JPH03215362A - Production of dense carbon plate - Google Patents

Production of dense carbon plate

Info

Publication number
JPH03215362A
JPH03215362A JP2172732A JP17273290A JPH03215362A JP H03215362 A JPH03215362 A JP H03215362A JP 2172732 A JP2172732 A JP 2172732A JP 17273290 A JP17273290 A JP 17273290A JP H03215362 A JPH03215362 A JP H03215362A
Authority
JP
Japan
Prior art keywords
weight
carbon
parts
temperature
graphite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2172732A
Other languages
Japanese (ja)
Inventor
Akio Yoshida
吉田 昭男
Hiroyuki Fukuda
弘之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2172732A priority Critical patent/JPH03215362A/en
Publication of JPH03215362A publication Critical patent/JPH03215362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a dense carbon plate having excellent gas-barrierness and flexural strength by using a specific carbon fiber as a supporting material and a carbon precursor containing graphite particles as a matrix. CONSTITUTION:A slurry is produced by diluting 100 pts.wt. of a composition composed of 10-50 pts.wt. of graphite particles having an average particle diameter of <=40mum and 50-90 pts.wt. of a carbon precursor having a carbonization yield of 50-90wt.% with a dispersing medium or a solvent. The slurry is supported on 2-40 pts.wt. of a supporting member containing semi-carbon fiber baked at >=550 deg.C and <=700 deg.C as a substrate. The obtained green sheet is used singly or plural sheets are laminated and hot-pressed under pressure. The formed product is carbonized and baked to obtain the objective plate.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はガス透過性が小さく、機械的強度が大きい炭素
板の製造方法に関するものであり、特にリン酸型燃料電
池のセバレータ、高温熱処理炉内材料、焼結材料用治具
等に好適な材料の製造方法に関する。
Detailed Description of the Invention: "Industrial Application Field" The present invention relates to a method for producing carbon plates with low gas permeability and high mechanical strength, particularly for use in sebarators of phosphoric acid fuel cells and high-temperature heat treatment furnaces. The present invention relates to a method of manufacturing a material suitable for internal materials, jigs for sintered materials, etc.

「背景技術」 従来、ガス透過性が小さく、機械的強度が大きい炭素板
の製造方法としては、例えば特開昭60−239358
号が知られている。これは炭素化可能な紙状支持体に、
偏光顕微鏡下に観察される構造が異方性を示す粒子の大
きさを10μm以下とする微細なモザイク状であるか又
は等方性の炭素前駆体を担持せしめ、加圧下に加熱硬化
し、更に炭化焼成する製造方法である。前駆体としては
平均粒径が10μm以下のグラファイト粉を含むことは
差し支えなく、その例が実施例2に示されている。また
、炭素化可能な紙状支持体の例としては、天然繊維、合
成繊維若しくは炭素繊維を抄造した紙、不融化ピッチ糸
を抄造若しくは熱融着して製造した不融化ピッチ繊維紙
、前記不融化ピッチ糸を不活性雰囲気中で、600℃以
下で焼成した不融化ピッチ繊維糸等が示されている。し
かしながら、この先行技術に示す例でも、ガスバリャー
性、機械的強度において尚不十分であった。
"Background Art" Conventionally, as a method for manufacturing carbon plates with low gas permeability and high mechanical strength, for example, Japanese Patent Application Laid-Open No. 60-239358
number is known. This is a paper-like support that can be carbonized.
A fine mosaic-like or isotropic carbon precursor having an anisotropic structure observed under a polarizing microscope with a particle size of 10 μm or less is supported, heated and hardened under pressure, and then This is a manufacturing method that involves carbonization and firing. The precursor may include graphite powder with an average particle size of 10 μm or less, an example of which is shown in Example 2. Examples of paper-like supports that can be carbonized include paper made from natural fibers, synthetic fibers, or carbon fibers, infusible pitch fiber paper made by papermaking or heat-sealing infusible pitch yarn, and the above-mentioned non-fusible pitch fiber paper. Infusible pitch fiber yarns and the like are shown in which fusible pitch yarns are fired at 600° C. or lower in an inert atmosphere. However, even the example shown in this prior art was still insufficient in gas barrier properties and mechanical strength.

「発明が解決しようとする課題」 本発明は前記従来技術に比し、ガス透過遮断性、曲げ強
度において優れる緻密炭素板の製造方法を提供すること
にある9 「問題点を解決するための手段」 (要旨) 本発明は前記従来技術における支持体として特殊な炭素
繊維を用いるとともに、マトリックスが黒鉛粒子を含有
する炭素前駆体とする場合に課題が解決されることを見
出したことに基づく.炭素繊維は、通常1000℃程度
に焼成されたものをいうが、550〜700℃程度で焼
成した繊維(以下、「準炭素繊維」と呼ぶ)であると、
マトリックスとの熱収縮性がマッチし、機械的強度が大
きいことがわかった.さらに、そのような炭素繊維を用
いると同時に、マトリックスに黒鉛粒子を分散させると
、焼成時に発生する応力が分散され、機械的強度をより
一層高めることがわかったのである。尚、前記先行技術
には、実施例3において600℃で焼成された準炭素繊
維を用いる例が示されているが、この例は黒鉛粒子を含
まない場合である。また実施例2では黒鉛粒子を含んで
いるが、支持体としでは通常の炭素繊維であり、本発明
の構成を示していない。
``Problems to be Solved by the Invention'' The purpose of the present invention is to provide a method for manufacturing a dense carbon plate that is superior in gas permeation barrier properties and bending strength compared to the prior art described above.9 ``Means for Solving the Problems'' (Summary) The present invention is based on the discovery that the problems in the prior art can be solved when a special carbon fiber is used as the support and the matrix is a carbon precursor containing graphite particles. Carbon fiber usually refers to fibers fired at about 1000°C, but fibers fired at about 550 to 700°C (hereinafter referred to as "semi-carbon fibers")
It was found that the heat shrinkability matched the matrix and the mechanical strength was high. Furthermore, it has been found that if such carbon fibers are used and graphite particles are dispersed in the matrix at the same time, the stress generated during firing is dispersed and the mechanical strength is further increased. Incidentally, the above-mentioned prior art shows an example in which quasi-carbon fibers fired at 600° C. are used in Example 3, but this example does not contain graphite particles. Further, although graphite particles are included in Example 2, the support is ordinary carbon fiber and does not show the structure of the present invention.

