JPH03214101A - Closed packed lens array - Google Patents

Closed packed lens array

Info

Publication number
JPH03214101A
JPH03214101A JP917690A JP917690A JPH03214101A JP H03214101 A JPH03214101 A JP H03214101A JP 917690 A JP917690 A JP 917690A JP 917690 A JP917690 A JP 917690A JP H03214101 A JPH03214101 A JP H03214101A
Authority
JP
Japan
Prior art keywords
lens
substrate
lens array
recesses
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP917690A
Other languages
Japanese (ja)
Inventor
Hiroshi Wada
弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP917690A priority Critical patent/JPH03214101A/en
Publication of JPH03214101A publication Critical patent/JPH03214101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Heads (AREA)

Abstract

PURPOSE:To obtain nearly 100% condensing efficiency by arranging and forming many recesses, the bottom wall of each of which has a curved shape, in a close-packed state in which the recesses are in contact with each other with the ridge lines of the flatly viewed polygonal shape as boundaries on at least one surface side of a flat plate transparent substrate. CONSTITUTION:The many recesses 12, the bottom wall surface 12A of each of which has the curved surface, are formed on one surface side of the flat plate substrate 11 consisting of a transparent material. The transparent material 14, such as resin or glass, having the refractive index larger than the refractive index of the substrate 11 is packed into the respective recesses 12 to form the respective lens parts 10A of the lens array. The entire part of the surface is thereafter finished to a flat surface, by which the lens array 10 is obtd. The respective lenses 10A constituting the lens, therefore, line up closely in the repetitive patterns of the polygonal shapes and the non-lens parts in the conventional products are eliminated. The incident light to the glass substrate is condensed by any lens regardless of the incident positions thereof and the light spot array is obtd. with the nearly 100% condensing efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多数の微小レンズを一次元ないしは二次元的
に配列したレンズアレイの改良に関し、特に、集光効率
が高くしかも製作が容易なレンズアレイの構造に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the improvement of a lens array in which a large number of microlenses are arranged one-dimensionally or two-dimensionally. Regarding the structure of a lens array.

[従来の技術] ガラス、プラスチック等の透明基板に、多数の微小レン
ズを配列形成したし/ズアレイは、画像の読みとり、記
録、表示など広い分野で急速に利用されるようになって
きている。
[Prior Art] A lens array, in which a large number of microlenses are formed in an array on a transparent substrate such as glass or plastic, is rapidly becoming used in a wide range of fields such as image reading, recording, and display.

特に・ 光屈折曲面を基板表面に突出形成するかわりに
、レンズ部分の屈折率を基板の屈折率とは異ならせ、基
板表面側のレンズ面は基板と面一の平坦面とするととも
に、光屈折曲面側を基板の肉厚内に位置させた平板レン
ズアレイ(以下単に「レンズアレイ」と呼ぶ)は、表面
が平面であるため他の光学部品との結合や組立が容易で
あるという大きな利点がある。
In particular, instead of forming a light refraction curved surface protruding from the substrate surface, the refractive index of the lens portion is made different from the refractive index of the substrate, and the lens surface on the substrate surface side is made a flat surface flush with the substrate. A flat plate lens array (hereinafter simply referred to as a "lens array"), in which the curved side is located within the thickness of the substrate, has the great advantage of being easy to combine and assemble with other optical components because the surface is flat. be.

上記のようなレンズアレイを製作するに当たっては、従
来以下に述べるような方法がとられていた。
In manufacturing the above lens array, the following method has conventionally been used.

