のアルケン類;アセチレン,プロピン等
のアルキン類;メチルクロライド,エチルクロラ
イド,n−プロピルクロライド,iso−プロピル
クロライド,n−ブチルクロライド,iso−ブチ
ルクロライド等のアルキルクロライド,これらの
アルキルのブロマイド,アイオダイド,フルオラ
イド等のアルキルハライド類;アリルクロライ
ド,アリルブロマイド等のアルケニルハライド
類;ジメチルエーテル,ジエチルエーテル,メチ
ル−sec−ブチルエーテル等のエーテル類等炭素
数1〜4のアルキル基を有するものが好適に使用
される。 本発明において、シリルエステルのアルキル化
は前記触媒及びアルキル化剤を用いて公知のフリ
ーデルクラフツ反応を実施すればよい。即ち、ア
ルキル化の温度は0〜400℃、好ましくは10〜200
℃、圧力は0.005〜200atm、好ましくは0.1〜
100atm、反応時間は数分〜十数時間の反応条件
が一般的であり、上記範囲内で最適条件を適宜決
定してアルキル化を行なうことが望ましい。上記
アルキル化において、シリルエステルに対するア
ルキル化剤の使用量はシリルエステルのフエノキ
シ基に対するアルキル化剤のアルキル基のモル比
が0.1〜3.0となるよう調整することが副生物を減
少させるために好ましい。また、触媒の使用量は
アルキル化剤の量に対して0.1〜100モル%、好ま
しくは1〜50モル%、更に好ましくは5〜30モル
%が適当である。 以上の説明より理解される如く、本発明の方法
によれば、工業的に極めて有利にアルキルシリル
エステルを得ることができる。 本発明によつて得られたアルキルシリルエステ
ルは熱媒,潤滑油添加剤等として有用であると共
に、これを加水分解することにより医薬,農薬等
の中間体、或いは原体として有用なアルキルフエ
ノール類を製造することも可能である。 以下、本発明を更に具体的に説明するため実施
例を示すが、本発明はこれらの実施例に限定され
るものではない。 実施例 1 冷却管(ドライアイス−メタノールにて冷却)、
滴下漏斗および窒素ガス導入管付きの500ml三ツ
口フラスコにO−クレゾール324.4g(3モル)
を入れ、オイルバスで少し加温して溶融状態にな
つたところで窒素ガスを導入しながら、テトラク
ロルシラン85.0g(0.5モル)をスピンバーによ
る撹拌下に滴下した。最初45〜50℃で2時間反応
し、徐々に昇温して最終的に200℃にて5時間加
熱した。最後、未反応の過剰O−クレゾールを減
圧下に除去することにより液体生成物216.4gを
得た。ガスクロマトグラフイーによる分析で未反
応O−クレゾールが残存していないことを確認し
た。更に元素分析,13C−NMR分析の結器 の構造式で示されるO−クレジルシリルエステル
であることを確認した。 該O−クレジルシリルエステル10.0g(O−ク
レゾール基準0.088モル),溶媒としてジクロルメ
タン20mlおよび触媒としてAlCl32.3g(0.018モ
ル)を、冷却管,滴下漏斗および撹拌機の付設し
た内容積100mlの三ツ口フラスコに入れ、水浴に
て40℃に保ちながら撹拌下にイソプロピルクロラ
イド6.9g(0.088モル)を1時間かけて滴下し、
その後1時間同温度下に撹拌した。その後減圧下
に溶媒のジクロルメタンを留去し、残査15.8gを
得た。 この残査の一部を加水分解し、ガスクロ分析お
よび質量分析をした結果より、上記の残査は原料
O−クレジルシリルエステルのクレゾキシ基がイ
ソプロピル基により核置換されたものであり、全
クレゾキシ基につきモノ置換体が68.1%,ジ置換
体が13.6%,未置換体が18.3%の組成の核イソプ
ロピル化O−クレジルシリルエステルであること
がわかつた。 実施例 2 フエノール282.3g(3モル)を用いた以外は
実施例1と全く同様の方法によりシリル化反応を
行ない白色固体生成物193.1gを得た。ガスクロ
マトグラフイーによる分析で未反応フエノールが
残存していないことを確認した。更に元素分析,
13C−NMR分析の結果 の構造式で示されるフエニルシリルエステルであ
ることを確認した。 該フエニルシリルエステル10.0g(フエノール
基準0.10モル)を用い、イソプロピルクロライド
7.9g(0.10モル)を用いる以外は実施例1と全
く同じ方法によりアルキル化反応を実施し、残査
16.3gを得た。実施例1と同様の分析の結果、こ
の残査は原料フエニルクレジルシリルエステルの
フエノキシ基がイソプロピル基により核置換され
たものであり、全フエノキシ基につきモノ置換体
が49.8%,ジ置換体が20.0%,未置換体が30.2%
の組成の核イソプロピル化フエニルシリルエステ
ルであることがわかつた。 実施例 3 実施例1で得た
Silyl esters having the formula and the like are also preferably used. In the present invention, the silyl esters described above may be used alone or as a mixture of several types of silyl esters. Further, the silyl ester may be obtained by any method as long as it has the above-mentioned formula (). Typical manufacturing methods include chlorosilanes such as tetrachlorosilane, methyltrichlorosilane, dimethyldichlorosilane, and trimethylchlorosilane, alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane, and phenols. For example, a method based on a reaction with In the above reaction, phenols having a substituent (X) of the above formula () are generally used. For the reaction, known conditions may be employed without particular limitation. Furthermore, among the above reactions, the reaction between chlorosilanes and phenols is industrially most preferred. A specific example of the above method using tetrachlorosilane is as follows. In other words, although it depends on the phenols used, the reaction between phenols and tetrachlorosilane generally proceeds even at room temperature, and by changing the molar ratio of the phenols and tetrachlorosilane, the amount of phenol per one Si atom can be reduced. It is possible to easily produce various silyl esters having different compositions in which 1 to 4 phenoxy groups of the same type are substituted, and therefore 3 to 0 unreacted chlorine atoms are substituted for the Si atoms. In order for the reaction to proceed quickly and efficiently, the reaction is usually carried out by dropping tetrachlorosilane into the phenol itself or into a solution of the phenol dissolved in a solvent at room temperature, and then gradually increasing the temperature. A method of raising the temperature and finally heating at a temperature of 100-100° C. to 200-100° C. for several hours is preferably employed. Further, in the present invention, as the Lewis acid catalyst, those conventionally used in Friedel-Crafts reactions can be used without particular restriction. For example, metal halides such as aluminum chloride, aluminum bromide, ferric chloride, zinc chloride, stannic chloride, copper chloride, mercury chloride, and titanium tetrachloride are commonly used. Particularly suitable is aluminum chloride. Further, the alkylating agent is preferably one that is difficult to undergo transesterification with the silyl ester under the reaction conditions described below. For example, ethylene, propylene, n-butene, iso-
Alkenes such as butene; alkynes such as acetylene and propyne; alkyl chlorides such as methyl chloride, ethyl chloride, n-propyl chloride, iso-propyl chloride, n-butyl chloride, and iso-butyl chloride; bromides of these alkyls; Alkyl halides such as iodide and fluoride; alkenyl halides such as allyl chloride and allyl bromide; ethers such as dimethyl ether, diethyl ether, and methyl-sec-butyl ether; those having an alkyl group having 1 to 4 carbon atoms are preferably used. be done. In the present invention, the silyl ester may be alkylated by carrying out a known Friedel-Crafts reaction using the above-mentioned catalyst and alkylating agent. That is, the alkylation temperature is 0 to 400°C, preferably 10 to 200°C.
℃, pressure is 0.005~200atm, preferably 0.1~
Generally, the reaction conditions are 100 atm and a reaction time of several minutes to over ten hours, and it is desirable to carry out the alkylation by appropriately determining the optimum conditions within the above range. In the above alkylation, the amount of the alkylating agent to be used relative to the silyl ester is preferably adjusted so that the molar ratio of the alkyl group of the alkylating agent to the phenoxy group of the silyl ester is 0.1 to 3.0 in order to reduce by-products. Further, the appropriate amount of the catalyst to be used is 0.1 to 100 mol%, preferably 1 to 50 mol%, and more preferably 5 to 30 mol%, based on the amount of the alkylating agent. As understood from the above explanation, according to the method of the present invention, alkylsilyl esters can be obtained industrially very advantageously. The alkylsilyl ester obtained by the present invention is useful as a heating medium, lubricating oil additive, etc., and by hydrolyzing it, alkylphenols useful as intermediates or raw materials for pharmaceuticals, agricultural chemicals, etc. It is also possible to manufacture EXAMPLES Hereinafter, Examples will be shown to further specifically explain the present invention, but the present invention is not limited to these Examples. Example 1 Cooling pipe (cooled with dry ice-methanol),
324.4 g (3 mol) of O-cresol in a 500 ml three-necked flask equipped with a dropping funnel and nitrogen gas inlet tube.
was heated slightly in an oil bath until it became molten, and then 85.0 g (0.5 mol) of tetrachlorosilane was added dropwise while stirring with a spin bar while introducing nitrogen gas. Initially, the reaction was carried out at 45 to 50°C for 2 hours, and then the temperature was gradually raised and finally heated at 200°C for 5 hours. Finally, unreacted excess O-cresol was removed under reduced pressure to obtain 216.4 g of a liquid product. Analysis by gas chromatography confirmed that no unreacted O-cresol remained. Furthermore, the results of elemental analysis and 13C -NMR analysis were It was confirmed that it was an O-cresylsilyl ester represented by the structural formula. 10.0 g (0.088 mol based on O-cresol) of the O-cresyl silyl ester, 20 ml of dichloromethane as a solvent, and 2.3 g (0.018 mol) of AlCl 3 as a catalyst were added to a 100 ml internal volume equipped with a cooling tube, a dropping funnel and a stirrer. 6.9 g (0.088 mol) of isopropyl chloride was added dropwise to the flask in a three-necked flask while stirring while maintaining the temperature at 40°C in a water bath over 1 hour.
Thereafter, the mixture was stirred at the same temperature for 1 hour. Thereafter, the solvent dichloromethane was distilled off under reduced pressure to obtain 15.8 g of a residue. A part of this residue was hydrolyzed, and the results of gas chromatography and mass spectrometry showed that the above residue was obtained by nuclear substitution of the cresoxy group of the raw material O-cresylsilyl ester with an isopropyl group, and that all cresoxy It was found to be a nuclear isopropylated O-cresylsilyl ester with a composition of 68.1% mono-substituted, 13.6% di-substituted, and 18.3% unsubstituted. Example 2 A silylation reaction was carried out in exactly the same manner as in Example 1 except that 282.3 g (3 mol) of phenol was used to obtain 193.1 g of a white solid product. Analysis by gas chromatography confirmed that no unreacted phenol remained. Furthermore, elemental analysis,
13C -NMR analysis results It was confirmed that it is a phenylsilyl ester shown by the structural formula. Using 10.0 g of the phenylsilyl ester (0.10 mol based on phenol), isopropyl chloride
The alkylation reaction was carried out in exactly the same manner as in Example 1 except that 7.9 g (0.10 mol) was used, and the residue
16.3g was obtained. As a result of the same analysis as in Example 1, this residue was obtained by nuclear substitution of the phenoxy group of the raw phenyl cresyl silyl ester with an isopropyl group, and 49.8% of the total phenoxy groups were mono-substituted and 49.8% were di-substituted. 20.0%, unsubstituted 30.2%
It was found that the core was an isopropylated phenylsilyl ester with the composition of Example 3 Obtained in Example 1

