JPH03214812A - Cmos driver circuit for driving external load - Google Patents

Cmos driver circuit for driving external load

Info

Publication number
JPH03214812A
JPH03214812A JP2010382A JP1038290A JPH03214812A JP H03214812 A JPH03214812 A JP H03214812A JP 2010382 A JP2010382 A JP 2010382A JP 1038290 A JP1038290 A JP 1038290A JP H03214812 A JPH03214812 A JP H03214812A
Authority
JP
Japan
Prior art keywords
voltage
inverter
line
circuit
external load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010382A
Other languages
Japanese (ja)
Inventor
Kazutaka Obara
小原 一剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2010382A priority Critical patent/JPH03214812A/en
Publication of JPH03214812A publication Critical patent/JPH03214812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce voltage noise by connecting one terminal of a connecting body to which a transistor(TR) or over whose drain and gate are connected in common are connected in series to a line connecting an auxiliary inverter and a main inverter, and the other terminal to a power line. CONSTITUTION:A series connection is provided, in which two TRs 8, 9 whose drain and gate are connected in common are connected in series and the source of the TR 9 located at one terminal is connected to ground. The drain of the TR 8 located at the other terminal of the series connection is connected electrically to a connection line 15 interconnecting a main inverter 13 and an auxiliary inverter 12 through MOSTRs 6, 7 to which a control signal line 17 is connected. MOSTRs 10, 11 form an inverter circuit and the MOSTRs 6, 7 form a transfer gate together with an inverter circuit. When the signal level of the control signal 17 goes to a high level, the transfer gate is set to decrease the voltage noise of a power line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、外部負荷駆動用CMOSドライバ回路の出力
の変化で生ずる電圧ノイズによるデジタル装置の誤動作
防止に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to preventing malfunctions of digital devices due to voltage noise caused by changes in the output of a CMOS driver circuit for driving an external load.

〔従来の技術〕[Conventional technology]

従来の外部負荷駆動用CMOSドライバ回路の一例を第
4図に示し、同回路のタイミングチャートを第2図に示
す。
An example of a conventional CMOS driver circuit for driving an external load is shown in FIG. 4, and a timing chart of the same circuit is shown in FIG.

第4図において、(34)は入力信号線、(36)は出
力信号線、(22) (24)はNチャンネルのエンハ
ンスメント型MOS}ランジスタ(以下単にMOSTr
と記す。) 、(21)(23)はPチャンネルのエン
ハンスメント型MOSTr、(25)は負荷容量である
In FIG. 4, (34) is an input signal line, (36) is an output signal line, (22) and (24) are N-channel enhancement type MOS transistors (hereinafter simply MOSTr).
It is written as ), (21) and (23) are P-channel enhancement type MOSTr, and (25) is a load capacitance.

また、第2図において、(b)は入力信号線(34)の
信号波形、接続線(35)の信号波形を鎖線(b)、出
力信号線(36)の信号波形を鎖線(c)で示した。
In Fig. 2, (b) shows the signal waveform of the input signal line (34), the signal waveform of the connection line (35) is shown by the chain line (b), and the signal waveform of the output signal line (36) is shown by the chain line (c). Indicated.

第4図に示した従来の外部負荷駆動用CMOSドライバ
回路の動作を以下に説明する。
The operation of the conventional CMOS driver circuit for driving an external load shown in FIG. 4 will be described below.

この外部負荷駆動用CMOSドライバ回路は、第4図に
示したように、一般的には主インバータ(33)と補助
インバータ(32)との2段で構成する。
As shown in FIG. 4, this CMOS driver circuit for driving an external load is generally composed of two stages: a main inverter (33) and an auxiliary inverter (32).

トランジスタのチャンネル幅(り とチャンネル長(L
)との比(W/L)は、主インバータ(33)において
は補助インバータ(32)より数倍大きい。
Transistor channel width (ri) and channel length (l)
) is several times larger in the main inverter (33) than in the auxiliary inverter (32).

