JPH03214618A - Structure of quantum wire and formation method of quantum wire - Google Patents

Structure of quantum wire and formation method of quantum wire

Info

Publication number
JPH03214618A
JPH03214618A JP1006590A JP1006590A JPH03214618A JP H03214618 A JPH03214618 A JP H03214618A JP 1006590 A JP1006590 A JP 1006590A JP 1006590 A JP1006590 A JP 1006590A JP H03214618 A JPH03214618 A JP H03214618A
Authority
JP
Japan
Prior art keywords
semiconductor
groove
quantum wire
band energy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1006590A
Other languages
Japanese (ja)
Inventor
Takayoshi Anami
隆由 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1006590A priority Critical patent/JPH03214618A/en
Publication of JPH03214618A publication Critical patent/JPH03214618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser whose oscillation threshold current is small by a method wherein a groove whose width and depth are the mean free path or lower of the electron is formed, an insulator layer of several tens of angstroms is laminated on parts other than side faces of the groove and, after that, is grown selectively and the groove is filled. CONSTITUTION:An insulator layer 12 of several tens of angstroms is formed on parts other than side faces of a groove; a second semiconductor 13 whose forbidden-band energy is smaller than that of a semiconductor 11 constituting the side faces of the groove is filled into the groove. In addition, a third semiconductor 14 whose forbidden- band energy is larger than that of the second semiconductor 13 and whose conductivity type is different from a first conductivity type is laminated on the groove. Consequently, when an electric current flows between the first semiconductor 11 and the third semiconductor 14, electrons and holes flow effectively into the quantum wire layer 13, and the current injection efficiency is increased remarkably. In addition, the size of the quantum wire layer 13 is controlled when it is filled. As a result, it is possible to restrain an irregularity in a quantum confinement effect by the fluctuation of a shape. Thereby, it is possible to obtain a semiconductor laser whose oscillation threshold current is small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は量子細線構造および量子細線形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a quantum wire structure and a quantum wire forming method.

〔従来の技術〕[Conventional technology]

従来、微細構造に電子や正孔を注入させる構造として、
微細構造をp型層とn型層で挟み、微細構造を形成する
半導体の禁制帯幅が周りの半導体の禁制帯幅より小さい
構造を有していたくジャパニーズ ジャーナル オブ 
アプライド フィジクス 26巻 L225ページ 1
987年)。
Conventionally, as a structure for injecting electrons and holes into a microstructure,
Japanese Journal of Japanese Journal of the Japanese Journal
Applied Physics Volume 26 L225 Page 1
987).

この構造では、電子や正孔は、ポテンシャルエネルギ7
差だけで微細構造部分に注入される。
In this structure, electrons and holes have a potential energy of 7
Only the difference is implanted into the microstructured part.

また、従来量子細線形成法の一つとして、数百オングス
トロームの講型構造に埋込み再成長を施し、量子細線を
形成する方法が試みられている(ジャパニーズ ジャー
ナル オブ アプライドフィジクス 28巻 L108
3ページ 1989年)。この形成方法では、ますGa
As (001)基板上にGaAsとAIAsとがらな
るMQWを成長した後、< 1. 1. 0 )面に沿
ってへき開し、超高真空中でサーマルエツヂングンをG
 a AS層に施し900オングストロームの溝型構造
を形成した後、p−GaAsを再成長して埋め込んでい
る。MQWを形成しているG a A. s層はn型の
導電性を有し、再成長p−GaAsを電気的にアイソレ
ートしている。
In addition, as one of the conventional methods for forming quantum wires, a method has been attempted in which a quantum wire is formed by re-growing an arch-shaped structure of several hundred angstroms (Japanese Journal of Applied Physics, Vol. 28, L108).
3 pages 1989). In this formation method, Ga
After growing an MQW consisting of GaAs and AIAs on an As (001) substrate, <1. 1. 0) Cleave along the plane and apply thermal etching in an ultra-high vacuum.
a After forming a 900 angstrom trench structure on the AS layer, p-GaAs is regrown and buried. G a A. forming MQW. The s-layer has n-type conductivity and electrically isolates the regrown p-GaAs.