まずガラス基板表面に蒸着、スパッタリング、メツキな
どでNl、Au、  Cr等の耐蝕性保護被膜(マスク
膜)を形成し、このマスク膜のレンズ位置に、周知のフ
ォトリングラフィ技術を用いて円形の開口を設け、この
マスク面に弗酸、硫酸、硝酸の混合溶液等のガラスエツ
チング液を接触させて、上記開口を通してガラスを等方
的にエツチングする。
First, a corrosion-resistant protective film (mask film) of Nl, Au, Cr, etc. is formed on the surface of the glass substrate by vapor deposition, sputtering, plating, etc., and a circular shape is formed on the lens position of this mask film using well-known photolithography technology. An opening is provided, and a glass etching solution such as a mixed solution of hydrofluoric acid, sulfuric acid, and nitric acid is brought into contact with the mask surface, and the glass is isotropically etched through the opening.

適当時間のエツチング処理の後、得られた断面が半円状
の凹部に、ガラス基板とは屈折率の異なる一般には基板
よりも屈折率の大な透明材料を堆積もしくは充填する。
After etching treatment for a suitable period of time, a transparent material having a refractive index different from that of the glass substrate and generally having a higher refractive index than the substrate is deposited or filled in the resulting recessed portion having a semicircular cross section.

この充填開部分がレンズとして作用する。This filled opening acts as a lens.

〔発明が解決しようとする問題点] 上述した方法で作製される従来のレンズアレイは、第8
図(イ)に示すようにレンズを密に千鳥配列しても、レ
ンズアレイl中の隣接する各レンズ2間に三角形状の非
レンズ部分3が残ることになる。
[Problems to be Solved by the Invention] The conventional lens array manufactured by the method described above is
Even if the lenses are closely arranged in a staggered manner as shown in Figure (A), triangular non-lens portions 3 remain between adjacent lenses 2 in the lens array l.

この非レンズ部分3の面積割合は9.3%である。The area ratio of this non-lens portion 3 is 9.3%.

第8図(ロ)に示すような正方格子配列ではさらに非レ
ンズ部分3の面積割合が21.5%とかなりの大きい値
となる。
In the square lattice arrangement as shown in FIG. 8(b), the area ratio of the non-lens portion 3 becomes 21.5%, which is a considerably large value.

ia素子、液晶表示パネル等においてレンズアレイ板を
用いて集光点アレイを得ようとする場合、従来のレンズ
アレイ構造では非レンズ部分3の存在のため入射光が1
00%は集光されず、集光効率が上記割合だけ低くなっ
てしまうという問題点があった。
When attempting to obtain a condensing point array using a lens array plate in an IA element, liquid crystal display panel, etc., in the conventional lens array structure, the incident light is
There was a problem in that 00% of the light was not collected, and the light collection efficiency was lowered by the above percentage.

[問題点を解決するための手段] 平板状の透明基板の少なくとも片面側に、底壁が曲面を
成す凹部の多数を、平面視で多辺形の稜線を境界として
接するm密充填状態に配列形成し、これら凹部に前記基
板とは屈折率の異なる樹脂、ガラス等の透明材料を充填
してレンズアレイを構成した。
[Means for solving the problem] On at least one side of a flat transparent substrate, a large number of recesses each having a curved bottom wall are arranged in a densely packed state in which they are bordered by polygonal ridge lines in plan view. A lens array was constructed by filling these recesses with a transparent material such as resin or glass having a refractive index different from that of the substrate.

上記のレンズを成す凹部充填材は、表面を平坦に仕上げ
て独立したレンズアレイ板として製作してもよいし、あ
るいは液晶表示パネル等他の部品に接合する場合には、
接着層と兼用させてもよい。
The concave filling material forming the lens described above may be manufactured as an independent lens array plate by finishing the surface flatly, or when bonded to other parts such as a liquid crystal display panel,
It may also be used as an adhesive layer.

[作用] 本発明によれば、レンズアレイを成す各レンズが多辺形
の繰り返し模様で隙間なく並び、従来品における非レン
ズ部分3が無くなるため、ガラス基板に入射する光はそ
の入射位置によらずいずれかのレンズで集光され、従っ
てほぼ100%の集光効率で光点アレイを得ることがで
きる。
[Function] According to the present invention, the lenses forming the lens array are lined up in a polygonal repeating pattern without any gaps, and the non-lens portion 3 in conventional products is eliminated. Therefore, a light spot array can be obtained with almost 100% light collection efficiency.