時刻(七〇)から時刻(t1)までの間、入力信号線(
34)における信号はロウレベルであり、MOSTr(
2l)はオン、M O S T r (22)はオフ状
態となり、接続線(35)の信号はハイレベルとなって
、MOST r (23)はオフ、M O S T r
 (24)はオン状態となる。従って、出力信号線(3
6)の信号はロウレベルとなる。
From time (70) to time (t1), the input signal line (
The signal at MOSTr(34) is low level, and the signal at MOSTr(
2l) is on, MOSTr (22) is off, the signal on the connection line (35) is high level, MOSTr (23) is off, and MOSTr (22) is off.
(24) is turned on. Therefore, the output signal line (3
The signal 6) becomes low level.

時刻(1+)で入力信号線(34)の信号レベルがロウ
レベルからハイレヘルヘi化tると、MOSTr(21
)はオフ、M O S T r (22)はオン状態と
なり、接続線(35)の信号はロウレベルになるので、
MOS T r (23)はオン、M O S T r
 (24)はオフ状態となる。従って、出力信号線(3
6)の信号はハイレベルになる。
When the signal level of the input signal line (34) changes from low level to high level at time (1+), MOSTr (21
) is off, M O S T r (22) is on, and the signal on the connection line (35) becomes low level, so
MOS T r (23) is on, M O S T r
(24) is in the off state. Therefore, the output signal line (3
The signal 6) becomes high level.

時刻(1z)で入力信号線(34)の信号はハイレベル
からロウレベルへ変化し、MOSTr(21)はオン、
M O S T r (22)はオフ状態になり、接続
線(35)の信号はハイレベルになるので、M O S
 T r (23)はオフ、M O S T r (2
4)はオン状態となる。従って、出力信号線(36)の
信号はロウレベルになる.このように、従来の外部負荷
駆動用CMOSドライバ回路は動作するのである。
At time (1z), the signal on the input signal line (34) changes from high level to low level, and MOSTr (21) turns on.
Since M O S T r (22) is turned off and the signal on the connection line (35) becomes high level, M O S
T r (23) is off, M O S T r (2
4) is in the on state. Therefore, the signal on the output signal line (36) becomes low level. In this way, the conventional CMOS driver circuit for driving an external load operates.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、半導体集積回路において、外部負荷の駆動能
力を高く設定された出力端子、いわゆる高ドライブ能力
の出力端子が、複数同時に変化した場合、電源線に電圧
ノイズが発生し、他のデジタル回路の誤動作の原因とな
るという問題がある。
However, in semiconductor integrated circuits, if multiple output terminals that are set to have a high drive capability for external loads, so-called high drive capability output terminals, change simultaneously, voltage noise will occur in the power supply line, causing malfunctions in other digital circuits. There is a problem that it causes

また、このノイズを抑制するために、同時に変化する出
力端子の近くに電源端子を追加して設ける方法があるが
、この方法では、限られた数の外部端子の内、使用可能
な端子の数が減少するという不都合もあった。
In addition, in order to suppress this noise, there is a method to add a power supply terminal near the output terminals that change simultaneously, but with this method, the number of usable terminals out of the limited number of external terminals is There was also the inconvenience that the number decreased.

(課題を解決するための手段〕 上記課題に鑑みて、本発明においては、補助インバータ
と主インバータと、この補助インバータの出力端子と主
インバータの入力端子を接続する接続線を備え、ドレイ
ンとゲートが共通に接続された一つ以上のトランジスタ
を直列に接続してなる直列接続体の一端を、この直列接
続体と上記接続線との接続もしくは非接続を制御するス
イッチ回路に接続し、この直列接続体の他端を電源線と
接続するという手段を講じた。
(Means for Solving the Problems) In view of the above problems, the present invention includes an auxiliary inverter, a main inverter, a connection line connecting an output terminal of the auxiliary inverter and an input terminal of the main inverter, and a drain and a gate. One end of a series connection body formed by connecting in series one or more transistors connected in common is connected to a switch circuit that controls connection or disconnection between this series connection body and the connection line, and A measure was taken to connect the other end of the connector to the power line.