この量子細線形成方法では、細線の幅がMQWの層厚で
正確に制御出来る特徴を有しており、良好な量子閉じ込
め効果を有ずる量子細線を形成できる可能性がある。
This method for forming a quantum wire has the feature that the width of the wire can be accurately controlled by the layer thickness of the MQW, and it is possible to form a quantum wire having a good quantum confinement effect.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、従来の量子細線構造では、量子細線部分
に強制的に電流注入出来ないので電流注入効率は低く、
量子閉じ込め効果を利用した特性、例えば、半導体レー
ザにおいては低閾値発振特性、は期待できない。
However, in conventional quantum wire structures, current injection efficiency is low because current cannot be forcibly injected into the quantum wire portion.
Characteristics that utilize the quantum confinement effect, such as low threshold oscillation characteristics, cannot be expected in semiconductor lasers.

また従来の量子細線形成法では再成長方向が< 1 1
. 0 >方向であり、再成長層に■族原子のトロップ
レットが形成され易いため良好なエビタキシャル埋込み
成長は困難である。
In addition, in the conventional quantum wire formation method, the regrowth direction is < 1 1
.. 0 > direction, and troplets of group (I) atoms are likely to be formed in the regrown layer, making it difficult to achieve good epitaxial buried growth.

〔課題を解決するための手段〕[Means to solve the problem]

発明による量子細線構造は、電子の平均自由工程程度以
下の幅と深さの溝を有する第一の導電型を有する第一の
半導体において、溝の側面以外の部分に数十オンクスト
ローム程度の絶縁体層を有し、講は、溝側面を構成する
半導体の禁制帯エネルギーより小さな禁制帯エネルキー
を有する第二の半導体で埋め込まれており、更に埋め込
まれた溝の上には第二の半導体の禁制帯エネルギーより
大きな禁制帯エネルギーを有し、且つ第一の導電型と異
なった導電性を有する第三の半導体が積層されているこ
とに特徴がある。
In the quantum wire structure according to the invention, in a first semiconductor having a first conductivity type having a groove having a width and depth equal to or less than the mean free path of an electron, a portion of the quantum wire structure having a width of several tens of angstroms is formed in a portion other than the side surface of the groove. The groove has an insulating layer and is embedded with a second semiconductor having a forbidden band energy smaller than the forbidden band energy of the semiconductor forming the side surface of the groove, and a second semiconductor is further placed on the buried groove. It is characterized in that a third semiconductor having a forbidden band energy larger than the forbidden band energy of , and having a conductivity different from that of the first conductivity type is laminated.

また、本発明による量子細線形成法は、電子の平均自由
工程程度以下の幅と深さの涛を形成する工程と、前記溝
の側面以外の部分に数十オングストローム程度の絶縁体
層を積層する工程と、引続き選択成長により溝を埋め込
む工程とを少くとも有することに特徴がある。
Further, the quantum wire forming method according to the present invention includes a step of forming a ridge with a width and depth equal to or less than the mean free path of an electron, and a step of laminating an insulating layer of about several tens of angstroms on a portion other than the side surface of the groove. The method is characterized in that it includes at least a step and a subsequent step of burying the trench by selective growth.

〔作用〕[Effect]

以下、図面を用いて本発明の作用を説明する。 Hereinafter, the operation of the present invention will be explained using the drawings.

第1図は、第一の発明による量子細線構造の模式図であ
る。m造は、溝を有する第一の半導体11に、溝の側面
以外に絶縁体12が薄く形成されており、溝を埋める第
二の半導体(量子細線層)13が絶縁体12の上に形成
され、更にその上に量子細線層]3より大きな禁制帯エ
ネルギーで半導体11と異なる導電型を有する第三の半
導体14が積層されている。この構造では、第一の半導
体1工と第三の半導体]4の間に電流を通ずると、電子
及び正孔は絶縁体12を避けて禁制帯幅の最も小さい量
子ffA線層13へ有効に流れ込むので、電流注入効率
は著しく増大される。更にこの横造では、量子細線層1
ラの大きさが埋込みにより正確に制御されているため形
状揺らぎに基ずく量子閉し込め効果のばらつきにも抑え
られる。
FIG. 1 is a schematic diagram of a quantum wire structure according to the first invention. In the m structure, an insulator 12 is thinly formed on a first semiconductor 11 having a groove other than the side surfaces of the groove, and a second semiconductor (quantum wire layer) 13 filling the groove is formed on the insulator 12. Further, a third semiconductor 14 having a different conductivity type from the semiconductor 11 with a larger forbidden band energy than the quantum wire layer [3] is laminated thereon. In this structure, when a current is passed between the first semiconductor 1 and the third semiconductor 4, electrons and holes avoid the insulator 12 and effectively flow into the quantum ffA line layer 13 with the smallest forbidden band width. current injection efficiency is significantly increased. Furthermore, in this horizontal structure, the quantum wire layer 1
Since the size of the radius is accurately controlled by embedding, variations in the quantum confinement effect due to shape fluctuations can be suppressed.

5 第2図は、本発明による量子細線形成方法の第三の工程
、すなわち、溝内に第二の半導体を埋込み成長する工程
を示す模式図である。この発明による量子細線形成方法
では、電子の平均自由工程程度以下の幅と深さの溝の側
面以外の部分に薄い絶縁体21を形成し、溝側面の半導
体面上たけに選択成長する条件で溝を埋め込む。この埋
込み工程の際、絶縁体21上に物理吸着する原子は、再
説部するかもしくは溝側面の半導体部分まで拡散し取り
込まれ、選択的に横方向にエビタキシャル成長が進行す
る。このため溝部分だけを完全に埋め込むことができる
。まなこの量子細線形成方法は、溝底部の半導体面23
への直接エビタキシャル成長が困難で且つ溝側面22へ
の成長が容易な場合には、特に有効な方法である。
5. FIG. 2 is a schematic diagram showing the third step of the quantum wire forming method according to the present invention, that is, the step of burying and growing the second semiconductor in the trench. In the method for forming a quantum wire according to the present invention, a thin insulator 21 is formed in a portion other than the side surfaces of a trench having a width and depth equal to or less than the mean free path of an electron, and is selectively grown only on the semiconductor surface of the trench side surface. Fill in the groove. During this embedding step, the atoms physically adsorbed onto the insulator 21 either redistribute or are diffused and taken in to the semiconductor portion on the side surface of the groove, and selectively laterally develops epitaxial growth. Therefore, only the groove portion can be completely filled. Manako's quantum wire forming method is based on the semiconductor surface 23 at the bottom of the trench.
This method is particularly effective when direct epitaxial growth on the groove side surface 22 is difficult and growth on the groove side surface 22 is easy.

〔実施例〕 第3図は、本発明による量子細線構造の実施例を説明す
る図である。n型(001)面方位GaAs基板31上
に、n型(Siドー75X1.017cm−’)のGa
As層32とA 1 0.5 G ao5A s−6= 層33とで成る多重量子井戸層(100人/100人×
30周期)が形成され、多重量子井戸層に垂直な< 1
 1. O >方向に溝構造が形成されている。溝底部
はGaAs層からなり、側面はA I.),5 Ga0
5As層で構成され、深さは約150人である。この溝
構造の側面以外の部分にSi02膜34が積層されてい
る。更に溝部分には、GaAs量子細線層35が選択埋
込みされ、その上にp型(Beドープ 5 X 1 0
 17cm−3)A 1 03G aQ,7 A s 
N3 6が5000人及び゛p型(Beドープ5 X 
1 0 18cm−3)のG a A sキャップ層3
7が3000人積層されている。
[Example] FIG. 3 is a diagram illustrating an example of a quantum wire structure according to the present invention. On the n-type (001) plane orientation GaAs substrate 31, an n-type (Si-doped 75 x 1.017 cm-') Ga
A multiple quantum well layer (100 people/100 people x
30 periods) are formed, and < 1 perpendicular to the multi-quantum well layer.
1. A groove structure is formed in the O > direction. The groove bottom is made of a GaAs layer, and the side surfaces are made of AI. ), 5 Ga0
It is composed of 5As layers and has a depth of about 150 people. A Si02 film 34 is laminated on a portion other than the side surfaces of this groove structure. Further, a GaAs quantum wire layer 35 is selectively buried in the groove portion, and a p-type (Be-doped 5×10
17cm-3) A 1 03G aQ, 7 A s
N3 6 is 5000 people and p type (Be doped 5
1018cm-3) Ga As cap layer 3
7 is stacked with 3000 people.

38 3つは例えばTiおよびAu,Au−Ge等から
なるp型電極、n型電極である。
38 The three electrodes are a p-type electrode and an n-type electrode made of Ti, Au, Au-Ge, etc., for example.

しかして、上述した量子細線構造に順方向電圧を印加す
ると、p型電極38及びn型電極39からそれぞれ注入
された正孔及び電子はSi02M34を避け、ポテンシ
ャルエネルギーの低いGaAs量子細線層35に流れ込
む。GaAs量子細線層35では、正孔及び電子とも二
次元的に閉じ込められ、擬一次元状態になっているため
、それぞれの状態密度は、狭いエネルキー領域に集中し
ており、その再結合スペクトルは非常に狭い。このため
、全てのキャリアがレーサ発振に有効に寄与し、発振閾
値電流の非常に小さな半導体レーザが得られる。
Therefore, when a forward voltage is applied to the quantum wire structure described above, the holes and electrons injected from the p-type electrode 38 and the n-type electrode 39, respectively, avoid the Si02M 34 and flow into the GaAs quantum wire layer 35, which has a low potential energy. . In the GaAs quantum wire layer 35, both holes and electrons are confined two-dimensionally and are in a quasi-one-dimensional state, so the density of each state is concentrated in a narrow energy key region, and the recombination spectrum is extremely narrow. Therefore, all the carriers effectively contribute to laser oscillation, and a semiconductor laser with a very small oscillation threshold current can be obtained.

第4図(a>,(b),(c)は本発明による量子細線
形成方法の実施例の説明図である。
FIGS. 4(a), (b), and (c) are explanatory diagrams of an embodiment of the quantum wire forming method according to the present invention.

a)溝tfi3jtは、( 0 0 ]. )面GaA
s基板4]上にG a A SとA I 03G aQ
.7 A sて成る多重量子井戸構造(1−00人/1
00人×30周期)をMBE成長し、これを( 0 0
 ]. )面でへき開し、趙高真空中でGAas層をサ
ーマルエツチンク゛して溝構造42を構成した。溝の深
さは約120人て′ある。
a) Groove tfi3jt is ( 0 0 ]. ) plane GaA
G a A S and A I 03G aQ on the s substrate 4]
.. Multiple quantum well structure consisting of 7 A s (1-00 people/1
00 people x 30 cycles) and grow this (0 0
]. ) surface, and the GAas layer was thermally etched in a high vacuum to form the groove structure 42. The depth of the trench is approximately 120 people.

b)前記渭構造に約20人のSi02膜43を( 1 
1. 0 >方向から積層した。この際、溝側面上にS
iOzJIが積層しないように、指向性のよい成長方法
で積層した。ここでは、Siは電子銃式蒸着器で、酸素
は03を含む02分子線を用いた。
b) Approximately 20 Si02 films 43 are added to the above-mentioned wave structure (1
1. Lamination was performed from the 0> direction. At this time, place S on the side of the groove.
Lamination was performed using a growth method with good directionality to prevent iOzJI from being stacked. Here, an electron gun type evaporator was used for Si, and an 02 molecular beam containing 03 was used for oxygen.

c ) G a A s量子細線層44をMBE法によ
り基板温度720゜Cで選択埋込み成長させる。この基
板温度では、Si02膜43上にはGaAsが堆積せず
溝側面から<001>方向に成長が生じて良好な埋込み
成長が実現できた。特に本実施例の場合、溝底面45上
への直接エビタキシャル成長はGaドロッレットが形成
され易く良好な結晶性を得ることが困難であるが、本形
成方法を用いることにより良好な埋込み成長が可能とな
った。
c) G a As quantum wire layer 44 is selectively grown by MBE at a substrate temperature of 720°C. At this substrate temperature, GaAs was not deposited on the Si02 film 43 and grew in the <001> direction from the side surfaces of the trench, achieving good buried growth. Particularly in the case of this example, direct epitaxial growth on the groove bottom surface 45 tends to form Ga droplets and it is difficult to obtain good crystallinity, but by using this formation method, good buried growth is possible. It became.

この後、量子細線上にA I0.3 Ga(,,7 A
s層(図示省略)を形成して量子細線構造が出来上る。
After this, A I0.3 Ga (,,7 A
A quantum wire structure is completed by forming an s layer (not shown).

本実施例では、GaAs系を例にとって説明したが、材
料はこれに限定されない。例えば、InP上のInGa
AsP系であってもよいし、絶縁体もSiNであっても
よい。渭楕造の形成方法も、FIB’?EBエッチング
ンを利用したものでもよい。基板面方位も限定されない
。また成長方法も、選択成長が可能な成長方法ならなん
でもよ9 い。
Although this embodiment has been described using GaAs as an example, the material is not limited thereto. For example, InGa on InP
It may be AsP-based, and the insulator may also be SiN. Is the formation method of the Wei ellipse also FIB'? It may also be one using EB etching. The substrate surface orientation is also not limited. Also, any growth method that allows for selective growth is fine.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電流注入効率の大きく発振閾値電流の
非常に小さな半導体レーザが得られる。
According to the present invention, a semiconductor laser with high current injection efficiency and a very small oscillation threshold current can be obtained.

また本発明の製造方法によれば量子細線幅揺らぎの小さ
な量子細線が作製できる。
Further, according to the manufacturing method of the present invention, a quantum wire with small quantum wire width fluctuation can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による量子細線構造を模式的に示した
図である。第2図は、本発明による量子細線形成方法の
模式図である。第3図は、本発明による量子細線構造の
一実施例を説明する図であり、第4図は本発明による量
子細線形成方法の一実施例を説明する図である。 図において、 11・・・第一の半導体、12・絶縁体、]3・・・第
二の半導体(量子細線層)、14・・・第三の半導体、
2】・・・絶縁体、22・・・溝側面、23・・・講底
部半導体面、3 1 − rl型GaAs基板、3 2
 − n型GaAs層、3 3 ・n型A I 6. 
5 G a o, 5 A s10 層、34−Sin2膜、3 5−G a A s量子細
線層、3 6 ・p型A 1 0.3 G a.0.7
 A S層、3 7 −・・GaAsキャップ層、38
・・・p型電極、39・・・n型電極、41・・・Ga
As基板、42・・・溝構造、43−−−Si02膜、
4 4 − G a A s量子細線層、45・・・溝
底面をそれぞれ示す。
FIG. 1 is a diagram schematically showing a quantum wire structure according to the present invention. FIG. 2 is a schematic diagram of the quantum wire forming method according to the present invention. FIG. 3 is a diagram for explaining an embodiment of a quantum wire structure according to the present invention, and FIG. 4 is a diagram for explaining an embodiment of a quantum wire forming method according to the present invention. In the figure, 11: first semiconductor, 12: insulator, 3: second semiconductor (quantum wire layer), 14: third semiconductor,
2]... Insulator, 22... Groove side surface, 23... Bottom semiconductor surface, 3 1 - RL type GaAs substrate, 3 2
- n-type GaAs layer, 3 3 /n-type AI 6.
5 Gao, 5 A s10 layer, 34-Sin2 film, 3 5-Ga As quantum wire layer, 36 ・p-type A 1 0.3 Ga. 0.7
AS layer, 3 7 ---GaAs cap layer, 38
...p-type electrode, 39...n-type electrode, 41...Ga
As substrate, 42...groove structure, 43---Si02 film,
4 4 - G a As quantum wire layer, 45 . . . groove bottoms are shown, respectively.