【式】の構造式 で示されるO−クレジルシリルエステル10g(O
−クレゾール基準0.088モル),触媒としてBF3
ーテラート1.2g(0.008モル)を100mlのステン
レス製オートクレーブに入れ、更に2−ブテン
4.9g(0.087モル)を封入し、撹拌下20℃にて3
時間アルキル化反応を実施した。反応後オートク
レーブ中の生成物を実施例1と同様の方法で分析
した結果、この生成物は原料O−クレジルシリル
エステルのクレゾキシ基がsec−ブチル基で核置
換されたものであり、全クレゾキシ基につきモノ
置換体89.5%,ジ置換体2.1%,未置換体が8.4%
の組成の核sec−ブチル化O−クレジルシリルエ
ステルであることがわかつた。 実施例 4 O−クロルフエノール192.8g(1.5モル)とテ
トラクロルシラン85.0g(0.5モル)を用い、実
施例1と同様の方法によりシリル化反応を実施
し、最後は未反応O−クロルフエノールの減圧留
去の操作を施こすことなく液体生成物223.0gを
得た。ガスクロマトグラフイーによる分析で未反
応O−クロルフエノールが残存していないことを
確認した。更に元素分析,13C−NMR分析の結
果、組成式が
10g of O-cresylsilyl ester (O
- 0.088 mol based on cresol), 1.2 g (0.008 mol) of BF 3 etherate as a catalyst was placed in a 100 ml stainless steel autoclave, and 2-butene was added as a catalyst.
4.9 g (0.087 mol) was sealed and stirred at 20℃ for 3 hours.
A time alkylation reaction was carried out. After the reaction, the product in the autoclave was analyzed in the same manner as in Example 1, and it was found that the cresoxy group of the raw material O-cresylsilyl ester was nuclear-substituted with a sec-butyl group, and all cresoxy 89.5% mono-substituted, 2.1% di-substituted, 8.4% unsubstituted for each group
It was found that the core was a sec-butylated O-cresylsilyl ester with the composition. Example 4 A silylation reaction was carried out in the same manner as in Example 1 using 192.8 g (1.5 mol) of O-chlorophenol and 85.0 g (0.5 mol) of tetrachlorosilane, and in the end, unreacted O-chlorophenol was removed. 223.0 g of a liquid product was obtained without performing distillation under reduced pressure. Analysis by gas chromatography confirmed that no unreacted O-chlorophenol remained. Furthermore, as a result of elemental analysis and 13 C-NMR analysis, the compositional formula was