〔作   用〕[For production]

本発明によれば、補助インバータと主インバータと、こ
の補助インバータの出力端子と主インバータの入力端子
を接続する接続線を備えた外部負荷駆動用CMOSドラ
イバ回路において、ドレインとゲートが共通に接続され
た一つ以上のトランジスタを直列に接続してなる直列接
続体の一端を、この直列接続体と上記接続線との接続も
しくは非接続を制御するスイッチ回路に接続し、この直
列接続体の他端を電源線と接続したので、主インバータ
のMOSTrのゲート・ソース間電圧を下げることがで
きる。
According to the present invention, in a CMOS driver circuit for driving an external load that includes an auxiliary inverter, a main inverter, and a connection line that connects the output terminal of the auxiliary inverter and the input terminal of the main inverter, the drain and the gate are commonly connected. One end of a series connection body formed by connecting one or more transistors in series is connected to a switch circuit that controls connection or disconnection between this series connection body and the connection line, and the other end of this series connection body is Since it is connected to the power supply line, the voltage between the gate and source of the MOSTr of the main inverter can be lowered.

よって、ドレイン・ソース間の電流の時間に対する変化
分が小さくなるので、集積回路等における高ドライブ能
力の出力端子が、複数同時に変化した場合でも、電源線
に発生する電圧ノイズは小さくなる。
Therefore, the amount of change in the current between the drain and the source over time becomes small, so even if a plurality of output terminals with high drive ability in an integrated circuit or the like change simultaneously, the voltage noise generated in the power supply line becomes small.

(実 施 例〕 以下に本発明にかかる外部負荷駆動用CMO Sドライ
バ回路を図面に基づいて詳細に説明する。
(Example) A CMOS driver circuit for driving an external load according to the present invention will be described in detail below with reference to the drawings.

第1図は本発明の外部負荷駆動用CMOSドライバ回路
の実施例を示す回路図、第2図は同回路のタイミングチ
ャート図、第3図は同回路に用いるMOSTrのゲート
・ソース間の電圧とドレイン・ソース間の電流の関係図
である。
Fig. 1 is a circuit diagram showing an embodiment of the CMOS driver circuit for driving an external load of the present invention, Fig. 2 is a timing chart of the circuit, and Fig. 3 shows the voltage between the gate and source of the MOSTr used in the circuit. FIG. 3 is a relationship diagram of current between drain and source.

上記第1図,第2図および第3図に基づいて説明する。This will be explained based on FIGS. 1, 2, and 3 above.

本発明の外部負荷駆動用CMOSドライバ回路の構成は
、第1図に示したように、ドレインとゲートが共通に接
続された2個のトランジスタ(8)(9)が直列に接続
され、一方の端部に位置するトランジスタ(9)のソー
スが接地された直列接続体を備え、直列接続体の他方の
端部に位置するトランジスタ(8)のドレインが制御信
号線(17)により主インバータ(13)と補助インパ
ータ(12)を接続する接続線(15)にMO S T
 r (6)(7)を通じて電気的に接続されている点
を特徴としている. ところで、第3図に示したように、MOSTrの電圧電
流特性は、幾何学的寸法が一定ならば、その特性も一定
となり、飽和領域においては■。,” (Vcs  V
t ) ”となり、非飽和領域においてはIoscC(
Vcs  Vt ) Vos  Vos” / 2の関
係がある。そして、MOSTrを通じて負荷容量を充電
または放電する時の、時間に対する電流の変化分(dl
/dt.)は、このドレイン・ソース間の電流(■。,
)により決まる。また、MOSTr回路が導通状態にな
るしきい値電圧v7は、プロセスに変化が無ければ一定
である。例えば、5ボルト動作のNチャンネルMOST
rの場合は、それは1.OVボルトである。
As shown in FIG. 1, the configuration of the CMOS driver circuit for driving an external load of the present invention is that two transistors (8) and (9) whose drains and gates are connected in common are connected in series, and one A series connection body is provided in which the source of the transistor (9) located at one end is grounded, and the drain of the transistor (8) located at the other end of the series connection body is connected to the main inverter (13) by a control signal line (17). ) and the auxiliary imperter (12) to the connecting wire (15).
It is characterized by being electrically connected through r (6) and (7). By the way, as shown in FIG. 3, the voltage-current characteristics of the MOSTr are constant if the geometric dimensions are constant, and in the saturation region, the voltage-current characteristics are constant. ,” (Vcs V
t)'', and in the non-saturated region IoscC(
Vcs Vt ) Vos Vos" / 2. Then, when charging or discharging the load capacitance through the MOSTr, the change in current with respect to time (dl
/dt. ) is this drain-source current (■.,
) is determined. Further, the threshold voltage v7 at which the MOSTr circuit becomes conductive is constant if there is no change in the process. For example, an N-channel MOST operating at 5 volts
If r, it is 1. It is an OV bolt.