Claims (1)

【特許請求の範囲】 1、電子の平均自由工程程度以下の幅と深さの溝を有す
る第一の導電型を有する第一の半導体と、溝の側面以外
の部分に数十オングストローム程度の絶縁体層を有し、
溝は、溝側面を構成する半導体の禁制帯エネルギーより
小さな禁制帯エネルギーを有する第二の半導体で埋め込
まれており、更に埋め込まれた溝の上には第二の半導体
の禁制帯エネルギーより大きな禁制帯エネルギーを有し
、且つ第一の導電型と異なった導電性を有する第三の半
導体が積層されていることを特徴とする量子細線構造。 2、電子の平均自由工程程度以下の幅と深さの溝を形成
する工程と、前記溝の側面以外の部分に数十オングスト
ローム程度の絶縁体層を積層する工程と、選択成長によ
り溝を埋め込む工程とを少くとも有することを特徴とす
る量子細線形成方法。
[Claims] 1. A first semiconductor having a first conductivity type having a groove with a width and depth equal to or less than the mean free path of an electron, and an insulation of approximately several tens of angstroms in a portion other than the side surfaces of the groove. It has a body layer,
The trench is filled with a second semiconductor having a forbidden band energy smaller than the forbidden band energy of the semiconductor forming the side surface of the trench, and a second semiconductor having a forbidden band energy larger than the forbidden band energy of the second semiconductor is placed above the buried trench. A quantum wire structure characterized in that a third semiconductor having a band energy and a conductivity different from the first conductivity type is laminated. 2. A process of forming a groove with a width and depth equal to or less than the mean free path of an electron, a process of laminating an insulating layer of several tens of angstroms on the part other than the side surfaces of the groove, and burying the groove by selective growth. A method for forming a quantum wire, comprising at least the steps of:
JP1006590A 1990-01-18 1990-01-18 Structure of quantum wire and formation method of quantum wire Pending JPH03214618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006590A JPH03214618A (en) 1990-01-18 1990-01-18 Structure of quantum wire and formation method of quantum wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1006590A JPH03214618A (en) 1990-01-18 1990-01-18 Structure of quantum wire and formation method of quantum wire

Publications (1)

Publication Number Publication Date
JPH03214618A true JPH03214618A (en) 1991-09-19

Family

ID=11739980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006590A Pending JPH03214618A (en) 1990-01-18 1990-01-18 Structure of quantum wire and formation method of quantum wire

Country Status (1)

Country Link
JP (1) JPH03214618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514619A (en) * 1993-03-19 1996-05-07 Matsushita Electric Industrial Co., Ltd. Method of producing a laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514619A (en) * 1993-03-19 1996-05-07 Matsushita Electric Industrial Co., Ltd. Method of producing a laser device

Similar Documents

Publication Publication Date Title
US5010556A (en) A stripe-shaped heterojunction laser with unique current confinement
US6751243B2 (en) Semiconductor device with quantum dots having high carrier injection efficiency, its manufacture method, and semiconductor laser device
EP0215298B1 (en) Semiconductor laser
JPH06104533A (en) Blue color light emitting element and fabrication thereof
JPH09129974A (en) Semiconductor laser device
JPH09298341A (en) Semiconductor laser element
JPH0555711A (en) Semiconductor laser element and its manufacture
JP2947199B2 (en) Semiconductor quantum dot device and method of manufacturing the semiconductor quantum dot device
JP2002368342A (en) Multiplex quantum well semiconductor element
JPH03214618A (en) Structure of quantum wire and formation method of quantum wire
JPH09237933A (en) Semiconductor laser and manufacturing method thereof
JPS6242481A (en) Manufacture of semiconductor element
JP4030692B2 (en) Semiconductor device and semiconductor light emitting device
JPH0927612A (en) Quantum effect semiconductor device and its manufacture
JP2757258B2 (en) Superlattice element manufacturing method
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH04171784A (en) Quantum fine line laser structure
JPH0669589A (en) Semiconductor laser element
JP7050279B2 (en) Semiconductor laser and its manufacturing method
JPH04150087A (en) Visible light semiconductor laser device
JPH0677588A (en) Semiconductor laser and manufacture thereof
JP3217461B2 (en) Method for manufacturing semiconductor laser device
JP2754671B2 (en) Semiconductor quantum wire structure and manufacturing method thereof
JPH07235725A (en) Semiconductor laser element and its manufacture
JPH0680865B2 (en) Semiconductor superlattice