【式】で示される O−クロルフエニルシリルエステルであることを
確認した。 該O−クロルフエニルシリルエステル10.0g
(O−クロルフエノール基準0.067モル),触媒と
してFeCl32.7g(0.017モル)およびアルキル化
剤としてイソブテン3.7g(0.066モル)を用い、
実施例3と同様の反応装置にて90℃,4時間アル
キル化反応を実施した。反応後オートクレーブ中
の生成物を実施例1と同様の方法で分析した結
果、この生成物は原料O−クロルフエニルシリル
エステルのフエノキシ基がt−ブチル基で核置換
されたものであり、全フエノキシ基につきモノ置
換体92.3%,未置換体7.7%の組成の核t−ブチ
ル化O−クロルフエニルシリルエステルであるこ
とがわかつた。 実施例 5 実施例1で得た
It was confirmed that it was an O-chlorophenylsilyl ester represented by the formula. 10.0g of the O-chlorophenylsilyl ester
(0.067 mol based on O-chlorophenol), using 2.7 g (0.017 mol) of FeCl 3 as a catalyst and 3.7 g (0.066 mol) of isobutene as an alkylating agent,
The alkylation reaction was carried out at 90° C. for 4 hours in the same reaction apparatus as in Example 3. After the reaction, the product in the autoclave was analyzed in the same manner as in Example 1, and it was found that the phenoxy group of the raw material O-chlorophenylsilyl ester was nuclear-substituted with a t-butyl group, and all It was found to be a core t-butylated O-chlorophenylsilyl ester with a composition of 92.3% mono-substituted and 7.7% unsubstituted phenoxy groups. Example 5 Obtained in Example 1