インダクタンス成分(L)による電圧ノイズ(Δ■)は
、ΔV=L − d I/d tである。Δ■が最大に
なるのは、MOSTrがオフ状態がらオン状態に変化す
る時であり、電流(■。,)は0がら飽和領域のIDS
oc(Vcs  VT ) ”まで変化する。
The voltage noise (Δ■) due to the inductance component (L) is ΔV=L − d I/d t. Δ■ becomes maximum when the MOSTr changes from off state to on state, and the current (■.,) changes from 0 to IDS in the saturation region.
oc(VcsVT)''.

以上のことから、何らかの手段によりゲート・ソース間
の電圧(■。,)を下げ、上記電流(Ios)を下げる
ことができれば、インダクタンス成分(L)によるノイ
ズ(ΔV)を小さ《できるのである。
From the above, if the gate-source voltage (■.,) can be lowered and the current (Ios) can be lowered by some means, the noise (ΔV) due to the inductance component (L) can be reduced.

本発明はこの原理を利用したものであり、制御信号線(
17)の信号によりドライブ回路の主インバータ(l3
)を構成するMOSTr(3)(4)(7)ゲ I”ソ
ース間の電圧(■。,)を下げ、電流Has)を下げる
ことにより、電流の変化分(di/dt)を小さくし、
電源線のインダクタンス成分(L)によるノイズを低下
させるものである。
The present invention utilizes this principle, and the control signal line (
The main inverter (l3) of the drive circuit is activated by the signal of
) by lowering the voltage (■.,) between the sources of the MOSTr (3) (4) (7) MOSTr (I) and lowering the current Has), the change in current (di/dt) is reduced,
This reduces noise due to the inductance component (L) of the power supply line.

次に、第1図で示した回路図に基づいて本発明の外部負
荷駆動用CMOSドライバ回路の動作を説明する。
Next, the operation of the CMOS driver circuit for driving an external load according to the present invention will be explained based on the circuit diagram shown in FIG.

第1図の回路において、M O S T r (9)の
ドレイン電圧を(V,), M O S T r (8
)のドレイン電圧を(V!),補助インバータ(l2)
と主インバータ(13)とを接続する接続線(15)の
電圧を(v3)とする。
In the circuit shown in Fig. 1, the drain voltage of M O S T r (9) is (V,), M O S T r (8
) drain voltage (V!), auxiliary inverter (l2)
Let the voltage of the connection line (15) connecting the main inverter (13) and the main inverter (13) be (v3).

M O S T r (8) (9)はそれぞれドレイ
ンとゲートが接続されているため、M O S T r
の飽和領域で動作する。
Since the drain and gate of M O S T r (8) and (9) are connected, M O S T r
operates in the saturation region.

まず、制御信号線(l7)とMO S T r (6)
(7)オヨびM O S T r (10) (11)
で構成される回路について説明する. M O S T r (10) (11)はインバータ
回路を構成し、S T r (6) (7)は上記イン
バータ回路とともにトランスファーゲートを構成する。
First, the control signal line (l7) and MO S T r (6)
(7) Oyobi M O S T r (10) (11)
We will explain the circuit consisting of. M O S T r (10) (11) constitutes an inverter circuit, and S T r (6) (7) constitutes a transfer gate together with the above inverter circuit.

制御信号線(l7)の信号レベルがロウレベルのとき、
トランスファーゲートはオフ状態になる。即ち、制御信
号線(17)の信号レベルがロウレベルのとき、この回
路は第4図に示した従来の外部負荷駆動用C M O 
Sドライハ回路と全く同じ動作をする。
When the signal level of the control signal line (l7) is low level,
The transfer gate is turned off. That is, when the signal level of the control signal line (17) is low level, this circuit operates as the conventional external load driving CMO shown in FIG.
It operates exactly the same as the S dryer circuit.

