JPH03215342A - Production of oxide-based superconducting sintered molded article - Google Patents

Production of oxide-based superconducting sintered molded article

Info

Publication number
JPH03215342A
JPH03215342A JP2006798A JP679890A JPH03215342A JP H03215342 A JPH03215342 A JP H03215342A JP 2006798 A JP2006798 A JP 2006798A JP 679890 A JP679890 A JP 679890A JP H03215342 A JPH03215342 A JP H03215342A
Authority
JP
Japan
Prior art keywords
crucible
oxide
molded article
current value
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006798A
Other languages
Japanese (ja)
Other versions
JP3010363B2 (en
Inventor
Yuichi Ishikawa
雄一 石川
Masaru Namura
優 名村
Hideji Yoshizawa
吉澤 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2006798A priority Critical patent/JP3010363B2/en
Publication of JPH03215342A publication Critical patent/JPH03215342A/en
Application granted granted Critical
Publication of JP3010363B2 publication Critical patent/JP3010363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve critical electric current value without damaging superconducting characteristics by arranging a molded article of previously compression molded oxide superconductor powder or a calcined material thereof on or in a silver alloy bath. CONSTITUTION:A molded article prepared by compression molding oxide superconductor powder (e.g. Y1Ba2Cu3O7-x) or a calcined material obtained by calcining the molded article is arranged on or in a bath of silver alloy material (e.g. Ag-Cu alloy having >=6wt.% Cu content) and burnt at <=960 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物系超電導焼結成型体の製造法に関し、
特に銀合金溶融体の特性の利用により目的製品における
超電導特性の劣化を防止しながら高い臨界電流値を有す
る超電導焼結成型体を得る方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide-based superconducting sintered body,
In particular, the present invention relates to a method of obtaining a superconducting sintered molded body having a high critical current value while preventing deterioration of superconducting properties in a target product by utilizing the characteristics of a silver alloy melt.

[従来技術〕 従来、Y(イットリウム)系酸化物超電導体の製造にお
いて、高い臨界電流値(J c)を有する焼結成型体を
得る方法としては、酸化物超電導体の原料粉末や合成粉
末を金型ブレスあるいは静水圧プレス等で成型した後、
適当な焼成条件下で焼成して焼結成型体を得る方法が一
般的である。
[Prior art] Conventionally, in the production of Y (yttrium)-based oxide superconductors, the method of obtaining a sintered molded body having a high critical current value (Jc) was to use raw material powder or synthetic powder of oxide superconductor. After molding with a mold press or isostatic press,
A common method is to obtain a sintered molded body by firing under appropriate firing conditions.

しかしながらこの方法で焼結成型体をつくる場合には、
超電導体の結晶粒間でジョセフソン結合を作り易いため
、高い臨界電流値を持つものを得ることができなかった
However, when making a sintered molded body using this method,
Because Josephson bonds are easily formed between superconductor grains, it has not been possible to obtain a superconductor with a high critical current value.

他の方法として、使用する酸化物超電導体粉末の表面を
前処理段階で予め酸エッチング、またはアルカリエッチ
ングで処理することにより表面の未反応相を取り除いた
合成粉末を金型プレスあるいは静水圧プレス等で成型し
た後、適当な焼成条件下で焼成して成型体を得る方法も
公知である。
As another method, the surface of the oxide superconductor powder to be used is pretreated with acid etching or alkali etching to remove the unreacted phase on the surface, and then the synthetic powder is processed by mold pressing or isostatic pressing. There is also a known method in which a molded product is obtained by molding the material and then firing it under appropriate firing conditions.

しかしながら、この方法で得られる焼結成型体は、結晶
粒子間にジョセフソン接合ができてしまい、臨界電流値
が低下することが知られている。
However, it is known that in the sintered molded body obtained by this method, Josephson junctions are formed between crystal grains, resulting in a decrease in critical current value.

更に他の方法として、酸化物超電導体の原料粉末または
合成粉末をるつぼに入れ、1.200℃〜1.500℃
の温度で部分的に、あるいは全体的に溶融させた後に、
冷却し、次いで900〜1.000℃で超電導結晶を包
晶反応で生成させて成型体を得る方法も知られている。
Still another method is to put raw material powder or synthetic powder of oxide superconductor into a crucible and heat it to 1.200°C to 1.500°C.
After being partially or totally melted at a temperature of
A method is also known in which a molded body is obtained by cooling and then generating superconducting crystals by a peritectic reaction at 900 to 1,000°C.