すなわち本発明の要旨とするところは、平均粒径が40
μm以下の黒鉛粒子10〜50重量部と、炭化収率が5
0〜90重量%である炭素前駆体50〜90重量部より
なる組成物100重量部を、分散媒或いは溶剤により希
釈する工程、550℃以上、700℃以下で焼成した準
炭素繊維を基質とする支持体2〜40重量部に、前記組
成物を含む希釈液を担持し、グリーンシートとする工程
、前記グリーンシートを単独又は複数枚積層して、加圧
下で加熱成形する工程、.及び前記成形物を炭化焼成す
る工程よりなる緻密炭素板の製造方法である。
That is, the gist of the present invention is that the average particle size is 40
10 to 50 parts by weight of graphite particles of µm or less and a carbonization yield of 5
A process of diluting 100 parts by weight of a composition consisting of 50 to 90 parts by weight of a carbon precursor of 0 to 90% by weight with a dispersion medium or solvent, using quasi-carbon fibers fired at 550°C or higher and 700°C or lower as a substrate. A step of supporting a diluted solution containing the composition on 2 to 40 parts by weight of a support to form a green sheet, a step of stacking one or more of the green sheets and heat-forming them under pressure, . and a method for producing a dense carbon plate, comprising the steps of carbonizing and firing the molded product.

以下、本発明を詳細に説明する. (炭素前駆体) 成形板を炭化焼成する際、炭素前駆体がピッチ系のもの
である場合は溶融しながら分解して低分子量分子をガス
状物質として放出しつつ重縮合反応を起こし、更に昇温
することにより炭化する.また炭素前駆体が熱硬化性樹
脂の場合には重縮合反応を起こしてガスを放出しつつ昇
温により固相の状態のまま炭化する。いずれもガスを放
出するのであるが、ガス状物質の放出が多いと板中に気
泡が生成したり、炭素前駆体の収縮が大きくなり、板が
割れたり、クラックの原因となり、好ましくないので、
炭化収率が50〜90重量%とするものが採用される.
尚、ここで炭化収率とは900℃における炭化収率であ
り、JIS M8812の揮発分定量方法による. 本発明に使用される炭素前駆体は、コールタールまたは
石油タール等のタール類に酸素、硫黄若しくは硝酸等を
加え、150〜400℃の温度で加熱処理して酸素、硫
黄若しくは窒素の導入されたビツチを得る方法、例えば
特公昭53−31116号公報記載の如くピッチ類を酸
化処理する方法により得られたピッチを更に400〜4
80℃で熱処理する方法、又は熱硬化性樹脂の使用等に
より容易に得られる。
The present invention will be explained in detail below. (Carbon precursor) When carbonizing and firing a molded plate, if the carbon precursor is pitch-based, it decomposes while melting and causes a polycondensation reaction while releasing low molecular weight molecules as a gaseous substance. It carbonizes when heated. Further, when the carbon precursor is a thermosetting resin, it undergoes a polycondensation reaction and is carbonized in a solid state by increasing temperature while releasing gas. Both of them release gas, but if too much gaseous material is released, bubbles will be generated in the board, and the carbon precursor will shrink more, which will cause the board to break or crack, which is not desirable.
Those with a carbonization yield of 50 to 90% by weight are used.
The carbonization yield here is the carbonization yield at 900°C, and is based on the volatile content determination method of JIS M8812. The carbon precursor used in the present invention is prepared by adding oxygen, sulfur, nitric acid, etc. to tar such as coal tar or petroleum tar, and heat-treating the mixture at a temperature of 150 to 400°C to introduce oxygen, sulfur, or nitrogen. The pitch obtained by the method of obtaining pitches, for example, the method of oxidizing pitches as described in Japanese Patent Publication No. 53-31116, is further
It can be easily obtained by heat treatment at 80° C. or by using a thermosetting resin.

熱硬化性樹脂としては例えばフェノール樹脂、フラン樹
脂、コブナ( COPNA)樹脂等が好適に採用される
As the thermosetting resin, for example, phenol resin, furan resin, COPNA resin, etc. are suitably employed.