【式】の構造式 で示されるO−クレジルシリルエステル10g(フ
エノール基準0.088モル),触媒としてAlCl32.7g
(0.02モル)およびアルキル化剤として塩化メチ
ル20.2g(0.40モル)を用い、反応時間を6時間
とする以外は実施例4と同様の方法でアルキル化
反応を実施した。反応後オートクレーブ中の生成
物を実施例1と同様の方法で分析した結果、この
生成物は原料O−クレジルシリルエステルのクレ
ゾキシ基が更にメチル基で核置換されたものであ
り、全クレゾキシ基につき2,4,6−トリメチ
ル体を主とする置換体が95.7%,2,4−ジメチ
ル体を主とする置換体が4.3%の多置換メチル化
フエニルシリルエステルであることがわかつた。 なお、上記2,4,6−トリメチルフエニルシ
リルエステルを2,4,6−トリメチルフエノー
ル(融点約70℃)とテトラクロルシランとの反応
により得ようとした場合、かなり多量の溶媒を必
要とし、しかも上記収率で目的のアルキルフエノ
ール類のシリルエステルを得ることが困難であつ
た。
10 g of O-cresylsilyl ester shown by the structural formula [formula] (0.088 mol based on phenol), 2.7 g of AlCl 3 as a catalyst
An alkylation reaction was carried out in the same manner as in Example 4, except that methyl chloride (0.02 mol) and 20.2 g (0.40 mol) of methyl chloride were used as the alkylating agent and the reaction time was 6 hours. After the reaction, the product in the autoclave was analyzed in the same manner as in Example 1, and it was found that the cresoxy group of the raw material O-cresylsilyl ester was further substituted with a methyl group, and all cresoxy groups were It was found that the polysubstituted methylated phenylsilyl ester contained 95.7% of substituents mainly 2,4,6-trimethyl and 4.3% mainly 2,4-dimethyl. Note that when attempting to obtain the above 2,4,6-trimethylphenylsilyl ester by reacting 2,4,6-trimethylphenol (melting point: approximately 70°C) with tetrachlorosilane, a considerably large amount of solvent is required. Moreover, it was difficult to obtain the desired silyl ester of alkylphenols at the above-mentioned yield.