しかしながらこの方法によって得られる成型体は、臨界
電流値に関しては好ましい値を示すが、原料粉としてY
,B a 2 C u 3 0t−*を用いた場合には
、これがptるつぼと1.200℃付近で反応すること
によって、Y,Ba2Cu.PtO.。が生成して非超
電導体となるほか、MgOあるいはAj! 20.るつ
ぼを用いた場合には、酸化物超電導体がるつぼに拡散し
たり、あるいは逆にるつぼ材が超電導材に拡散したりす
るためにるつぼと接合したり、超電導特性の劣化が生じ
たりする。
However, although the molded body obtained by this method shows a favorable critical current value, Y
, Ba2Cu30t-* is used, it reacts with a PT crucible at around 1.200°C to form Y, Ba2Cu. PtO. . In addition to forming a non-superconductor, MgO or Aj! 20. When a crucible is used, the oxide superconductor diffuses into the crucible, or conversely, the crucible material diffuses into the superconducting material, resulting in bonding with the crucible and deterioration of superconducting properties.

上述の問題点を解決する一手段として、本発明者は先の
出願に係る特願平1−232387号「酸化物系超電導
焼結成型体の製法」において、酸化物超電導体粉末を予
め圧縮成型して仮焼した後、該仮焼体を銀浴中あるいは
銀浴上に配置して焼成することによって高い臨界電流値
を有する成型体を得る技術を開示した。
As a means to solve the above-mentioned problems, the present inventor has developed a method of compression molding oxide superconductor powder in advance in the earlier application No. 1-232387 entitled "Method for producing oxide-based superconducting sintered body". The present invention discloses a technique for obtaining a molded body having a high critical current value by placing the calcined body in or on a silver bath and firing the calcined body.

しかしながらその後の研究により、上記作製法では、基
板からの拡散(不純物)や融着かなくなり、質の向上が
計られるという利点を有するものの、銀の融点が960
℃と高いために、仮焼体を浮かしている銀浴から銀を抜
く時にるつぼと接合する等の問題も一部あり、特に仮焼
体が大きい場合には、処理が困難であるということがわ
かった。
However, subsequent research has shown that although the above manufacturing method has the advantage of eliminating diffusion (impurities) and fusion from the substrate and improving quality, the melting point of silver is 960.
℃, there are some problems such as bonding with the crucible when removing silver from the silver bath in which the calcined body is floating, and processing is difficult especially when the calcined body is large. Understood.

[発明が解決しようとする課題] 上述のように高い臨界電流値を持つ焼結成型体の得られ
る溶融法や部分溶融法は、るつぼとの接合や拡散がなけ
れば優れた焼結成型法の一つであり、また本発明者の上
記先行出願に係る銀浴法も同様に優れた焼結法の一つで
あるが、るつぼとの接合を完全に防止する上では若干の
問題があるため、更なる改良が求められていた。
[Problems to be Solved by the Invention] As mentioned above, the melting method or partial melting method for obtaining a sintered molded body with a high critical current value is not an excellent sintered molding method unless there is bonding with a crucible or diffusion. The silver bath method according to the above-mentioned prior application of the present inventor is also one of the excellent sintering methods, but there are some problems in completely preventing bonding with the crucible. , further improvements were required.

[課題を解決するための手段] 本発明者らは斯る課題を解決するために鋭意研究したと
ころにより、るつぼ内に予め配置した銀合金を接合防止
材として使用し、960℃以下の温で焼結することによ
って酸化物超電導体の仮焼体とるつぼとが接合せずに、
しかも超電導特性を損なわずに高い臨界電流値を持つ成
型体を得ることができることを見い出して本発明を達成
することができた。
[Means for Solving the Problems] In order to solve the problems, the present inventors conducted extensive research and found that a silver alloy placed in advance in a crucible was used as a bonding prevention material, and a silver alloy was used at a temperature of 960°C or less. By sintering, the calcined body of the oxide superconductor and the crucible do not bond together,
Moreover, the present invention was achieved by discovering that a molded body having a high critical current value can be obtained without impairing the superconducting properties.

すなわち本発明は、酸化物超電導体粉末を予め圧縮成型
した成型体または該成型体を仮焼した仮焼体を作製した
後、これらを銀合金浴上あるいは銀合金浴中に配置して
、960℃以下で焼成することにより高い臨界電流値を
有する成型体を得ることを特徴とする酸化物系超電導焼
結成型体の製造法に関するものである。
That is, in the present invention, after producing a molded body by compression-molding oxide superconductor powder in advance or a calcined body by calcining the molded body, these are placed on or in a silver alloy bath, and then heated at 960° C. The present invention relates to a method for producing an oxide-based superconducting sintered molded body, which is characterized in that a molded body having a high critical current value is obtained by firing at a temperature of 0.degree. C. or lower.