コプナー樹脂は主として2環以上の縮合多環芳香族化合
物と、ヒドロキシメチル基、ハロメチル基のいずれか少
なくとも一種の基を2個以と有する1環又は2環以上の
芳香族からなる架橋剤と、酸触媒とを組合せてなる熱硬
化性樹脂である。2環以上の縮合多環芳香族化合物とし
ては、ナフタレン、アントラセン、フエナントレン、ビ
レン等が例示され、ヒドロキシメチル基、ハロメチル基
のいずれか少なくとも一種の基を2個以北有する1環又
は2環以上の芳香族からなる芳香族架橋剤としてはp−
キシリレンジクロライド、p−キシリレングリコール等
が例示され、酸触媒としては塩化アルミニウム、弗化ホ
ウ素等のルイス酸或いは、硫酸リン酸、有機スルホン酸
、カルボン酸等のプロトン酸等が例示される。コプナ樹
脂の製造方法については例えば特開昭62−12735
0号公報に示されているような公知の方法が採用される
Copner resin mainly consists of a fused polycyclic aromatic compound having two or more rings, a crosslinking agent consisting of an aromatic compound having one or more rings having two or more of at least one of hydroxymethyl group and halomethyl group, It is a thermosetting resin made in combination with an acid catalyst. Examples of the fused polycyclic aromatic compound having two or more rings include naphthalene, anthracene, phenanthrene, birene, etc., and one or more rings having at least two groups of either hydroxymethyl group or halomethyl group. As an aromatic crosslinking agent consisting of aromatics, p-
Examples include xylylene dichloride and p-xylylene glycol. Examples of acid catalysts include Lewis acids such as aluminum chloride and boron fluoride, and protonic acids such as sulfuric acid, phosphoric acid, organic sulfonic acids, and carboxylic acids. Regarding the manufacturing method of Copna resin, for example, Japanese Patent Application Laid-Open No. 62-12735
A known method as disclosed in Japanese Patent No. 0 is employed.

また、前記したような炭素前駆体の混合物であっても良
い。例えば、上記の方法で製造されたピッチ類と熱硬化
性樹脂との組成物を、マトリックスとする場合には、熱
硬化性樹脂を溶解する溶媒を用いて担特用のスラリーを
調整すると、熱硬化性樹脂の増粘作用によりスラリーが
安定化し、また得られるグリーンシート(炭素前駆体を
支持体に担持し、乾燥させた物質)のマトリ・ソクス樹
脂相互並びに支持体との接着が強固になる。反面、熱硬
化性樹脂の添加量が多くなると、焼成した製品が硬くな
り加工しにくいので、添加景は通常マトリックス全体の
40重量%未溝に止めるほうが良い。
Further, a mixture of carbon precursors as described above may be used. For example, when using a composition of pitches and thermosetting resin produced by the above method as a matrix, if a slurry for the support is prepared using a solvent that dissolves the thermosetting resin, it is possible to The thickening effect of the curable resin stabilizes the slurry, and the resulting green sheet (a material in which a carbon precursor is supported on a support and dried) has strong adhesion to both the Matri-Sox resin and the support. . On the other hand, if the amount of thermosetting resin added is large, the fired product will become hard and difficult to process, so it is usually better to limit the amount of added thermosetting resin to 40% by weight of the entire matrix.

(黒鉛粒子) 本発明に使用される黒鉛粒子は、その平均粒径が40μ
m以下とするものである。平均粒径が大きいと、成形物
がボイドを多く含み、ガス透過度の大きい炭素板を与え
るので、できるだけ粒径は小さいのが好ましい。
(Graphite particles) The graphite particles used in the present invention have an average particle size of 40 μm.
m or less. If the average particle size is large, the molded product will contain many voids, giving a carbon plate with high gas permeability, so it is preferable that the particle size is as small as possible.

尚、本発明で云う黒鉛とは狭義の黒鉛の他、黒鉛質をも
含む広義の黒鉛の意味で用いている。
Incidentally, the term "graphite" used in the present invention is used not only to refer to graphite in a narrow sense but also to include graphite in a broad sense.

尚、ここでいう平均粒径はASTM C678−75に
より測定したものである。
Note that the average particle size herein is measured according to ASTM C678-75.

(炭素前駆体と黒鉛粒子との組成物) 本発明における炭素前駆体と黒鉛粒子の組成比は前者5
0〜90重量部に対し、後者が10〜50重量部である
.かかる範囲にするのは、炭素前駆体が前記量を下回る
と、機械的強度が低下し、また、前記量を上回ると堅く
なり、加工しにくくなるとともに、炭素前駆体の焼成収
縮率が大きいため、焼成時に割れ易いとかガス透過性が
大きい等の問題を生じることによる.好ましくは前者が
55〜85重量部に対し後者が15〜45重量部、更に
好ましくは前者が60〜80重量部に対し後者が20〜
40重量部の範囲が採用される. (支持体) 本発明に使用される支持体としては、準炭素繊維を55
0℃以上であって700℃以下、好ましくは570℃以
Eであって670℃以下、より好ましくは590℃以上
であって650℃以下で焼成した準炭素繊維を偏平状に
集成したものが用いられる。
(Composition of carbon precursor and graphite particles) The composition ratio of the carbon precursor and graphite particles in the present invention is 5 for the former.
0 to 90 parts by weight, while the latter is 10 to 50 parts by weight. This range is chosen because if the amount of the carbon precursor is less than the above amount, the mechanical strength will decrease, and if the amount is more than the above amount, it will become hard and difficult to process, and the firing shrinkage rate of the carbon precursor will be large. This is due to problems such as easy cracking during firing and high gas permeability. Preferably, the former is 55 to 85 parts by weight and the latter is 15 to 45 parts by weight, and more preferably the former is 60 to 80 parts by weight and the latter is 20 to 45 parts by weight.
A range of 40 parts by weight is adopted. (Support) As the support used in the present invention, quasi-carbon fiber is
A flat aggregate of quasi-carbon fibers fired at a temperature of 0°C or higher and 700°C or lower, preferably 570°C or higher and 670°C or lower, more preferably 590°C or higher and 650°C or lower, is used. It will be done.

前記焼成温度範囲にするのは、前記温度より高いとマト
リックスとの熱収縮性がマッチしないため機械的強度が
小さくなり、逆に前記温度より低いと、ハンドリングの
際、粉化することによる.また上記偏平状の集成体の形
状としては織布、不織布いずれも採用される. 準炭素繊維の原料は特に限定されるものではなく、ピッ
チ繊維でもポリアクリロニトリル系繊維であってもよい
。また等方性ピッチでもよいし、異方性のピッチでもよ
いが、好適には等方性ピッチが用いられる。
The reason why the firing temperature is set in the above range is that if the temperature is higher than the above, the mechanical strength will be lower because the heat shrinkability will not match that of the matrix, and if the temperature is lower than the above, the material will be powdered during handling. Furthermore, both woven and non-woven fabrics can be used as the shape of the above-mentioned flat aggregate. The raw material for the quasi-carbon fiber is not particularly limited, and may be pitch fiber or polyacrylonitrile fiber. Furthermore, it may be an isotropic pitch or an anisotropic pitch, but an isotropic pitch is preferably used.

準炭素繊維より偏平状支持体とする方法は炭素繊維より
偏平状支持体を得る公知の方法が採用される。例えば、
炭素繊維を短繊維化したいわゆるチョップドファイバー
を相互に結着させるべく、例えば合成繊維で結合したも
の、或いはバルブのような天然繊維で絡ませたもの等が
用いられる.これらの場合、支持体の重量の半分以とが
チョップドファイバーで占められるのが好ましい.有機
繊維で結合する方法としては、例えばポリビニルアルコ
ール、ポリアクリロニトリル等の熱可塑性樹脂よりなる
繊維を準炭素繊維とともに、300℃以下の温度で熱処
理し、有機繊維を熱融着させる方法が例示され、バルプ
で絡ませる方法としては、通常の混抄が例示される.ま
た、本発明に使用される織布としてはピッチ繊維、ポリ
アクリ口ニトリル系繊維等の炭素前駆体繊維を織った後
に準炭素繊維としたものでも或いは準炭素繊維を織った
ものでもよい.特に撚った、いわゆるヤーンを用い、織
布では平織が好適に採用される。
The method for obtaining a flat support from quasi-carbon fibers is a known method for obtaining a flat support from carbon fibers. for example,
In order to bind so-called chopped fibers, which are short carbon fibers, to each other, for example, those bound with synthetic fibers or those entangled with natural fibers such as bulbs are used. In these cases, it is preferable that at least half of the weight of the support is accounted for by chopped fibers. An example of a method for bonding with organic fibers is a method in which fibers made of a thermoplastic resin such as polyvinyl alcohol or polyacrylonitrile are heat-treated together with quasi-carbon fibers at a temperature of 300° C. or less to thermally fuse the organic fibers. An example of a method for entangling paper with a bulp is normal paper mixing. Further, the woven fabric used in the present invention may be one made by weaving carbon precursor fibers such as pitch fibers or polyacrylic nitrile fibers and then made into quasi-carbon fibers, or one made by weaving quasi-carbon fibers. In particular, twisted so-called yarns are used, and plain weave is preferably used for woven fabrics.

(炭素前駆体の担持方法) 本発明では、支持体に、前述の炭素前駆体組成物を担持
させる。支持体への組成物の担持量は担持量10O重量
部に対し、支持体2〜40重量部、好ましくは5〜30
重量部、より好ましくは10〜20重量部が採用される
.かかる範囲にするのは、担持量に比し支持体の量が前
記値より小さいと、均一な担持が困難となり、且つ、機
械的強度の低下をもたらすこともあり、また、支持体の
量が前記量より大きいと、得られる炭素板がボーラスに
なりガス透過性が大きくなることによる. 担持方法は特に限定するものではなく、公知の方法が採
用される。通常は次の様な方法が好適に採用される。ま
ず炭素前駆体を予めジェットミル(乾式)またはボール
ミル(湿式)などで微粉砕する。次いで微粉末黒鉛粒子
を溶解する溶剤がないので、炭素前駆体組成物の一部を
溶解する溶剤、例えばテトラヒド口フラン、トルエン、
ベンゼン、エタノールにより、あるいは一部すら溶解し
ない分散媒、例えば水によりスラリーとする。このスラ
リーを浸漬または塗布した後、このスラリー中の溶剤、
或いは分散媒を蒸発して乾燥する方法である。
(Method for supporting carbon precursor) In the present invention, the above-mentioned carbon precursor composition is supported on the support. The amount of the composition supported on the support is 2 to 40 parts by weight, preferably 5 to 30 parts by weight per 100 parts by weight of the supported amount.
Parts by weight, more preferably 10 to 20 parts by weight, are employed. The reason for setting this range is that if the amount of support is smaller than the above-mentioned value compared to the amount of support, it will be difficult to support it uniformly and it may cause a decrease in mechanical strength. If the amount is larger than the above, the obtained carbon plate will become a bolus and the gas permeability will increase. The supporting method is not particularly limited, and any known method may be employed. Usually, the following method is preferably employed. First, a carbon precursor is pulverized in advance using a jet mill (dry type) or a ball mill (wet type). Then, since there is no solvent to dissolve the finely powdered graphite particles, a solvent that dissolves a portion of the carbon precursor composition, such as tetrahydrofuran, toluene,
A slurry is prepared using benzene, ethanol, or a dispersion medium that does not even partially dissolve it, such as water. After dipping or applying this slurry, the solvent in this slurry,
Alternatively, there is a method of drying by evaporating the dispersion medium.

これらの方法において、炭素前駆体相互及び支持体との
付着性を良くするためまたはスラリ一の安定性を向上す
るために少量の第三物質たとえば増粘剤、界面活性剤等
を加えても良い.上記の方法で炭素前駆体を担持した後
に為される分散媒或いは溶剤の蒸発、乾燥は、その残留
量による加圧加熱成形での膨張を無視できる程度にまで
、分散媒或いは溶剤を除去してグリーンシートとする.
蒸発乾燥条件は例えば、30〜70℃のような、炭素前
駆体と黒鉛粒子との組成物が担持部位より離脱しない程
度の温度以下であって、例えば50mmHg以下のよう
な減圧状態で、真空炉内で熱処理する方法が好適に採用
される.分散媒或いは溶剤を離脱しないと、成形時にお
いて、残留している分散媒或いは溶剤がガス化すること
により成形品の緻密化が不十分となり、ガスバリャー性
の低下をもたらすのである。
In these methods, small amounts of third substances such as thickeners, surfactants, etc. may be added to improve the adhesion of the carbon precursors to each other and to the support, or to improve the stability of the slurry. .. The evaporation and drying of the dispersion medium or solvent after supporting the carbon precursor by the above method removes the dispersion medium or solvent to the extent that the expansion during pressure and heat molding due to the residual amount can be ignored. It will be a green sheet.
The evaporation drying conditions are, for example, at a temperature of 30 to 70°C, which is such that the composition of the carbon precursor and graphite particles does not separate from the supported part, and under a reduced pressure state, for example, 50 mmHg or less, in a vacuum furnace. A method in which heat treatment is carried out within a chamber is preferably adopted. If the dispersion medium or solvent is not removed, the remaining dispersion medium or solvent will gasify during molding, resulting in insufficient densification of the molded product and a decrease in gas barrier properties.

(成形) 上述のような方法で製造されたグリーンシートは一枚ま
たは複数枚積層して所定の金型に供給し、加熱プレス成
形する。プレス成形の条件としては通常の成形条件が採
用される。成形温度のヒ限は通常は800℃以下であっ
て、温度が高すぎてマトリックスと支持体との加熱炭化
に伴う収縮成形歪が出る場合は 一旦除圧して成形歪を
除去しつつ成形する.グリーンシートは加熱により通常
約500℃で固化するので好適には600℃以下が用い
られる。成形温度の通常採用される下限は、炭素前駆体
が熱硬化性樹脂を含有するときには熱硬化性樹脂の流動
開始温度以と1熱硬化性樹脂を含有しないときには軟化
温度以上の温度範囲が選択される.また圧力は100k
gf/am2以下、圧保持時間1〜120分間が好適に
採用され、不活性雰囲気中で行なう。
(Forming) One or more green sheets produced by the method described above are stacked, supplied to a predetermined mold, and heated and press-molded. Ordinary molding conditions are employed as press molding conditions. The limit of the molding temperature is usually 800°C or less, and if the temperature is too high and shrinkage molding distortion occurs due to heating carbonization of the matrix and support, remove the pressure once and mold while removing the molding distortion. Since the green sheet is usually solidified at about 500°C by heating, a temperature of 600°C or lower is preferably used. The lower limit of the molding temperature that is usually adopted is a temperature range below the flow start temperature of the thermosetting resin when the carbon precursor contains a thermosetting resin, and above the softening temperature when the carbon precursor does not contain a thermosetting resin. Ru. Also, the pressure is 100k
gf/am2 or less, a pressure holding time of 1 to 120 minutes is preferably employed, and the process is carried out in an inert atmosphere.

尚ここで軟化温度並びに流動開始温度とは以下の測定に
よる.島津製作所製高化式フローテスターを用い、25
0ミクロン以下に粉砕された試料1gを、直径1mmの
ノズルを底部に有する断面積I cm”のシリンダーに
充填し、10kgf/cm2の荷重を加えながら6℃/
分の速度で昇温する.温度の上昇に伴い粉体粒子が軟化
し充填率が増加し、試料粉体の体積は減少するが、ある
温度以上では体積の減少は停止する。更に昇温を続ける
とシリンダー下部のノズルより試料が溶融して流出する
。このときの試料粉体の体積減少が停止する温度をその
試料の軟化温度と定義し、試料が溶融して流出を開始し
始める温度、即ちシリンダー内試料の体積が城少し始め
る温度を流動開始温度とする。尚軟化温度の高いものに
ついてはノズルより溶融流出が起こらない場合がある. (炭化焼成) 次いで、通常は一旦除圧し、更に不活性ガス雰囲気中で
加圧するか又は加圧することな<800℃以上、好適に
は900℃以上で炭化焼成され、必要により黒鉛化され
る。高導電性が要求される場合には2000℃以上で処
理することが望ましい。加圧下で焼成することは、板の
反りを防ぎ、より緻密な炭素板を製造するEで好ましい
. (実施例) 以下、実施例により本発明を更に説明する。実施例に示
す物性の測定法は下記の通りである。
Note that the softening temperature and flow start temperature are determined by the following measurements. Using a Shimadzu high-speed flow tester, 25
1 g of the sample pulverized to 0 microns or less was filled into a cylinder with a cross-sectional area of 1 cm" and a nozzle with a diameter of 1 mm at the bottom, and heated at 6°C/cm2 while applying a load of 10 kgf/cm2.
The temperature increases at a rate of 1 minute. As the temperature rises, the powder particles soften, the filling rate increases, and the volume of the sample powder decreases, but above a certain temperature, the volume stops decreasing. As the temperature continues to rise further, the sample melts and flows out from the nozzle at the bottom of the cylinder. The temperature at which the volume of the sample powder stops decreasing at this time is defined as the softening temperature of the sample, and the temperature at which the sample begins to melt and flow out, that is, the temperature at which the volume of the sample in the cylinder begins to decrease, is defined as the flow start temperature. shall be. For materials with a high softening temperature, melting may not flow out from the nozzle. (Carbonization firing) Next, the pressure is normally removed once, and then the pressure is further increased in an inert gas atmosphere, or carbonization firing is performed at <800° C. or higher, preferably 900° C. or higher without applying pressure, and graphitization is performed if necessary. When high conductivity is required, it is desirable to process at 2000° C. or higher. Firing under pressure is preferable in E because it prevents warping of the plate and produces a denser carbon plate. (Example) Hereinafter, the present invention will be further explained with reference to Examples. The physical properties shown in the examples were measured as follows.

(1)  ガス透過係数:ガス透過率測定装置GTR−
10A (a本製作所製)を使用し、測定方法としては
B法、即ち拡散係数の時間的遅れをなくすためにフィル
ムの上面にテストガスである水素ガスを2kg/am”
に加圧しながら下面を連続して真空排気(差圧としては
3kgf/cm”) Lて、定常状態になるのを確認し
た後に透過ガスである水素ガスを溜め込む方法により測
定したものである。
(1) Gas permeability coefficient: Gas permeability measuring device GTR-
10A (manufactured by Ahon Seisakusho) was used, and the measurement method was B method, that is, hydrogen gas, which was a test gas, was applied to the top surface of the film at 2 kg/am to eliminate the time delay in the diffusion coefficient.
The measurement was carried out by continuously evacuation of the lower surface while applying pressure to L (differential pressure: 3 kgf/cm), and after confirming a steady state, hydrogen gas, which is the permeated gas, was stored.

曲げ強度: A S TM  D790−81 (3点
荷重)(3)炭素含有率:燃焼ガスをガスクロマトグラ
フィー法により定量し、求める。装置としてはELEM
ENTAL ANALYZAER  HITATCHI
 028 CHN ANALYZ−ER(日立製作所製
)を使用 嵩密度:炭素板の寸法をノギスとマイクロメーターで測
定し体積を求め、炭素板の重量を体積で除して求める. 電気比抵抗: ASTκD−257−78 .(水銀電
極法)(2) (4) (5) 図5Bに示す方法による. 実施例1 エチレンボトム油を370℃で3時間処理して重質化を
進めると同時に低沸点分を除去してビッチAを得た。こ
のビッチAを100μm以下に粉砕して10’C/hr
の速度で190℃・まで空気中で昇温しでビッチB.を
製造した。ビッチB1は軟化温度285℃、900℃焼
成での炭化収率72重量%であった。
Bending strength: ASTM D790-81 (3-point load) (3) Carbon content: Determined by quantifying combustion gas by gas chromatography. ELEM as a device
ENTAL ANALYZAER HITATCHI
028 Use CHN ANALYZ-ER (manufactured by Hitachi, Ltd.) Bulk density: Measure the dimensions of the carbon plate with calipers and a micrometer to determine the volume, and divide the weight of the carbon plate by the volume. Electrical specific resistance: ASTκD-257-78. (Mercury electrode method) (2) (4) (5) By the method shown in Figure 5B. Example 1 Bitch A was obtained by treating ethylene bottom oil at 370° C. for 3 hours to make it heavier and at the same time remove low boiling point components. Pulverize this bitch A to 100 μm or less for 10'C/hr.
By raising the temperature in air to 190℃ at a rate of was manufactured. Bitch B1 had a softening temperature of 285°C and a carbonization yield of 72% by weight when fired at 900°C.

ビッチB,を、粒径10μm以下が90重量%以上にな
るように粉砕した微粉ピッチ8112重量部、粒径10
μm以下のグラファイト粉8重量部、メチルセルロース
0.5重量部、水80重量部を均一に混合してスラリー
を調整した。
8112 parts by weight of fine powder pitch obtained by pulverizing Bitch B, so that the particle size of 10 μm or less is 90% by weight or more, particle size 10
A slurry was prepared by uniformly mixing 8 parts by weight of graphite powder of µm or less, 0.5 parts by weight of methyl cellulose, and 80 parts by weight of water.

600℃で焼成した等方性ピッチ系準炭素繊維を抄造し
て製造した目付量30g/m2のカーボンペーパーに上
記スラリーを均一に塗布した後、乾燥して目付量230
g/m2のグリーンシートを製造した.分散媒である水
に希釈する前の組成物100重量部中に占める炭素前駆
体は60重量部、黒鉛粒子40重量部であり、これに対
する準炭素繊維は15重量部に相当する。このグリーン
シ一 ト4枚を積層して金型に充填し、300℃/hr
の速度で370℃まで昇温し15kgf/cm2の圧力
で30分間プレスしたのち圧力をlkgf/c+n”と
し、50℃/hrの速度で600℃まで昇温した後、冷
却して薄板を製造した。この薄板を不活性ガス雰囲気中
で2000℃で焼成して厚さ0.53+nrnの炭素板
を製造した。得られた炭素板の特性を表に示した。
After uniformly applying the above slurry to carbon paper with a basis weight of 30 g/m2 manufactured by paper-making isotropic pitch-based quasi-carbon fibers fired at 600°C, the slurry was dried to obtain a paper with a basis weight of 230 g/m2.
A green sheet of g/m2 was produced. The carbon precursor and the graphite particles accounted for 60 parts by weight and 40 parts by weight, respectively, and the quasi-carbon fibers accounted for 15 parts by weight in 100 parts by weight of the composition before being diluted with water, which is a dispersion medium. These four green sheets were stacked and filled into a mold, and heated at 300°C/hr.
The temperature was raised to 370°C at a speed of This thin plate was fired at 2000°C in an inert gas atmosphere to produce a carbon plate with a thickness of 0.53+nrn.The properties of the obtained carbon plate are shown in the table.

比較例1 等方性の不融化ピッチ糸を900℃で焼成した炭素繊維
を用いた他は実施例lと同様の方法で炭素板を製造した
, 2000℃で焼成した後の炭素板の厚さは0.57
mn+であった。分散媒である水に希釈する前の組成物
100重量部中に占める炭素前駆体は60重量部、黒鉛
粒子40重量部、これに対する炭素繊維は15重量部に
相当する.得られた炭素板の特性を表に示した. 実施例2 エチレンボトム油を370’Cで3時間処理して重質化
を進めるとともに、低沸点分を除去してビッチAを得た
。このピッチAを50oμm以下に粉砕して10℃/h
rの昇温速度で190”Cまで空気中で昇温し、ビッチ
B2を製造した。ビッチB2は軟化温度が285℃であ
り、900℃焼成での炭化収率が72重量%であった。
Comparative Example 1 A carbon plate was manufactured in the same manner as in Example 1, except that carbon fibers made of isotropic infusible pitch yarns were fired at 900°C.Thickness of the carbon plate after firing at 2000°C is 0.57
It was mn+. In 100 parts by weight of the composition before being diluted with water as a dispersion medium, the carbon precursor accounted for 60 parts by weight, the graphite particles accounted for 40 parts by weight, and the carbon fibers accounted for 15 parts by weight. The properties of the obtained carbon plate are shown in the table. Example 2 Bitch A was obtained by treating ethylene bottom oil at 370'C for 3 hours to make it heavier and remove low boiling point components. This pitch A is crushed to 50oμm or less at 10℃/h.
Bitch B2 was produced by raising the temperature in air to 190''C at a heating rate of r.Bitch B2 had a softening temperature of 285°C and a carbonization yield of 72% by weight when fired at 900°C.

ピッチB2を更に不活性ガス中で420”Cで2時間熱
処理して、軟化温度が430’C、900”C焼成での
炭化収率が84重量%のビッチCを得た.尚ビッチCの
軟化温度は本文の説明の測定方法と異なり、荷重を10
0kgf/cm2としたものである。このビッチCを9
0重景%が30μm以下になるように粉砕して微粉ビッ
チCを得た。
Pitch B2 was further heat treated at 420''C in an inert gas for 2 hours to obtain pitch C with a softening temperature of 430'C and a carbonization yield of 84% by weight when fired at 900''C. In addition, the softening temperature of Bitch C is different from the measurement method explained in the main text, and the softening temperature is determined by applying a load of 10
It is set to 0 kgf/cm2. This bitch C 9
A fine powder Bitch C was obtained by pulverizing the powder so that the 0 weight ratio was 30 μm or less.

また、コブナー樹脂は、モル比が7/3であるビレン/
フェナントレン50.4重量%に、p−キシリレングリ
コール44.6重量%、バラトルエンスルフォン酸5重
量%を加え、120’cで2時間反応させた.更に黒鉛
粒子としてはCP(オリエンタル産業の商品名:平均粒
径は12μm)を用いた.次に微粉ビッチC30重量部
、コブナー樹脂40重量部、黒鉛粒子30重景部、テト
ラヒド口フラン2oO重量部を均一に混合し、スラリー
を得た。
In addition, Kovner resin has a molar ratio of 7/3 birene/
44.6% by weight of p-xylylene glycol and 5% by weight of valatoluenesulfonic acid were added to 50.4% by weight of phenanthrene, and the mixture was reacted at 120'C for 2 hours. Furthermore, CP (trade name of Oriental Sangyo, average particle size: 12 μm) was used as graphite particles. Next, 30 parts by weight of fine powder Bitch C, 40 parts by weight of Kovner resin, 30 parts by weight of graphite particles, and 20 parts by weight of tetrahydrofuran were uniformly mixed to obtain a slurry.

等方性の不融化ピッチ糸を60θ℃で焼成した準炭素繊
維を抄造して得た目付け量30g/m”のカーボンペー
パーに上記スラリ〜を均一に含浸し,、乾燥して目付け
量230g/m2のグリーンシートを製造した.分散媒
である水に希釈する前の組成物100重量部中に占める
炭素前駆体は70重量部、黒鉛粒子30重量部であり、
これに対する準炭素繊維は15重量部に相当する。この
グリーンシート4枚を積層して金型に充填し、15kg
f/cm2の圧力下で200℃に1時間保持し、その後
その圧力を1 kgf/cm2とし、50℃/hrの昇
温速度で600℃まで昇温した後、冷却して薄板を得た
。この薄板を窒素ガス中、2000℃で焼成した。この
炭素板の特性は表に示す通りである。 なお、マイクロ
クラツクは認められなかった。
A carbon paper with a basis weight of 30 g/m" obtained by producing a semi-carbon fiber made by baking isotropic infusible pitch yarn at 60θ℃ is uniformly impregnated with the above slurry, and dried to obtain a fabric weight of 230 g/m". A green sheet of m2 was produced.The carbon precursor accounted for 70 parts by weight, the graphite particles accounted for 30 parts by weight in 100 parts by weight of the composition before diluting with water as a dispersion medium,
The quasi-carbon fibers for this correspond to 15 parts by weight. These four green sheets were stacked and filled into a mold, weighing 15 kg.
The temperature was maintained at 200° C. for 1 hour under a pressure of f/cm 2 , and then the pressure was increased to 1 kgf/cm 2 , and the temperature was raised to 600° C. at a temperature increase rate of 50° C./hr, followed by cooling to obtain a thin plate. This thin plate was fired at 2000°C in nitrogen gas. The characteristics of this carbon plate are shown in the table. Note that no microcracks were observed.