Claims (1)

【特許請求の範囲】[Claims] 1 フエノール類のシリルエステルをルイス酸触
媒の存在下でアルキル化剤と反応させることを特
徴とするアルキルフエノール類のシリルエステル
の製法。
1. A method for producing a silyl ester of an alkylphenol, which comprises reacting a silyl ester of a phenol with an alkylating agent in the presence of a Lewis acid catalyst.
JP58129449A 1983-07-18 1983-07-18 Production of silyl ester of alkylphenol compound Granted JPS6023384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129449A JPS6023384A (en) 1983-07-18 1983-07-18 Production of silyl ester of alkylphenol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129449A JPS6023384A (en) 1983-07-18 1983-07-18 Production of silyl ester of alkylphenol compound

Publications (2)

Publication Number Publication Date
JPS6023384A JPS6023384A (en) 1985-02-05
JPH0321557B2 true JPH0321557B2 (en) 1991-03-22

Family

ID=15009749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129449A Granted JPS6023384A (en) 1983-07-18 1983-07-18 Production of silyl ester of alkylphenol compound

Country Status (1)

Country Link
JP (1) JPS6023384A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970329A (en) * 1987-05-08 1990-11-13 Aristech Chemical Corporation Silyl derivatives of 2-allyl phenol
US4916248A (en) * 1989-07-05 1990-04-10 Aristech Chemical Corporation Silyl derivatives of 2, 6-dimethyl-4-allyl phenol
US5008421A (en) * 1989-07-05 1991-04-16 Aristech Chemical Corporation Silyl derivatives of 2,6-dimethyl-4-allyl phenol

Also Published As

Publication number Publication date
JPS6023384A (en) 1985-02-05

Similar Documents

Publication Publication Date Title
Fleming et al. Observations on various silyl-cuprate reagents
US7279589B2 (en) Preparation of 1-(alkoxysilyl)ethyl-1,1,3,3-tetramethyldisiloxane
KR20200125664A (en) Silicon compound containing hexafluoroisopropanol group and method for producing same
JP2848908B2 (en) Production method of alkoxysilanes
JP4835882B2 (en) Method for producing silyl ether compound or silyl ester compound
JP3947772B2 (en) High purity organofunctional alkyl dialkoxysilane by reverse addition
JPH0322880B2 (en)
EP1472264A1 (en) Processes for the preparation of silicone compounds
JP4392869B2 (en) Method for producing triarylamine having hydrocarbonoxysilyl group
JPH0321557B2 (en)
JP3555646B2 (en) Method for producing chlorosilane containing acryloxy group or methacryloxy group
JPS6352629B2 (en)
US5294727A (en) Method for preparing tertiary hydrocarbon-silyl compounds
CA1129432A (en) Exchange reaction preparation of hydrosilanes
JP2775239B2 (en) Catalytic alkylation method
JPS6341919B2 (en)
US2611776A (en) Bis-phenylol silanes
JPH0348917B2 (en)
JPH02111780A (en) Production of silylhetene acetal
JP3197295B2 (en) Method for dechlorinating alkoxysilane
JP2573521B2 (en) P-tert-butoxyphenylalkyl alcohol and method for producing the same
JPS6212770B2 (en)
KR20120093185A (en) Synthesis of fluorocarbofunctional alkoxysilanes and chlorosilanes
JPH0748387A (en) Tert-butylakoxysilane and production thereof
US5113000A (en) Organosilicon compound and acryl compound