次に、制御信号線(17)の信号レベルがハイレベルの
とき、トランスファーゲートはオン状態になる。
Next, when the signal level of the control signal line (17) is high level, the transfer gate is turned on.

この状態において、補助インバータ(l2)の入力信号
線(l4)に、第2図に示した信号波形(a)が入力さ
れた場合、入力信号線(14)の信号レベルがハイレベ
ルのときはM O S T r (8) (9)はオフ
状態になり接続線(l5)の信号(VいはOボルトにな
る。
In this state, when the signal waveform (a) shown in Figure 2 is input to the input signal line (l4) of the auxiliary inverter (l2), when the signal level of the input signal line (14) is high level, M O S T r (8) (9) is turned off and the signal (V or O volt) on the connection line (15) becomes.

また、入力信号線(14)の信号レベルがロウレベルの
とき、MOSTrのしきい値電圧を(VT)、MOST
rのパックゲートバイアス効果によるしきい値電圧の変
動分を(ΔVt)とすると、MOSTrの動作条件が■
。,≧V,であるから、■,=V7 、Vz =V3 
=Vy +Vr+ΔV,=2Vア+ΔvTとなる。具体
例として、電源電圧(VDD)を5.0ボルト、しきい
値電圧(■7)を1.5ボルト、変化分(Δ■T)を1
.0ボルトとすると、■,=1.5ボルト、Vz ”’
V:+ =4.0ボルトとなる。
Also, when the signal level of the input signal line (14) is low level, the threshold voltage of the MOSTr is set to (VT), the MOST
If the variation in threshold voltage due to the pack gate bias effect of r is (ΔVt), then the operating condition of the MOSTr is
. , ≧V, so ■, = V7 , Vz = V3
=Vy +Vr+ΔV, =2Va+ΔvT. As a specific example, the power supply voltage (VDD) is 5.0 volts, the threshold voltage (■7) is 1.5 volts, and the variation (Δ■T) is 1.
.. If it is 0 volts, ■, = 1.5 volts, Vz "'
V:+=4.0 volts.

次に、主インバータ(13)のNチャンネルMOST 
r (4)のゲート・ソース間電圧(VCS)は電圧(
Vs) ニ等しく、PチャンネルMo S T r (
3)のゲート・ソース間電圧(Vcs)は( V3VD
D)に等しい。NチャンネルMOSTrの動作に注ロす
ると、時刻(t1)から時刻(t2)までの間では、出
力端子(16)の電圧は電源電圧(Vl)D)に等しく
、MOS T r (3)はオン状態、M O S T
 r (4)はオフ状態である。時刻(t2)でM O
 S T r (3)はオフ状態、M O S T r
 (4)はオン状態になる。このとき、MO S T 
r (4)のゲートソース間電圧(Vcs)は(0)か
ら(2VT十ΔVt )まで変化する。電圧(V,,)
が(0)のときは電流(hDs)は(0)であり、電圧
(■。,)が(2■7+ΔV,)のときは、飽和領域で
あるので、電流(105)は、Inscc(■。s  
Vt )2=  (Vt +Δ■ア)2である。
Next, the N-channel MOST of the main inverter (13)
The gate-source voltage (VCS) of r (4) is the voltage (
Vs) and P channel Mo S T r (
The gate-source voltage (Vcs) of 3) is (V3VD
D). Focusing on the operation of the N-channel MOS Tr, from time (t1) to time (t2), the voltage at the output terminal (16) is equal to the power supply voltage (Vl)D), and MOS Tr (3) is on. Condition, M O S T
r (4) is in the off state. M O at time (t2)
S T r (3) is off state, M O S T r
(4) is turned on. At this time, M.O.S.T.
The gate-source voltage (Vcs) of r (4) changes from (0) to (2VT+ΔVt). Voltage (V,,)
When is (0), the current (hDs) is (0), and when the voltage (■.,) is (2■7+ΔV,), it is in the saturation region, so the current (105) is Inscc (■ .s
Vt )2=(Vt +Δ■a)2.