実施例3 コブナー樹脂の代わりにピッチB2とした他は実施例2
と同様に行なった。その特性を表に示した。マイクロク
ラックは認められなかった。
Example 3 Example 2 except that pitch B2 was used instead of Kovner resin
I did the same thing. Its characteristics are shown in the table. No microcracks were observed.

表 1 表 2 比較例2 炭素前駆体としては、微粉ピッチ(C)60重量部とコ
ブナー樹脂40重量部の組成物を用い、黒鉛粒子をマト
リックスに含めないとした他は実施例2と同様に行なっ
た。得られた炭素質板の表面には、多数のクラックが発
生していた。
Table 1 Table 2 Comparative Example 2 Same as Example 2 except that a composition of 60 parts by weight of fine pitch (C) and 40 parts by weight of Kovner resin was used as the carbon precursor, and graphite particles were not included in the matrix. I did it. Many cracks were generated on the surface of the obtained carbonaceous plate.

「発明の効果」 、本発明炭素板は緻密でクラックが少なく、ガス透過性
が小さく、曲げ強度が大きいという効果を有する。
"Effects of the Invention" The carbon plate of the present invention is dense, has few cracks, has low gas permeability, and has high bending strength.

Claims (1)

【特許請求の範囲】[Claims]  平均粒径が40μm以下の黒鉛粒子10〜50重量部
と、炭化収率が50〜90重量%である炭素前駆体50
〜90重量部よりなる組成物100重量部を、分散媒或
いは溶剤により希釈する工程、550℃以上、700℃
以下で焼成した準炭素繊維を基質とする支持体2〜40
重量部に、前記組成物を含む希釈液を担持し、グリーン
シートとする工程、前記グリーンシートを単独又は複数
枚積層して、加圧下で加熱成形する工程、及び前記成形
物を炭化焼成する工程よりなる緻密炭素板の製造方法。
10 to 50 parts by weight of graphite particles with an average particle size of 40 μm or less and 50 parts by weight of a carbon precursor with a carbonization yield of 50 to 90% by weight
Step of diluting 100 parts by weight of a composition consisting of ~90 parts by weight with a dispersion medium or solvent, 550°C or higher, 700°C
Supports 2 to 40 whose substrate is semi-carbon fiber fired as follows
A step of supporting a diluted solution containing the composition in parts by weight to form a green sheet, a step of laminating one or more of the green sheets and heating and molding them under pressure, and a step of carbonizing and firing the molded product. A method for producing a dense carbon plate.
JP2172732A 1989-10-31 1990-07-02 Production of dense carbon plate Pending JPH03215362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172732A JPH03215362A (en) 1989-10-31 1990-07-02 Production of dense carbon plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28190389 1989-10-31
JP1-281903 1989-10-31
JP2172732A JPH03215362A (en) 1989-10-31 1990-07-02 Production of dense carbon plate

Publications (1)

Publication Number Publication Date
JPH03215362A true JPH03215362A (en) 1991-09-20

Family

ID=26494987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172732A Pending JPH03215362A (en) 1989-10-31 1990-07-02 Production of dense carbon plate

Country Status (1)

Country Link
JP (1) JPH03215362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328233A (en) * 1993-05-21 1994-11-29 Tadao Takagishi Heat insulating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328233A (en) * 1993-05-21 1994-11-29 Tadao Takagishi Heat insulating furnace

Similar Documents

Publication Publication Date Title
US20070154779A1 (en) Porous carbon electrode substrates and methods for preparing the same
US20080057303A1 (en) Method for Manufacturing Carbon Fiber Reinforced Carbon Composite Material Suitable for Semiconductor Heat Sink
KR101392227B1 (en) Carbon fiber web comprising polymer nanofiber
JPH0136670B2 (en)
JP3521619B2 (en) Carbon fiber paper and porous carbon plate
EP1305268A2 (en) Carbon-matrix composites compositions and methods related thereto
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JPH09157052A (en) Porous carbon sheet and its production
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JPH03150266A (en) Production of carbon/carbon composite material
WO2020059819A1 (en) Carbon-fiber-molded heat insulator and manufacturing method thereof
JPH03215362A (en) Production of dense carbon plate
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
JPH0520386B2 (en)
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP2687458B2 (en) Insulation material for heating furnace
JP2015010014A (en) Production method of carbon plate material, and carbon plate material
JP2008044201A (en) Carbon fiber sheet and its manufacturing method
JPH04284363A (en) Manufacture of carbon plate
JPH0768064B2 (en) Carbon fiber reinforced composite material
JPH11185771A (en) Manufacture of paper and porous carbon plate for fuel cell
JP5687184B2 (en) Method for producing dense carbon sheet and carbon sheet