[実施例] 以下本発明を図面に示した実施例に基づいて詳細に説明
する。
[Example] The present invention will be described in detail below based on an example shown in the drawings.

第1図は本発明に係るレンズアレイの一般的な断面構造
を示し、ガラス、プラスチック等の透明材料からなる平
板状の基板11の片面側に、底壁面12Aが滑らかな曲
面を成す凹部12を、例えば後述する化学的エツチング
法により多数形成する。
FIG. 1 shows a general cross-sectional structure of a lens array according to the present invention, in which a concave portion 12 whose bottom wall surface 12A forms a smooth curved surface is formed on one side of a flat substrate 11 made of a transparent material such as glass or plastic. , are formed in large numbers by, for example, the chemical etching method described below.

この凹部12は、隣接する凹部間の境界稜線13が、平
面視で第2図に示すような正方格子、あるいは第3図に
示すような/Xニカムなど、一般的に同一形状の多辺形
の稠密充填模様を成すように形成する。
This concave portion 12 has a boundary edge line 13 between adjacent concave portions that is generally a polygon of the same shape, such as a square lattice as shown in FIG. 2 or a /X lattice as shown in FIG. Formed to form a densely packed pattern.

そして上記各凹部12内に、屈折率が基板11よりも大
な樹脂、ガラス等の透明材料+4を充填してレンズアレ
イの各レンズ部10Aとする。すなわち凹部の曲面底壁
12Aがレンズの光屈折面となる。その後表面全体を平
坦面に仕上げることによりレンズアレイlOが得られる
Each of the concave portions 12 is filled with a transparent material +4 such as resin or glass having a refractive index higher than that of the substrate 11 to form each lens portion 10A of the lens array. That is, the curved bottom wall 12A of the recess becomes the light refracting surface of the lens. Thereafter, the entire surface is finished to be a flat surface, thereby obtaining a lens array 10.

あるいは、液状の透明樹脂を充填した後未硬化の状態で
、箪4図に示すように液晶表示パネル20など所定の接
合相手部材Iこ積層し硬化させる。
Alternatively, after filling with a liquid transparent resin and leaving it in an uncured state, a predetermined mating member I, such as a liquid crystal display panel 20, is laminated and cured, as shown in Figure 4.

この場合は、レンズ部形成と接着を同時に行うことがで
きる。
In this case, lens portion formation and adhesion can be performed at the same time.

第4図の例では、予めレンズアレイlOのし/ズの配列
ピッチを液晶表示パネル20の画素ピッチに合わせてお
くことにより、照明光30がレンズアレイlOの各レン
ズIOAで集光されて液晶パネルの各画素の透光窓21
を通過し、従来の液晶表示パネルでは電極、TPT等の
不透光部22で遮断されていた照明光が有効に表示に寄
与し、極めて鮮明度の高い画像が得られる。
In the example shown in FIG. 4, by adjusting the array pitch of the lens array IO to the pixel pitch of the liquid crystal display panel 20, the illumination light 30 is focused by each lens IOA of the lens array IO, and the illumination light 30 is focused on the liquid crystal display panel 20. Translucent window 21 of each pixel of the panel
The illumination light, which was blocked by the non-transparent portion 22 such as electrodes and TPT in conventional liquid crystal display panels, effectively contributes to the display, and an extremely high-definition image can be obtained.

次に、本発明に係るレンズアレイの好適な製造方法につ
いて第5図を参照して説明する。
Next, a preferred method for manufacturing the lens array according to the present invention will be described with reference to FIG.

まずガラス基板11の表面にスパッタや蒸着によって、
Nl、Au、Crなどエツチング液に対して耐蝕性を有
する金属膜からなる保護被覆膜8を形成する。
First, by sputtering or vapor deposition on the surface of the glass substrate 11,
A protective coating film 8 is formed of a metal film such as Nl, Au, Cr, etc. that has corrosion resistance against etching solutions.

次いで、周知のフォトリソグラフィ法によって被覆膜8
に所定のレンズアレイ配列バター7で小間口9を形成す
る。例えば第3図のようなハニカム型レンズアレイであ
れば第6図に示すような千鳥配列で開口9を形成する。
Next, the coating film 8 is formed by a well-known photolithography method.
A booth opening 9 is formed with a predetermined lens array arrangement butter 7. For example, in the case of a honeycomb type lens array as shown in FIG. 3, the apertures 9 are formed in a staggered arrangement as shown in FIG.

この間口9の形状は最終的に得ようとするレンズの平面
形状によらず円形であってよい。またその径はレンズ径
に比べて十分小さくしておく。
The shape of this opening 9 may be circular regardless of the planar shape of the lens to be finally obtained. Also, its diameter is made sufficiently smaller than the lens diameter.

次ぎに上記の被覆ガラス基板を、弗酸、硫酸、塩酸の混
合液等のガラスエツチング溶液に浸して化学エツチング
を行う。この処理により被覆膜の開口9を始点としてガ
ラス基板の表面が等方的にエツチングされ、第5図(ロ
)のようにほぼ半球状をなした凹部12Bが得られる。
Next, the coated glass substrate described above is chemically etched by immersing it in a glass etching solution such as a mixed solution of hydrofluoric acid, sulfuric acid, and hydrochloric acid. By this process, the surface of the glass substrate is isotropically etched starting from the opening 9 of the coating film, and a substantially hemispherical recess 12B as shown in FIG. 5(b) is obtained.

この第1段階のエツチング処理は、隣接する凹部12B
間に若干の幅をもった平坦な境界部23を残した状Oで
止める。
This first stage etching process is performed by etching the adjacent recess 12B.
It is stopped at O, leaving a flat boundary part 23 with a slight width in between.

次いでガラス基板表面から被覆膜8を除去した後、ガラ
ス基板表面全体をエツチングする。この第2段階エツチ
ング処理により、第5図(ニ)のように凹部12Bの底
壁は緩やかな曲面となり、また側壁でのエツチングが進
行して、隣接凹部間の境界部23は上端が先鋭な稜線1
3となる。すなわち平面視でそれぞれが同一の多辺形(
千鳥配列の場合六角形)をなし隣接凹部同士が密接した
稠密充填配列となる。
Next, after removing the coating film 8 from the surface of the glass substrate, the entire surface of the glass substrate is etched. As a result of this second stage etching process, the bottom wall of the recess 12B becomes a gently curved surface as shown in FIG. Ridge line 1
It becomes 3. In other words, each polygon is the same in plan view (
In the case of a staggered arrangement, the recesses form a hexagonal shape, resulting in a densely packed arrangement in which adjacent recesses are in close contact with each other.

なお、当初の凹部12Bは円形であるから隣接凹部間の
境界部の幅は一様ではないが、上述した第2段階エツチ
ングで、最も幅の大な境界部分が上端先鋭な稜線13を
形成するまでエツチングをおこなっても、最も幅の小な
境界部分が消失してしまうことはな(、第7図に示すよ
うに断面視で中央が若干凹んだカーブを成す境界壁23
が残る。
Note that since the initial recess 12B is circular, the width of the boundary between adjacent recesses is not uniform, but in the second stage etching described above, the widest boundary portion forms a ridge line 13 with a sharp upper end. Even if the etching is performed up to the maximum width, the narrowest boundary part will not disappear (as shown in FIG.
remains.

上記の2段階エツチング処理の後、凹部12に基板ガラ
スよりも屈折率の大な樹脂等の透明材料を充填する。
After the two-step etching process described above, the recess 12 is filled with a transparent material such as resin having a higher refractive index than the substrate glass.

以上本発明を図面に示した実施例について説明したが、
実施例以外に種々の変更が可能であることはいうまでも
ない。
The embodiments of the present invention shown in the drawings have been described above.
It goes without saying that various modifications other than the embodiments can be made.

例えば、図示例ではレンズアレイのパターンとして正方
格子及びハニカムについてのみ示したが、形状に特に制
限はなく、長方形、正五角形と正六角形の集合体等でも
良い。
For example, in the illustrated example, only a square lattice and a honeycomb are shown as patterns of the lens array, but the shape is not particularly limited, and may be a rectangle, a collection of regular pentagons and regular hexagons, or the like.

また凹部レンズは基板の片面側だけでなく両面に形成し
てもよい。
Further, the concave lens may be formed not only on one side of the substrate but also on both sides.

[発明の効果] 本発明によれば、従来のレンズアレイでは集光されずに
そのまま透過していた光も有効に集光され、はぼ完全な
集光効率で光点アレイを得ることができる。したがって
、固体撮像素子や液晶表示装置への適用において従来の
レンズアレイよりも優れた性能を実現することができる
[Effects of the Invention] According to the present invention, light that was not focused by a conventional lens array and was transmitted as it is is effectively focused, and a light spot array can be obtained with almost perfect light focusing efficiency. . Therefore, performance superior to conventional lens arrays can be achieved when applied to solid-state image sensors and liquid crystal display devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明のレンズアレイのパターンの一例を示す平面図、第3
図は本発明のレンズアレイの他のパターン例を示す平面
図、第4図は本発明のレンズアレイの適用例を示す断面
図、第5図(イ)ないしく二)は本発明に用いるレンズ
アレイ基板の製作方法の一例を段階的に示す断面図、第
6図は第5図の製作方法で基板ガラスに形成するエツチ
ングマスクのパターン例を示す平面図、第7図は第5図
のエツチング方法で得られる凹部境界の状帖を説明する
断面図、第8図は従来のレンズアレイの問題点を説明す
る平面図である。 8・・・エツチング保護被膜 9・・・開口 10・・・レンズアレイ 10A・・・レンズ 11 ・・・ガラス基板 12・・・凹部 +3・・・レンズ境界稜線 14・・・透明充填材料 20・・・液晶表示パネル 21・・・透光窓 22・・・不透光部 30・・・照明光 第 1 図 第 図 第 図 第 図 1゜ 0 第 9 勿τ 」〒フ 図 第 図 」
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a plan view showing an example of the pattern of the lens array of the present invention, and FIG.
The figure is a plan view showing another pattern example of the lens array of the present invention, Figure 4 is a sectional view showing an example of application of the lens array of the present invention, and Figures 5 (a) to 2) are lenses used in the present invention. 6 is a plan view showing an example of the etching mask pattern formed on the substrate glass by the manufacturing method shown in FIG. 5, and FIG. FIG. 8 is a cross-sectional view illustrating the shape of the concave boundary obtained by this method, and a plan view illustrating problems with the conventional lens array. 8... Etching protective film 9... Opening 10... Lens array 10A... Lens 11... Glass substrate 12... Concavity +3... Lens boundary ridge line 14... Transparent filling material 20... ...Liquid crystal display panel 21...Transparent window 22...Non-transparent part 30...Illumination light 1

Claims (1)

【特許請求の範囲】[Claims] 平板状の透明基板の少なくとも片面側に、底壁が曲面を
成す凹部の多数を、平面視で多辺形の稜線を境界として
接する稠密充填状態に配列形成し、これら凹部に前記基
板とは屈折率の異なる透明材料を充填してなる稠密充填
レンズアレイ。
A large number of recesses each having a curved bottom wall are arranged in a densely packed state on at least one side of a flat transparent substrate, and the recesses have a polygonal ridge line as a boundary when viewed from above, and these recesses have a refraction angle that is different from that of the substrate. A densely packed lens array made of transparent materials with different ratios.
JP917690A 1990-01-18 1990-01-18 Closed packed lens array Pending JPH03214101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP917690A JPH03214101A (en) 1990-01-18 1990-01-18 Closed packed lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP917690A JPH03214101A (en) 1990-01-18 1990-01-18 Closed packed lens array

Publications (1)

Publication Number Publication Date
JPH03214101A true JPH03214101A (en) 1991-09-19

Family

ID=11713259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP917690A Pending JPH03214101A (en) 1990-01-18 1990-01-18 Closed packed lens array

Country Status (1)

Country Link
JP (1) JPH03214101A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038035A1 (en) * 1996-07-22 1999-07-29 Maikurooputo Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
WO2002010805A1 (en) * 2000-07-31 2002-02-07 Rochester Photonics Corporation Microlens arrays having high focusing efficiency
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
US7033736B2 (en) 2000-07-31 2006-04-25 Corning Incorporated Structured screens for controlled spreading of light
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency
JP2008058736A (en) * 2006-08-31 2008-03-13 Seiko Epson Corp Manufacturing method of base plate with concave part, base plate with concave part, microlens substrate, transmission type screen and rear type projector
JP2015195407A (en) * 2009-07-22 2015-11-05 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Light-emitting diode packages and manufacturing methods thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038035A1 (en) * 1996-07-22 1999-07-29 Maikurooputo Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
US6437918B1 (en) 1996-07-22 2002-08-20 Nippon Sheet Glass Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
WO2002010805A1 (en) * 2000-07-31 2002-02-07 Rochester Photonics Corporation Microlens arrays having high focusing efficiency
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
US7033736B2 (en) 2000-07-31 2006-04-25 Corning Incorporated Structured screens for controlled spreading of light
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency
JP2008058736A (en) * 2006-08-31 2008-03-13 Seiko Epson Corp Manufacturing method of base plate with concave part, base plate with concave part, microlens substrate, transmission type screen and rear type projector
JP2015195407A (en) * 2009-07-22 2015-11-05 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Light-emitting diode packages and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
US5581379A (en) Rectangular based convex microlenses surrounded within a frame and method of making
KR100413404B1 (en) Liquid crystal display device and method of producing the same
US7113336B2 (en) Microlens including wire-grid polarizer and methods of manufacture
EP0059464B1 (en) Solar concentrator
KR100243190B1 (en) Movable mirror array and its fabrication method
KR102160695B1 (en) Mask
US5734190A (en) Imager having a plurality of cylindrical lenses
CN1574381A (en) Image sensor having micro-lens array separated with trench structures and method of making
US6233031B1 (en) Liquid crystal display device
US6606198B2 (en) Lens array
US7068433B2 (en) Focusing screen master and manufacturing method thereof
JP2005157119A (en) Reflection preventing optical element and optical system using the same
JP4444110B2 (en) Liquid crystal display
JPH03214101A (en) Closed packed lens array
TWI300150B (en) Reflective-type display element, reflector and method of producing the same
JP3617846B2 (en) Microlens / microlens array and manufacturing method thereof
WO2016038853A1 (en) Anti-reflection member, and production method therefor
JP3079870B2 (en) Method of forming inverted pyramid texture
JP2002169085A (en) Refractive index distribution type lens, manufacture of the same and lens array
JPH07105481B2 (en) Method of manufacturing solid-state imaging device
JPH07281007A (en) Flat plate type lens array and manufacture thereof and liquid crystal display element using flat plate type lens array
KR101209803B1 (en) Method for manufacturing one body type optical film and one body type optical film
TW201331613A (en) Anti-reflection structure and method for manufacturing anti-reflection structure
JPH04190301A (en) Manufacture of plate lens array
JP2006509240A (en) High refractive index coated light control film