[作 用] 本発明法においては、酸化物超電導体粉末としてY(イ
ットリウム)系酸化物のY1Ba2(u30t−x粉を
用い、溶融法あるいは部分溶融法で臨界電流値の向上を
図っている。すなわち、Y ,B a 2 C u 3
 0 7−xを1.300℃以上で卑全な溶融状態とす
る溶融法によって、あるいは1 . 200℃以下でY
2 B a I C u ,O,の固相と残部の液相と
を生ぜしめた部分溶融状態から900〜t.ooo℃の
温度で包晶反応を行い、固相表面でのY1Ba2Cu,
07−xの結晶化を図る部分溶融法によって所望の臨界
電流値をもつ焼結成型体の製造を図っている。従来行わ
れてきた通常の溶融法あるいは部分溶融法ではこの段階
でるつぼ材の材料の一部がYI B a 2 C u 
i 07−x ヘ拡散したり、また、取出し時にるつぼ
自体と酸化物超電導体とが接合して分離不可能になった
りするが、本発明法においてはるつぼ中に銀合金材を予
め配置して接合防止材として働くようにしているため上
記のような問題は生じない。
[Function] In the method of the present invention, Y1Ba2 (u30t-x powder) of Y (yttrium)-based oxide is used as the oxide superconductor powder, and the critical current value is improved by a melting method or a partial melting method. That is, Y , Ba 2 Cu 3
1.07-x by a melting method that brings it into a base molten state at 1.300°C or higher, or 1. Y below 200℃
2 B a I Cu , O, from a partially molten state that produced a solid phase and a liquid phase at 900 to 900 t. A peritectic reaction is carried out at a temperature of ooo℃, and Y1Ba2Cu,
We are attempting to manufacture a sintered molded body having a desired critical current value by a partial melting method for crystallizing 07-x. In the conventional melting method or partial melting method, a part of the crucible material is converted into YI B a 2 Cu at this stage.
i 07-x may diffuse into the crucible, or the crucible itself and the oxide superconductor may bond together and become impossible to separate when taken out, but in the method of the present invention, the silver alloy material is placed in the crucible in advance. Since the material acts as a bonding prevention material, the above-mentioned problem does not occur.

尚、本発明法において使用する銀合金材の合金元素とし
て好ましいものは、Cus Ges PbsS n s
 G a s  I n −, S b s Z nか
らなる群より選ばれた金属であり、これらは銀と合金化
することによって銀の融ヘ,を960℃以下にすること
ができる合金元素である。
In addition, preferred alloying elements for the silver alloy material used in the method of the present invention are Cus Ges PbsS n s
It is a metal selected from the group consisting of G a s I n -, S b s Z n, and these are alloying elements that can reduce the melting temperature of silver to 960 ° C or less by alloying with silver. .

これら合金元素の添加によって、銀の融点が900℃以
下となるようにすることが特に好ましいが、そのために
加えるべき合金元素の添加量は合金元素の種類によって
異なる。例えば、Ag−Cu系ではCuを6%(重量%
、以下同じ)以上、Ag  Ge系ではGeをB%以上
、Ag−Pb系ではpbをlO%以上、Ag−Sn系で
はSnを10%以上、Ag−Ga系ではGaを5%以上
、AgIn系ではInをlO%以上、Ag−Sb系では
sbを10%以上、Ag−Zn系ではZnを7%以上、
それぞれ添加することにより銀合金の融点が900℃以
下となるように調製できることを確認した。
It is particularly preferable to adjust the melting point of silver to 900° C. or less by adding these alloying elements, but the amount of the alloying element to be added for this purpose differs depending on the type of alloying element. For example, in the Ag-Cu system, Cu is 6% (weight%
, hereinafter the same) above, for Ag Ge system, Ge is B% or more, for Ag-Pb system, pb is 10% or more, for Ag-Sn system, Sn is 10% or more, for Ag-Ga system, Ga is 5% or more, and AgIn For systems, In is 10% or more, for Ag-Sb systems, sb is 10% or more, for Ag-Zn systems, Zn is 7% or more,
It was confirmed that the melting point of the silver alloy could be adjusted to 900° C. or lower by adding each of them.