従来回路では、ゲート・ソース間電圧(Vcs)が(0
)のときは電流(I0)は(0)であり、電圧(’VG
s)が(VDD)のときは、飽和領域であるので、電流
(Ios)はIDsCC (VGS  Vt ) 2=
(■。oVt)2 である。インダクタンス(L)によ
るノイズ電圧(Δ■)は(L−di/dt)であるから
、従来回路のノイズ電圧を(1)とすると、本実施例の
ノイズ電圧は(Vア+ΔV.)’2/(VDD  Vr
 )”となり、従来より小さくなる。
In the conventional circuit, the gate-source voltage (Vcs) is (0
), the current (I0) is (0) and the voltage ('VG
When s) is (VDD), it is in the saturation region, so the current (Ios) is IDsCC (VGS Vt) 2=
(■.oVt)2. Since the noise voltage (Δ■) due to the inductance (L) is (L-di/dt), if the noise voltage of the conventional circuit is (1), the noise voltage of this embodiment is (Va+ΔV.)'2 /(VDD Vr
)”, which is smaller than before.

具体的な数値を例示すれば、Voo=5ボルト、Vt 
=1.5ボルト、ΔVt=1.0ボルトとすると、従来
回路と本実施例回路におけるノイズ電圧の比は3.5=
2.5となる。即ち、負荷容量(5)を放電するときに
発生するインダクタンスによるノイズ電圧は、従来回路
における値を(1)とすると、・本実施例では< 2.
5/ 3.5=0.71)となる。
To give an example of specific numerical values, Voo=5 volts, Vt
= 1.5 volts, ΔVt = 1.0 volts, the ratio of noise voltage between the conventional circuit and the circuit of this embodiment is 3.5=
It becomes 2.5. That is, the noise voltage due to the inductance generated when discharging the load capacitance (5), assuming that the value in the conventional circuit is (1), is less than 2 in this embodiment.
5/3.5=0.71).

この実施例では、NチャンネルMOSTrによる電圧ノ
イズを抑える例を示したが、PチャンネルMOSTrに
ついても同様である。
Although this embodiment shows an example in which voltage noise is suppressed by the N-channel MOSTr, the same applies to the P-channel MOSTr.

なお、この実施例では、接続線(15)のハイレベルの
電圧を下げるためにゲートとドレインを接続した2個の
MO S T r (8)(9)を接続した例を示した
が、MOSTrのしきい値電圧(■ア)およびMOST
rのパックゲートバイアス効果によるしきい値電圧の変
動分(ΔVt)の値によって、直列に接続されるMOS
Trの個数が変わることは言うまでもない。
In this example, an example was shown in which two MOSTr (8) and (9) with their gates and drains connected were connected in order to lower the high level voltage of the connection line (15). Threshold voltage (■a) and MOST
The MOS connected in series depends on the value of threshold voltage variation (ΔVt) due to the pack gate bias effect of r.
Needless to say, the number of Tr's changes.

〔発明の効果〕〔Effect of the invention〕

本発明にかかる外部負荷駆動用CMOSドライバ回路に
よれば、出力端子における信号の立ち上がりおよび立ち
下がり時における電源線のインダクタンス成分による電
圧ノイズを小さくできるので、集積回路等における複数
の出力端子の同時変化による電源線の電圧ノイズを低減
させることができ、デジタル装置の誤動作を防止するで
きるという効果が得られるのである。
According to the CMOS driver circuit for driving an external load according to the present invention, voltage noise due to the inductance component of the power supply line at the rise and fall of the signal at the output terminal can be reduced, so that simultaneous changes in a plurality of output terminals in an integrated circuit, etc. Therefore, it is possible to reduce the voltage noise of the power supply line caused by the noise, and it is possible to obtain the effect that malfunction of the digital device can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の外部負荷駆動用CMOSドライバ回路
の実施例を示す回路図、第2図は同回路のタイミングチ
ャート図、第3図は同回路に用いるMOSTrのゲート
・ソース間の電圧とドレイン・ソース間の電流の関係図
、第4図は従来例の外部負荷駆動用CMOSドライバ回
路である。 (l2)・・・補助インバータ、(l3)・・・主イン
バータ、(8) (9)・・・直列接続体、(6) (
7) (10) (11)・・・スイッチ回路、(15
)・・・接続線、VDD・・・電源線。 第1 図
Fig. 1 is a circuit diagram showing an embodiment of the CMOS driver circuit for driving an external load of the present invention, Fig. 2 is a timing chart of the circuit, and Fig. 3 shows the voltage between the gate and source of the MOSTr used in the circuit. FIG. 4, which is a diagram showing the relationship between the drain and source current, is a conventional CMOS driver circuit for driving an external load. (l2)...Auxiliary inverter, (l3)...Main inverter, (8) (9)...Series connection body, (6) (
7) (10) (11)...Switch circuit, (15
)...connection line, VDD...power line. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 補助インバーターと主インバータと、この補助インバー
タの出力端子と主インバータの入力端子を接続する接続
線を備え、ドレインとゲートが共通に接続された一つ以
上のトランジスタを直列に接続してなる直列接続体の一
端を、この直列接続体と上記接続線との接続もしくは非
接続を制御するスイッチ回路に接続し、この直列接続体
の他端を電源線と接続したことを特徴とする外部負荷駆
動用CMOSドライバ回路。
A series connection consisting of an auxiliary inverter, a main inverter, a connection line connecting the output terminal of the auxiliary inverter and the input terminal of the main inverter, and one or more transistors whose drains and gates are connected in common. For driving an external load, one end of the body is connected to a switch circuit that controls connection or disconnection between the series connection body and the connection line, and the other end of the series connection body is connected to a power supply line. CMOS driver circuit.
JP2010382A 1990-01-18 1990-01-18 Cmos driver circuit for driving external load Pending JPH03214812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010382A JPH03214812A (en) 1990-01-18 1990-01-18 Cmos driver circuit for driving external load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010382A JPH03214812A (en) 1990-01-18 1990-01-18 Cmos driver circuit for driving external load

Publications (1)

Publication Number Publication Date
JPH03214812A true JPH03214812A (en) 1991-09-20

Family

ID=11748579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010382A Pending JPH03214812A (en) 1990-01-18 1990-01-18 Cmos driver circuit for driving external load

Country Status (1)

Country Link
JP (1) JPH03214812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066195A (en) * 1992-06-18 1994-01-14 Mitsubishi Electric Corp Output driver circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066195A (en) * 1992-06-18 1994-01-14 Mitsubishi Electric Corp Output driver circuit

Similar Documents

Publication Publication Date Title
US4988888A (en) CMOS output circuit with intermediate potential setting means
US4740717A (en) Switching device with dynamic hysteresis
KR940001816B1 (en) Slew rate speed up circuit
JP2922028B2 (en) Output circuit of semiconductor integrated circuit
CA2043610A1 (en) Drive circuit comprising a subsidiary drive circuit
US5155379A (en) Clocked driver circuit stabilized against changes due to fluctuations in r.c. time constant
JPH02161692A (en) Data output buffer circuit for byte-wide
US5513140A (en) Data output buffer
US5239211A (en) Output buffer circuit
JP2573320B2 (en) Output buffer circuit
US4638182A (en) High-level CMOS driver circuit
US4963774A (en) Intermediate potential setting circuit
US4609836A (en) CMOS transmission circuit
US4468576A (en) Inverter circuit having transistors operable in a shallow saturation region for avoiding fluctuation of electrical characteristics
KR950006333B1 (en) Output circuit
US5488326A (en) Data output circuit for semiconductor integrated circuit device which prevents current flow from the output to supply voltage
KR0129592B1 (en) Low noise output buffer
US4837463A (en) Three-state complementary field effect integrated circuit
JPH03214812A (en) Cmos driver circuit for driving external load
EP0320779B1 (en) Sense amplifier
US5077492A (en) Bicmos circuitry having a combination cmos gate and a bipolar transistor
JP2758735B2 (en) Logic circuit
JP2586196B2 (en) Output circuit
JPH03214813A (en) Cmos driver circuit for driving external load
JPH03179814A (en) Level shift circuit