これらの銀合金材は、酸化物超電導体粉末をプレス成型
したものを1.200℃以上で焼成する際、該成型体と
るつぼ材との間にあって、るつぼ材と超電導体材との相
互拡散を防ぐ役割をするばかりでなく、900〜t,o
oo℃の間で行う結晶化反応の際もるつほ材との接合を
防止する働きをする。
When press-molding oxide superconductor powder is fired at 1.200°C or higher, these silver alloy materials are present between the molded body and the crucible material to prevent mutual diffusion between the crucible material and the superconductor material. Not only does it play a role in preventing, but also
It also functions to prevent bonding with the rutsuho material during the crystallization reaction that takes place at temperatures between 0.0 and 0.0°C.

このようにして得られた結晶化したYI Ba2Cu3
07−tの焼結材(バルク材)を取り出すには、960
℃以下、好ましくは900℃以下で銀合金を融かして取
り除き、徐冷する。これによって容易に超電導焼結体を
取り出すことができる。
The crystallized YI Ba2Cu3 thus obtained
To take out the sintered material (bulk material) of 07-t, use 960
The silver alloy is melted and removed at a temperature of 0.degree. C. or less, preferably 900.degree. C. or less, and then slowly cooled. This allows the superconducting sintered body to be easily taken out.

以下、実施例をもって詳細に説明する。Hereinafter, a detailed explanation will be given using examples.

[実施例1] Y2Ba,Cu,05とBaCuO2CuOの3Il1
aアンダー粉をY:Ba:Cu−1:2:3の組成に配
合した混合粉を金型プレス内で1 ton/C■2の圧
力をかけて成型した後950℃にて20時間焼成し、1
インチペレットを予め作製した。
[Example 1] 3Il1 of Y2Ba, Cu, 05 and BaCuO2CuO
A mixed powder containing under powder with a composition of Y:Ba:Cu-1:2:3 was molded in a mold press under a pressure of 1 ton/C2, and then baked at 950℃ for 20 hours. ,1
Inch pellets were prepared in advance.

次いでAll2(hるつぼにA g loogとPbl
Ogとを入れ、その上に上記の1インチペレットを置い
て、加熱炉中で1.100℃で2時間加熱した。
Then All2 (A g loog and Pbl in the crucible
The above 1-inch pellet was placed on top of the 1-inch pellet, and heated at 1.100° C. for 2 hours in a heating furnace.

次いで炉内温度を980℃にして酸素雰囲気中に50時
間保持して、Y1B a 2 C u 3 07−I+
の結晶化を図った。結晶化が終了した後、温度を900
℃に下げて、るつぼ内の焼結体を取り出した。
Next, the temperature inside the furnace was raised to 980°C, maintained in an oxygen atmosphere for 50 hours, and Y1B a 2 Cu 3 07-I+
We attempted to crystallize the After crystallization is completed, the temperature is increased to 900°C.
℃, and the sintered body in the crucible was taken out.

次いで、残ったYI B a 2 C u 3 07−
xの焼結体をl”c/sinの割合で徐冷して、600
℃の温度で20時間、酸素雰囲気の条件下で保持した後
、炉浄を行った。
Then, the remaining YI Ba 2 Cu 3 07-
The sintered body of x was slowly cooled at a rate of l"c/sin,
After being maintained in an oxygen atmosphere at a temperature of .degree. C. for 20 hours, the furnace was cleaned.

この焼結体には、るつぼ材であるAI20sや銀合金浴
のpbの拡散が少量しか認められず、また、該焼結体の
臨界電流値はio3A/c■2であり、Y系酸化物超電
導体としては優れた焼結体であることが確認された。
In this sintered body, only a small amount of diffusion of AI20s, which is the crucible material, and PB from the silver alloy bath was observed, and the critical current value of the sintered body was io3A/c2, and Y-based oxide It was confirmed that the sintered body is an excellent superconductor.

[実施例2] 実施例1で作製した1インチベレットをA#203るつ
ぼにA g 100gとCul(Igとを入れたものの
上に置いて、加熱炉中にて1.100℃で2時間加熱し
た。
[Example 2] The 1-inch pellet produced in Example 1 was placed in an A#203 crucible containing 100 g of Ag and Cul (Ig), and heated in a heating furnace at 1.100°C for 2 hours. did.

次いで炉内温度を980℃にして酸素雰囲気中に50時
間保持して、Y,Ba2 Cu,o7−1の結晶化を図
った。結晶化が終了した後、温度を900”Cに下げて
、るつぼ内の焼結体を取り出した。
Next, the temperature in the furnace was raised to 980° C. and maintained in an oxygen atmosphere for 50 hours to crystallize Y, Ba2 Cu, o7-1. After crystallization was completed, the temperature was lowered to 900''C and the sintered body in the crucible was taken out.

次いで、残ったY IB a 2 C u 3 0 7
−xの焼結体を1℃/akinの割合で徐冷して、60
0℃の温度で20時間、酸素雰囲気の条件下で保持した
後、炉浄を行った。
Then, the remaining Y IB a 2 Cu 3 0 7
-x sintered body was slowly cooled at a rate of 1°C/akin, and
After being maintained in an oxygen atmosphere at a temperature of 0° C. for 20 hours, the furnace was cleaned.

この焼結体には、るつぼ材であるAI20qや銀合金浴
のCuの拡散が少量しが認められず、また、該焼結体の
臨界電流値は1G’A/c■2であり、Y系酸化物超電
導体としては優れた焼結体であることが確認された。
In this sintered body, a small amount of diffusion of AI20q, which is the crucible material, and Cu from the silver alloy bath was not observed, and the critical current value of the sintered body was 1 G'A/c2, and Y It was confirmed that the sintered body is an excellent oxide superconductor.

[実施例3] 実施例1で作製したlインチペレットをAl20,るつ
ぼにA g 100gとZn8gとを加えたものの上に
置いて、加熱炉中にて1 , 100℃で2時間加熱し
た。
[Example 3] The 1-inch pellet produced in Example 1 was placed on an Al20 crucible containing 100 g of Ag and 8 g of Zn, and heated in a heating furnace at 1,100° C. for 2 hours.

次いで炉内温度を980℃にして酸素雰囲気中に50時
間保持して、Y 1B a 2 C u 3 Of−I
1の結晶化を図った。結晶化が終了した後、温度を90
0℃に下げて、るつぼ内の焼結体を取り出した。
Next, the temperature inside the furnace was raised to 980°C and maintained in an oxygen atmosphere for 50 hours, and Y 1B a 2 Cu 3 Of-I
We attempted to crystallize 1. After crystallization is completed, the temperature is increased to 90
The temperature was lowered to 0° C., and the sintered body in the crucible was taken out.

次いで、残ったY1Ba2Cus Ot−xの焼結体を
l”c/winの割合で徐冷して、600℃の温度で2
0時間、酸素雰囲気の条件下で保持した後、炉浄を行っ
た。
Next, the remaining sintered body of Y1Ba2Cus Ot-x was slowly cooled at a rate of 1"c/win, and was heated at a temperature of 600°C for 2
After maintaining the furnace under oxygen atmosphere conditions for 0 hours, the furnace was cleaned.

この焼結体には、るつぼ材であるA#20iや銀合金浴
のZnの拡散が少量しか認められず、また、該焼結体の
臨界電流値は10’A/es2であり、Y系酸化物超電
導体としては優れた焼結体であることが確認された。
In this sintered body, only a small amount of diffusion of Zn from the crucible material A#20i and the silver alloy bath was observed, and the critical current value of the sintered body was 10'A/es2. It was confirmed that the sintered body is an excellent oxide superconductor.

[比較例1] 実施例1と同様に作製したY( Ba2Cu307−1
の1インチペレットを、直接AN203るつぼ内に入れ
て、加熱炉中で1,200℃の温度で1時間加熱したと
ころ、該るつぼにY,Ba2Cu307−xのベレット
が融着してしまい取れなくなってしまった。
[Comparative Example 1] Y (Ba2Cu307-1
When a 1-inch pellet of Y,Ba2Cu307-x was directly placed in an AN203 crucible and heated in a heating furnace at a temperature of 1,200℃ for 1 hour, the Y,Ba2Cu307-x pellet was fused to the crucible and could not be removed. Oops.

また、冷却後取り外したY,Ba2 Cu30フー.の
焼結体をEPMAで調べたところ、焼結体中にAI20
3が拡散しているのが認められた。
In addition, the Y, Ba2 Cu30 fu. which was removed after cooling. When examining the sintered body using EPMA, it was found that AI20 was found in the sintered body.
3 was observed to be spreading.

この焼結体の臨界電流値は80A/cm2であった。The critical current value of this sintered body was 80 A/cm2.

[発明の効果] 本発明法では、上述のように予めるつぼ中に入れておい
たAgとPb,Cu,ZnSSnSGesGa,In,
Sb等とが融解して生じた銀合金材を接合と拡散防止の
ための隔離媒体として利用するため、酸化物超電導体と
るつぼ材との接合および材質の相互拡散を防止すること
ができるばかりでなく、得られた焼結体の劣化がなく高
い臨界電流値を有する焼結成型体が得られる。
[Effect of the invention] In the method of the present invention, Ag and Pb, Cu, ZnSSnSGesGa, In, which have been placed in a pot in advance as described above,
Since the silver alloy material produced by melting Sb etc. is used as an isolation medium for bonding and diffusion prevention, it is possible to bond the oxide superconductor and crucible material and prevent mutual diffusion of the materials. Therefore, a sintered molded body having a high critical current value without deterioration of the obtained sintered body can be obtained.

Claims (1)

【特許請求の範囲】[Claims]  酸化物超電導体粉末を予め圧縮成型した成型体または
該成形体を仮焼した仮焼体を銀合金浴上あるいは銀合金
浴中に配置して、960℃以下で焼成することにより高
い臨界電流値を有する成型体を得ることを特徴とする酸
化物系超電導焼結成型体の製法。
A molded body obtained by compression molding oxide superconductor powder in advance or a calcined body obtained by calcining the molded body is placed on or in a silver alloy bath and fired at a temperature of 960°C or less to obtain a high critical current value. A method for producing an oxide-based superconducting sintered body, characterized by obtaining a molded body having the following properties.
JP2006798A 1990-01-16 1990-01-16 Manufacturing method of oxide superconducting sintered compact Expired - Fee Related JP3010363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006798A JP3010363B2 (en) 1990-01-16 1990-01-16 Manufacturing method of oxide superconducting sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006798A JP3010363B2 (en) 1990-01-16 1990-01-16 Manufacturing method of oxide superconducting sintered compact

Publications (2)

Publication Number Publication Date
JPH03215342A true JPH03215342A (en) 1991-09-20
JP3010363B2 JP3010363B2 (en) 2000-02-21

Family

ID=11648199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006798A Expired - Fee Related JP3010363B2 (en) 1990-01-16 1990-01-16 Manufacturing method of oxide superconducting sintered compact

Country Status (1)

Country Link
JP (1) JP3010363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530370A1 (en) * 1991-03-14 1993-03-10 International Superconductivity Technology Center Process for producing oxide superconductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4174332B2 (en) * 2003-01-23 2008-10-29 財団法人国際超電導産業技術研究センター Oxide superconductor manufacturing method, oxide superconductor and its precursor support base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530370A1 (en) * 1991-03-14 1993-03-10 International Superconductivity Technology Center Process for producing oxide superconductor
EP0530370A4 (en) * 1991-03-14 1993-11-24 International Superconductivity Technology Center Method of making oxide superconductor

Also Published As

Publication number Publication date
JP3010363B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
CN1034247C (en) Process for producing high-temp. superconductor and also shaped bodies composed thereof
JPH0440289B2 (en)
JPH03215342A (en) Production of oxide-based superconducting sintered molded article
JP4174332B2 (en) Oxide superconductor manufacturing method, oxide superconductor and its precursor support base material
JP2672926B2 (en) Method for producing yttrium-based superconductor
US6103670A (en) Method of manufacturing oxide superconductor containing Ag and having substantially same crystal orientation
EP0344813B1 (en) Method of melting ceramic superconductive material
JPH0397654A (en) Production of oxide superconducting sintered molded body
JP4011130B2 (en) Manufacturing method of oxide superconducting wire
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH02252697A (en) Production of superconducting ceramic thin film
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP2778115B2 (en) Superconducting material melting method
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH04132616A (en) Production of bismuth-based oxide superconductor
JP3607940B2 (en) Manufacturing method of oxide superconductor
JP2838129B2 (en) Manufacturing method of superconducting ceramics
JP2003277199A (en) METHOD FOR PRODUCING Bi-BASED OXIDE SUPERCONDUCTING WHISKER
JPH01239026A (en) Production of oxide superconducting form
JPH03252369A (en) Production of oxide superconductor
JPH03199159A (en) Production of bismuth-based superconductor
JPH03290307A (en) Production of thick superconductive oxide film
JPH02217352A (en) Production of oxide superconductor
JPH1111943A (en) Oxide superconductor and its production
JPH06199565A (en) Production of molding from oxide-ceramic high temperature superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees