WO2016038853A1 - Anti-reflection member, and production method therefor - Google Patents

Anti-reflection member, and production method therefor Download PDF

Info

Publication number
WO2016038853A1
WO2016038853A1 PCT/JP2015/004457 JP2015004457W WO2016038853A1 WO 2016038853 A1 WO2016038853 A1 WO 2016038853A1 JP 2015004457 W JP2015004457 W JP 2015004457W WO 2016038853 A1 WO2016038853 A1 WO 2016038853A1
Authority
WO
WIPO (PCT)
Prior art keywords
film thickness
antireflection
antireflection layer
inclination angle
mold
Prior art date
Application number
PCT/JP2015/004457
Other languages
French (fr)
Japanese (ja)
Inventor
利治 大石
高英 藤本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP15839276.1A priority Critical patent/EP3193194A4/en
Priority to CN201580040253.4A priority patent/CN106574984A/en
Priority to US15/326,318 priority patent/US20170205539A1/en
Priority to JP2016547688A priority patent/JPWO2016038853A1/en
Publication of WO2016038853A1 publication Critical patent/WO2016038853A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00798Producing diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to an antireflection member and a method for manufacturing the same.
  • the reflection processing technology includes an AR (Anti-Reflection) technology that cancels reflected light by a multilayer film to reduce the reflected light, and an AG (in which the reflected light is diffused by an anti-glare layer having a fine concavo-convex structure to make it inconspicuous. Anti-Glare) technology.
  • AR Anti-Reflection
  • AG in which the reflected light is diffused by an anti-glare layer having a fine concavo-convex structure to make it inconspicuous.
  • Anti-Glare Anti-Glare
  • Patent Document 1 discloses an antiglare plastic film in which a fine uneven pattern is provided on a transparent resin applied to a base material.
  • Patent Document 2 discloses an antireflection film in which a low refractive index layer is formed on an antiglare layer having a fine concavo-convex structure. The low refractive index layer is formed by applying and curing a resin.
  • the present invention provides an antireflection member having high reflection treatment performance and a method for manufacturing the same.
  • the antireflection member includes an antiglare layer having a fine concavo-convex structure and an antireflection layer having a plurality of laminated films and formed above the antiglare layer.
  • the surface having an inclination angle at which the film thickness variation of the antireflection layer caused by the variation in the inclination angle of the surface of the fine uneven structure is within ⁇ 20% of the film thickness ratio is formed on the fine uneven structure. It occupies 60% or more of the area.
  • An antireflection member manufacturing method includes an antiglare layer forming step of forming a fine uneven structure on a substrate by performing a molding process using a mold having an uneven surface, and an upper layer than the fine uneven structure. And an antireflection layer forming step of forming an antireflection layer having a plurality of laminated films.
  • the uneven surface of the mold the surface having an inclination angle in which the film thickness variation of the antireflection layer caused by the variation in the inclination angle of the transferred uneven surface is within ⁇ 20% of the film thickness ratio occupies 60% or more. Formed as follows.
  • the characteristics of the antireflection layer formed above the antiglare layer can be improved, and the reflection treatment performance of the antireflection member can be further improved.
  • the number of grooves or recesses surrounded by a steeply inclined surface can be reduced, and the reduction in visibility due to adhesion of dirt to the grooves or recesses can be reduced.
  • the schematic diagram which shows the reflection preventing member of Embodiment 1 The figure explaining the inclination-angle of the fine concavo-convex structure of Embodiment 1.
  • the schematic diagram which shows the reflection preventing member of Embodiment 2. The figure explaining the inclination-angle of the fine concavo-convex structure of Embodiment 2.
  • Diagram showing antireflection layer Graph showing the relationship between the film thickness ratio of the antireflection layer and the reflectance The schematic diagram which shows the inclination angle of an example of the fine concavo-convex structure of a comparative example Top view of an example of a fine relief structure of a comparative example.
  • the figure explaining the 1st modification of the shape of an antireflection member The figure explaining the 2nd modification of the shape of an antireflection member
  • mold which forms an anti-glare layer The figure explaining the 1st process of the 2nd example of the manufacturing method of the type
  • mold which forms an anti-glare layer The schematic diagram which shows the shape of the final type
  • mold which forms an anti-glare layer Schematic diagram showing the fine relief structure produced using the mold shown in FIG.
  • the problems in the prior art will be briefly described.
  • the reflection processing performance can be improved by making up for each defect.
  • the multilayer film of the antireflection layer is formed on the unevenness of the antiglare layer without any ingenuity, the film thickness varies depending on the inclination of the unevenness, and good characteristics of the antireflection layer cannot be obtained.
  • FIG. 1 is a schematic diagram illustrating an antireflection member according to Embodiment 1.
  • FIG. 2 is a diagram for explaining an inclination angle of the fine concavo-convex structure of the first embodiment.
  • the antireflection member 10 of Embodiment 1 includes a sheet-like base material 12, a fine concavo-convex structure 20 formed on one surface of the base material 12, and an antireflection layer formed on the fine concavo-convex structure 20. 14.
  • the fine concavo-convex structure 20 functions as an antiglare layer that diffuses light.
  • the fine concavo-convex structure 20 is a structure having a large number of irregularities (for example, a large number of spherical convex portions 21) on the surface.
  • the lateral pitch of the unevenness is in the range of 0.5 to 10 [ ⁇ m], and is about 2 [ ⁇ m] as a specific example.
  • the anti-glare layer of the present embodiment employs a configuration that does not have fine particles that diffuse light (also referred to as haze) inside the layer.
  • the fine concavo-convex structure 20 is formed by managing the inclination angle ⁇ of the concavo-convex surface.
  • the tilt angle indicates the tilt angle from the upper surface of the substrate 12.
  • a range exceeding the specific angle ⁇ 1 is indicated by a bold line.
  • V0 indicates a normal line on the upper surface of the substrate 12, and h0 indicates a normal line on the uneven surface.
  • the portion where the inclination angle is equal to or smaller than the specific angle ⁇ 1 is a portion where the characteristics of the antireflection layer 14 can be improved. Therefore, when this range increases, the antireflection characteristic of the antireflection member 10 can be improved. Therefore, the range occupied by the portion where the inclination angle is equal to or less than the specific angle ⁇ 1 may be 70% or more, more preferably 80% or more in the formation surface of the fine relief structure 20.
  • FIG. 3 is a schematic diagram showing the antireflection member of the second embodiment.
  • FIG. 4 is a diagram for explaining an inclination angle of the fine concavo-convex structure of the second embodiment.
  • the antireflection member 10A according to Embodiment 2 includes a sheet-like base material 12, a fine concavo-convex structure 20 formed on one surface of the base material 12, and an antireflection layer formed on the fine concavo-convex structure 20. 14A.
  • the fine concavo-convex structure 20 is formed by controlling the inclination angle ⁇ of the concavo-convex surface as shown in FIG.
  • a range exceeding the specific angle ⁇ 2 is indicated by a bold line.
  • the portion where the inclination angle is equal to or smaller than the specific angle ⁇ 2 is a portion where the characteristics of the antireflection layer 14A can be improved. Therefore, when this range increases, the antireflection characteristic of the antireflection member 10A can be improved. Therefore, the range occupied by the portion where the inclination angle is equal to or less than the specific angle ⁇ 2 may be 80% or more, more preferably 90% or more in the formation surface of the fine concavo-convex structure 20.
  • FIG. 5 is a diagram showing an example of the antireflection layer.
  • FIG. 6 is a graph showing the relationship between the film thickness ratio and the reflectance of an example antireflection layer.
  • the antireflection layers 14 and 14A are configured by laminating a plurality of types of films of three or more layers.
  • the antireflection layers 14 and 14A are formed by controlling the refractive index and the film thickness of each layer, and the light reflected from each interface overlaps with different phases, thereby canceling each other's light and reducing the reflected light.
  • the total thickness of the antireflection layers 14 and 14A varies depending on the type and number of films, but is 300 to 500 nm or the like, which is very thin compared to the unevenness of the fine uneven structure 20.
  • the antireflection layers 14 and 14A are made of a transparent metal oxide such as SiO 2 , TiO 2 , or Al 2 O 3 , for example.
  • Each film of the antireflection layers 14 and 14A may be formed using a dry process such as a vapor deposition method or a sputtering method.
  • the vapor deposition method and the sputtering method are included in a method of condensing a material substance evaporated in a vacuum on the surface.
  • Each of the above films may be formed using a wet process such as chemical liquid phase growth.
  • the antireflection layers 14 and 14A may be a laminate of a dry process thin film and a wet process thin film. That is, at least one of the films of the antireflection layers 14 and 14A may be formed by a process of evaporating in a vacuum to condense a material substance on the surface, or may be formed by a wet process. Good.
  • the reflectance of the visible light changes as the antireflection layers 14 and 14A change in film thickness.
  • the graph of the relationship between the film thickness and the reflectance there are film thickness regions where the reflectance is lower than other regions, such as a range in which the reflectance is 1% or less by efficiently canceling the light reflected by each interface. is there.
  • the reflectance increases rapidly.
  • the film thickness at the center of the film thickness region where the reflectivity is low is assumed to be a film thickness ratio 1, as shown in FIG. 8 to 1.2.
  • the antireflection layer 14 of Embodiment 1 is formed so that a film thickness ratio of 1 can be obtained when the tilt angle of the substrate is zero.
  • the area where the thin film particles adhere to the portion having the inclination angle ⁇ is increased by the inclination angle ⁇ with respect to a certain amount of thin film particles scattered by vapor deposition, for example.
  • the film thickness of the portion having the inclination angle ⁇ is thinner than that of the portion having the inclination angle zero. If the portion having the tilt angle of zero is defined as the film thickness X, the thickness X1 of the portion having the tilt angle ⁇ is represented by the following equation (1).
  • the film thickness of the thin film formed on the surface having the inclination angle of 0 ° to the specific angle ⁇ 1 is as shown in the range W1 in FIG.
  • the film thickness ratio is 1 to 0.8.
  • the reflectance is 1% or less, and the antireflection characteristic is good.
  • the reflectance of the antireflection layer 14 increases rapidly as the inclination angle increases.
  • the range in which the inclination angle is 0 ° to the specific angle ⁇ 1 occupies 60% or more, so that good performance of the antireflection layer 14 can be obtained.
  • the antireflection layer 14A of Embodiment 2 is formed so as to obtain a film thickness ratio of 1.2 when the substrate tilt angle is zero.
  • the film thickness is 0.8.
  • the antireflection layer 14A in this film thickness range has a reflectance of 1% or less and good antireflection characteristics. On the surface where the inclination angle exceeds the specific angle ⁇ 2, the reflectance of the antireflection layer 14A increases rapidly as the inclination angle increases.
  • Embodiment 1 the area where the inclination angle is equal to or less than the specific angle ⁇ 1 is 60% or more, and in Embodiment 2, the area where the inclination angle is equal to or less than the specific angle ⁇ 2 is 70% or more. The reason for this will be described with reference to FIGS. 7A and 7B.
  • FIG. 7A is a schematic diagram showing the inclination angle of the fine uneven structure of the comparative example
  • FIG. 7B is a top view of the fine uneven structure of the comparative example.
  • FIG. 7A and 7B is a model in which hemispheres of the same diameter are closely aligned on one surface of the substrate 50.
  • the thick line portion in FIG. 7A and the shaded portion in FIG. 7B schematically show portions having an inclination angle where the film thickness ratio of the antireflection layer deviates from 0.8 to 1.2.
  • the inclination angle ⁇ of FIG. 7A is 36.8 °. If the antireflection layer is formed on a plane with a film thickness ratio of 1.2, the inclination angle ⁇ in FIG. 7A is 48.1 °.
  • the ratio of the thick line portion in FIG. 7A to the region where the fine concavo-convex structure is formed is similar to the ratio of the hatched portion in the equilateral triangle T in FIG. 7B.
  • r2 is the radius of the circle on the inner peripheral side of the thick line portion when viewed in plan
  • r1 is the radius of the circle on the outer peripheral side of the thick line portion when viewed in plan. From these conditions, the ratio of the area other than the thick line portion when viewed in plan can be obtained as follows.
  • the ratio R1 of the area other than the thick line portion in the plan view and the relationship between the radii r1 and r2 are expressed by the following expressions (4) and (5).
  • the ratio of the area where the film thickness ratio is 0.8 to 1.2 is 60% or more, and the model is not specially devised only by closely arranging the hemispheres.
  • the ratio is sufficiently large compared with 42%. Therefore, the action of the antireflection layer can be sufficiently obtained by the unique configuration of the first embodiment.
  • the ratio of the area where the film thickness ratio is 0.8 to 1.2 is 70% or more, and the model is not specially devised only by densely arranging the hemispheres.
  • the ratio is sufficiently large compared with 60%. Therefore, the action of the antireflection layer can be sufficiently obtained by the unique configuration of the second embodiment.
  • the antireflection members 10 and 10A of Embodiments 1 and 2 As described above, according to the antireflection members 10 and 10A of Embodiments 1 and 2, the AG technology characteristics are obtained by the fine uneven structure 20 of the antiglare layer, and the antireflection layers 14 and 14A are favorable. Antireflection characteristics can be obtained. Therefore, the antireflection members 10 and 10A having high reflection processing performance can be realized.
  • the groove or recess surrounded by the steeply inclined surface is reduced by the management of the tilt angle of the fine concavo-convex structure 20, and therefore the groove or recess. Visibility degradation due to adhesion of dirt to the surface can be reduced.
  • the inclination angle of the fine concavo-convex structure 20 is managed, and the antireflection layers 14 and 14A having a film thickness ratio of 1 or a film thickness ratio of 1.2 are formed on the surface having the zero inclination angle.
  • the film thickness formed on the surface having the zero tilt angle need not be any film thickness ratio of 0.8 to 1.2. Even if the film thickness formed on the surface with the tilt angle of zero is 1.2 or more, the film thickness variation of the antireflection layers 14 and 14A is reflected depending on the method of providing the tilt angle of the fine concavo-convex structure 20. It is possible to keep the film thickness ratio within ⁇ 20% in the region where the rate is low. It is also possible to control the ratio of the surface having such an inclination angle to a certain level or more.
  • the shape of the antireflection member is not particularly limited.
  • the antireflection members 10B to 10E may be formed into a plate shape as shown in FIG. 8A, a film shape as shown in FIG. 8B, a belt shape as shown in FIG. 8C, or a block shape as shown in FIG. 8C.
  • each thin film of the antireflection layers 14 and 14A is not limited to the illustrated specific examples, and can be variously changed.
  • the number of thin films is preferably 3 or more.
  • the manufacturing method of an antireflection member has an anti-glare layer formation process and an antireflection layer formation process in order of a process.
  • a mold 30 having a fine concavo-convex structure see FIG. 9C
  • a transparent substrate 12 see FIGS. 1 to 4
  • a curable transparent resin are used.
  • the mold 30 is, for example, a mold.
  • the base material 12 is, for example, a transparent resin or transparent glass having a low haze.
  • the transparent resin includes, for example, PET (polyethylene terephthalate), PC (polycarbonate), or acrylic resin.
  • the curable transparent resin for example, an ultraviolet curable transparent resin can be applied.
  • the mold 30 has an uneven surface with a controlled inclination angle.
  • the uneven surface of the mold 30 has a surface having an inclination angle at which the film thickness variation of the antireflection layer caused by the variation in the inclination angle is within ⁇ 20% in the transferred uneven surface is 60% or more. It is formed to occupy.
  • the mold 30 for manufacturing the antireflection member 10 of Embodiment 1 is formed such that a portion with an inclination angle of 36.8 ° or less occupies 60% or more in the transferred uneven surface.
  • the mold 30 for manufacturing the antireflection member 10A of Embodiment 2 is formed such that a portion with an inclination angle of 48.1 ° or less occupies 60% or more in the transferred concavo-convex surface. A method for manufacturing the mold 30 will be described later.
  • the curable transparent resin is cured on the upper surface of the base material 12 in a shape in which the unevenness of the mold 30 is transferred by mold forming using the mold 30. Thereby, the transparent fine uneven structure 20 is added to the upper surface of the base material 12, and an anti-glare layer is formed.
  • a dry process or a wet process film forming process is performed a plurality of times on the substrate 12 having the fine concavo-convex structure 20.
  • Each film forming process is performed by managing the film thickness of the thin film.
  • the film thickness is controlled so that an antireflection layer having a film thickness ratio of 1 is formed on a surface having an inclination angle of 0 °.
  • the film thickness is controlled so that an antireflection layer having a film thickness ratio of 1.2 is formed on a surface with an inclination angle of 0 °.
  • a predetermined antireflection layer is formed above the fine relief structure 20 of the antiglare layer.
  • the antireflection members 10 and 10A of the first and second embodiments can be manufactured.
  • another film forming process may be included between the antiglare layer forming step and the antireflection layer forming step.
  • FIG. 9A to 9C are diagrams for explaining a first example of a mold manufacturing method.
  • FIG. 9A is an explanatory diagram of the first step
  • FIG. 9B is an explanatory diagram of the second step
  • FIG. 9C is a schematic diagram showing a final mold shape.
  • the mold material 31 is subjected to blasting, etching, or electric discharge machining, and an antiglare action is obtained on one surface of the mold 31. Concavities and convexities are formed at an optical distance pitch.
  • the lower end portion of the unevenness is removed by polishing or etching. The ratio of the range in which the inclination angle increases can be adjusted by the amount of polishing or etching in FIG. 9B.
  • a mold 30 having projections and depressions as if the fine concavo-convex structure 20 of Embodiments 1 and 2 was transferred can be manufactured.
  • FIG. 10A to 10C are diagrams for explaining a second example of the mold manufacturing method.
  • FIG. 10A is an explanatory diagram of the first step
  • FIG. 10B is an explanatory diagram of the second step
  • FIG. 10C is a schematic diagram showing a final mold shape.
  • FIG. 11 is a schematic view showing a fine concavo-convex structure produced using the mold shown in FIG. 10C.
  • the fine concavo-convex structure 20 ⁇ / b> A can control a surface having an inclination angle exceeding a specific angle (indicated by a thick line in the drawing) to a predetermined ratio or less.
  • FIG. 12A and FIG. 12B are diagrams for explaining a third example of a mold manufacturing method for forming an antiglare layer.
  • FIG. 12A is an explanatory diagram of the first step
  • FIG. 12B is a schematic diagram showing a final mold shape.
  • a third example of the manufacturing method of the mold 30 is to perform electric discharge machining on the mold material 31 using the electrode 40 on which the fine pattern machining 45 has been performed, as shown in FIG. 12A. Thereby, as shown to FIG. 12B, the type
  • FIG. 13 is a schematic view showing a fine concavo-convex structure produced using the mold shown in FIG. 12B.
  • a fine concavo-convex structure 20B having a uniform concavo-convex shape as shown in FIG. 13 can be produced.
  • the fine uneven structure 20B is, for example, an uneven structure having a trapezoidal cross section.
  • the tilt angle can be controlled so that the film thickness variation of the antireflection layer is within ⁇ 20% of the film thickness ratio in the entire area of the fine concavo-convex structure 20B.
  • mold forming is shown as a method for manufacturing the fine concavo-convex structure of the antireflection member, and some specific methods for manufacturing the mold are shown.
  • the manufacturing method of the fine uneven structure of the antireflection member is not particularly limited, and any manufacturing method may be used as long as the fine uneven structure having the inclination angle specified by the invention can be manufactured.
  • the present invention can be used for an antireflection member for preventing reflection of a display.

Abstract

This anti-reflection member is provided with: an anti-glare layer provided with a fine uneven structure; and an anti-reflection layer which is provided with a plurality of stacked films, and which is formed above the anti-glare layer. In the anti-glare layer, the surface in at least 60% of the area where the fine uneven structure is formed has an inclination angle at which the variation in the film thickness of the anti-reflection layer, said variation being generated as a result of the variation in the inclination angle of the surface of the fine uneven structure, has a film thickness ratio within the range ±20%.

Description

反射防止部材およびその製造方法Antireflection member and manufacturing method thereof
 本発明は、反射防止部材およびその製造方法に関する。 The present invention relates to an antireflection member and a method for manufacturing the same.
 近年、ディスプレイの多用途化が進んでおり、例えば外光または照明が当たる状況など、視認性が低下しやすい状況でディスプレイが使用されることがある。このため、ディスプレイの表示パネルの反射処理性能の向上が求められている。 In recent years, displays have become increasingly versatile. For example, displays are often used in situations where visibility is likely to deteriorate, such as situations where external light or illumination is applied. For this reason, the improvement of the reflection processing performance of the display panel of a display is calculated | required.
 反射処理の技術には、多層膜により反射光を打ち消し合わせて反射光を少なくさせるAR(Anti-Reflection)技術と、微細凹凸構造を有する防眩層により反射光を拡散させて目立たなくするAG(Anti-Glare)技術とがある。しかし、照明などが反射する場合、AR技術では、照明の輪郭が視認できてしまい、この点、表示の視認性が低下する。また、AG技術では、拡散した反射光により、反射部分が白く光って、表示の視認性が低下する。 The reflection processing technology includes an AR (Anti-Reflection) technology that cancels reflected light by a multilayer film to reduce the reflected light, and an AG (in which the reflected light is diffused by an anti-glare layer having a fine concavo-convex structure to make it inconspicuous. Anti-Glare) technology. However, when illumination or the like is reflected, the AR technique makes it possible to visually recognize the outline of the illumination, and this reduces the visibility of the display. Further, in the AG technology, the reflected portion is shined white by the diffused reflected light, and the visibility of the display is lowered.
 従来の技術として、特許文献1には、基材に塗布された透明樹脂に微細凹凸模様が設けられた防眩プラスチックフィルムが開示されている。特許文献2には、微細凹凸構造を有する防眩層の上に低屈折率層が形成された反射防止フィルムが開示されている。低屈折率層は、樹脂を塗布および硬化して形成される。 As a conventional technique, Patent Document 1 discloses an antiglare plastic film in which a fine uneven pattern is provided on a transparent resin applied to a base material. Patent Document 2 discloses an antireflection film in which a low refractive index layer is formed on an antiglare layer having a fine concavo-convex structure. The low refractive index layer is formed by applying and curing a resin.
特開平6-234175号公報JP-A-6-234175 国際公開第2008/084604号International Publication No. 2008/084604
 本発明は、反射処理性能の高い反射防止部材およびその製造方法を提供する。 The present invention provides an antireflection member having high reflection treatment performance and a method for manufacturing the same.
 本発明の一態様に係る反射防止部材は、微細凹凸構造を有する防眩層と、積層された複数の膜を有し、防眩層より上層に形成される反射防止層とを有する。防眩層において、微細凹凸構造の表面の傾斜角のバラツキに起因して生じる反射防止層の膜厚バラツキが膜厚比±20%以内となる傾斜角を有する面が、微細凹凸構造が形成された領域のうち60%以上を占める。 The antireflection member according to one embodiment of the present invention includes an antiglare layer having a fine concavo-convex structure and an antireflection layer having a plurality of laminated films and formed above the antiglare layer. In the antiglare layer, the surface having an inclination angle at which the film thickness variation of the antireflection layer caused by the variation in the inclination angle of the surface of the fine uneven structure is within ± 20% of the film thickness ratio is formed on the fine uneven structure. It occupies 60% or more of the area.
 本発明の一態様に係る反射防止部材の製造方法は、凹凸面を有する型を用いた成形処理を行って基材に微細凹凸構造を形成する防眩層形成工程と、微細凹凸構造よりも上層に、積層された複数の膜を有する反射防止層を成膜する反射防止層形成工程とを有する。型の凹凸面は、転写された凹凸面の傾斜角のバラツキに起因して生じる反射防止層の膜厚バラツキが膜厚比±20%以内となる傾斜角を有する面が、60%以上を占めるように形成される。 An antireflection member manufacturing method according to an aspect of the present invention includes an antiglare layer forming step of forming a fine uneven structure on a substrate by performing a molding process using a mold having an uneven surface, and an upper layer than the fine uneven structure. And an antireflection layer forming step of forming an antireflection layer having a plurality of laminated films. As for the uneven surface of the mold, the surface having an inclination angle in which the film thickness variation of the antireflection layer caused by the variation in the inclination angle of the transferred uneven surface is within ± 20% of the film thickness ratio occupies 60% or more. Formed as follows.
 本発明によれば、防眩層より上層に形成される反射防止層の特性を良好にし、反射防止部材の反射処理性能をより向上できる。また、急勾配な傾斜面で囲まれた溝部または凹部を少なくして、溝部または凹部への汚れの付着による視認性の低下も少なくできる。 According to the present invention, the characteristics of the antireflection layer formed above the antiglare layer can be improved, and the reflection treatment performance of the antireflection member can be further improved. In addition, the number of grooves or recesses surrounded by a steeply inclined surface can be reduced, and the reduction in visibility due to adhesion of dirt to the grooves or recesses can be reduced.
実施の形態1の反射防止部材を示す模式図The schematic diagram which shows the reflection preventing member of Embodiment 1 実施の形態1の微細凹凸構造の傾斜角を説明する図The figure explaining the inclination-angle of the fine concavo-convex structure of Embodiment 1. 実施の形態2の反射防止部材を示す模式図The schematic diagram which shows the reflection preventing member of Embodiment 2. 実施の形態2の微細凹凸構造の傾斜角を説明する図The figure explaining the inclination-angle of the fine concavo-convex structure of Embodiment 2. 反射防止層を示す図Diagram showing antireflection layer 反射防止層の膜厚比と反射率との関係を示すグラフGraph showing the relationship between the film thickness ratio of the antireflection layer and the reflectance 比較例の微細凹凸構造の一例の傾斜角を示す模式図The schematic diagram which shows the inclination angle of an example of the fine concavo-convex structure of a comparative example 比較例の微細凹凸構造の一例の上面図Top view of an example of a fine relief structure of a comparative example 反射防止部材の形状の第1の変形例を説明する図The figure explaining the 1st modification of the shape of an antireflection member 反射防止部材の形状の第2の変形例を説明する図The figure explaining the 2nd modification of the shape of an antireflection member 反射防止部材の形状の第3の変形例を説明する図The figure explaining the 3rd modification of the shape of an antireflection member 反射防止部材の形状の第4の変形例を説明する図The figure explaining the 4th modification of the shape of an antireflection member 防眩層を形成する型の製造方法の第1例の第1工程を説明する図The figure explaining the 1st process of the 1st example of the manufacturing method of the type | mold which forms an anti-glare layer 防眩層を形成する型の製造方法の第1例の第2工程を説明する図The figure explaining the 2nd process of the 1st example of the manufacturing method of the type | mold which forms a glare-proof layer. 防眩層を形成する型の製造方法の第1例における最終的な型の形状を示す模式図The schematic diagram which shows the shape of the final type | mold in the 1st example of the manufacturing method of the type | mold which forms an anti-glare layer 防眩層を形成する型の製造方法の第2例の第1工程を説明する図The figure explaining the 1st process of the 2nd example of the manufacturing method of the type | mold which forms an anti-glare layer 防眩層を形成する型の製造方法の第2例の第2工程を説明する図The figure explaining the 2nd process of the 2nd example of the manufacturing method of the type | mold which forms an anti-glare layer 防眩層を形成する型の製造方法の第2例における最終的な型の形状を示す模式図The schematic diagram which shows the shape of the final type | mold in the 2nd example of the manufacturing method of the type | mold which forms an anti-glare layer 図10Cに示す型を用いて作製した微細凹凸構造を示す模式図Schematic diagram showing the fine relief structure produced using the mold shown in FIG. 10C 防眩層を形成する型の製造方法の第3例の第1工程を説明する図The figure explaining the 1st process of the 3rd example of the manufacturing method of the type | mold which forms an anti-glare layer 防眩層を形成する型の製造方法の第3例における最終的な型の形状を示す模式図The schematic diagram which shows the shape of the final type | mold in the 3rd example of the manufacturing method of the type | mold which forms an anti-glare layer 図12Bに示す型を用いて作製した微細凹凸構造を示す模式図Schematic diagram showing a fine relief structure produced using the mold shown in FIG. 12B
 本発明の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。AG技術の防眩層上にAR技術の反射防止層を設けることで、各々の欠点を補って反射処理性能を向上することができる。しかしながら、なんら工夫なく、防眩層の凹凸に反射防止層の多層膜を形成すると、凹凸の傾斜によって膜厚がばらつき、反射防止層の良好な特性が得られない。 Prior to the description of the embodiment of the present invention, the problems in the prior art will be briefly described. By providing the antireflection layer of the AR technology on the antiglare layer of the AG technology, the reflection processing performance can be improved by making up for each defect. However, if the multilayer film of the antireflection layer is formed on the unevenness of the antiglare layer without any ingenuity, the film thickness varies depending on the inclination of the unevenness, and good characteristics of the antireflection layer cannot be obtained.
 また、防眩層の凹凸構造に急勾配な傾斜面で囲まれた溝部または凹部が形成されると、ここに汚れが付着して、視認性が低下する。 Also, if a groove or recess surrounded by a steeply inclined surface is formed in the concavo-convex structure of the antiglare layer, dirt adheres to it and the visibility is lowered.
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment, the same components are denoted by the same reference numerals, and the description thereof will be omitted because it is duplicated.
 <反射防止部材>
 (実施の形態1、2)
 図1は、実施の形態1の反射防止部材を示す模式図である。図2は、実施の形態1の微細凹凸構造の傾斜角を説明する図である。
<Antireflection member>
(Embodiments 1 and 2)
FIG. 1 is a schematic diagram illustrating an antireflection member according to Embodiment 1. FIG. FIG. 2 is a diagram for explaining an inclination angle of the fine concavo-convex structure of the first embodiment.
 実施の形態1の反射防止部材10は、シート状の基材12と、基材12の一方の面に形成された微細凹凸構造20と、微細凹凸構造20の上に成膜された反射防止層14とを有している。 The antireflection member 10 of Embodiment 1 includes a sheet-like base material 12, a fine concavo-convex structure 20 formed on one surface of the base material 12, and an antireflection layer formed on the fine concavo-convex structure 20. 14.
 微細凹凸構造20は、光を拡散させる防眩層として機能する。微細凹凸構造20は、表面に多数の凹凸(例えば多数の球面状の凸部21)を有する構造である。凹凸の横方向のピッチは、0.5~10[μm]の範囲で、具体的一例として2[μm]程度である。本実施の形態の防眩層は、層内部に光拡散する(ヘイズ(haze)とも言う)微粒子を有さない構成が採用される。 The fine concavo-convex structure 20 functions as an antiglare layer that diffuses light. The fine concavo-convex structure 20 is a structure having a large number of irregularities (for example, a large number of spherical convex portions 21) on the surface. The lateral pitch of the unevenness is in the range of 0.5 to 10 [μm], and is about 2 [μm] as a specific example. The anti-glare layer of the present embodiment employs a configuration that does not have fine particles that diffuse light (also referred to as haze) inside the layer.
 微細凹凸構造20は、図2に示すように、凹凸表面の傾斜角θが管理されて形成されている。実施の形態1では、傾斜角が、特定角度θ1=36.8°以下となる面が、微細凹凸構造20の形成面中、平面視したときの面積で60%以上の範囲を占めるように形成されている。傾斜角は、基材12の上面からの傾斜角を示している。図2中、太線により特定角度θ1を超える範囲を示している。図2中、V0は基材12の上面の垂線を示し、h0は凹凸表面の法線を示している。 As shown in FIG. 2, the fine concavo-convex structure 20 is formed by managing the inclination angle θ of the concavo-convex surface. In the first embodiment, the surface having the inclination angle of the specific angle θ1 = 36.8 ° or less is formed so as to occupy a range of 60% or more in the area in plan view in the formation surface of the fine concavo-convex structure 20. Has been. The tilt angle indicates the tilt angle from the upper surface of the substrate 12. In FIG. 2, a range exceeding the specific angle θ1 is indicated by a bold line. In FIG. 2, V0 indicates a normal line on the upper surface of the substrate 12, and h0 indicates a normal line on the uneven surface.
 傾斜角が特定角度θ1以下となる部分は、反射防止層14の特性を良好にできる部分である。したがって、この範囲が増えると、反射防止部材10の反射防止の特性を向上できる。よって、傾斜角が特定角度θ1以下となる部分が占める範囲は、微細凹凸構造20の形成面中、より好ましくは70%以上、さらに好ましくは80%以上にしてもよい。 The portion where the inclination angle is equal to or smaller than the specific angle θ1 is a portion where the characteristics of the antireflection layer 14 can be improved. Therefore, when this range increases, the antireflection characteristic of the antireflection member 10 can be improved. Therefore, the range occupied by the portion where the inclination angle is equal to or less than the specific angle θ1 may be 70% or more, more preferably 80% or more in the formation surface of the fine relief structure 20.
 実施の形態1において、傾斜角が特定角度θ1以下となる面の割合を60%以上としている理由については後述する。 In Embodiment 1, the reason why the ratio of the surface where the inclination angle is equal to or smaller than the specific angle θ1 is 60% or more will be described later.
 反射防止層14の詳細は、後述する。 Details of the antireflection layer 14 will be described later.
 図3は、実施の形態2の反射防止部材を示す模式図である。図4は、実施の形態2の微細凹凸構造の傾斜角を説明する図である。 FIG. 3 is a schematic diagram showing the antireflection member of the second embodiment. FIG. 4 is a diagram for explaining an inclination angle of the fine concavo-convex structure of the second embodiment.
 実施の形態2の反射防止部材10Aは、シート状の基材12と、基材12の一方の面に形成された微細凹凸構造20と、微細凹凸構造20の上に成膜された反射防止層14Aとを有している。 The antireflection member 10A according to Embodiment 2 includes a sheet-like base material 12, a fine concavo-convex structure 20 formed on one surface of the base material 12, and an antireflection layer formed on the fine concavo-convex structure 20. 14A.
 微細凹凸構造20は、図4に示すように、凹凸表面の傾斜角θが管理されて形成されている。実施の形態2では、傾斜角が、特定角度θ2=48.1°以下となる範囲が、微細凹凸構造20の形成面中、平面視したときの面積で70%以上の範囲を占めるように形成されている。図4中、太線により特定角度θ2を超える範囲を示している。 The fine concavo-convex structure 20 is formed by controlling the inclination angle θ of the concavo-convex surface as shown in FIG. In the second embodiment, the inclination angle is formed such that the range in which the specific angle θ2 = 48.1 ° or less occupies a range of 70% or more in the area when viewed in plan in the formation surface of the fine concavo-convex structure 20. Has been. In FIG. 4, a range exceeding the specific angle θ2 is indicated by a bold line.
 傾斜角が特定角度θ2以下の部分は、反射防止層14Aの特性を良好にできる部分である。したがって、この範囲が増えると、反射防止部材10Aの反射防止の特性を向上できる。よって、傾斜角が特定角度θ2以下となる部分が占める範囲は、微細凹凸構造20の形成面中、より好ましくは80%以上、さらに好ましくは90%以上にしてもよい。 The portion where the inclination angle is equal to or smaller than the specific angle θ2 is a portion where the characteristics of the antireflection layer 14A can be improved. Therefore, when this range increases, the antireflection characteristic of the antireflection member 10A can be improved. Therefore, the range occupied by the portion where the inclination angle is equal to or less than the specific angle θ2 may be 80% or more, more preferably 90% or more in the formation surface of the fine concavo-convex structure 20.
 実施の形態2において、傾斜角が特定角度θ2以下となる面の割合を70%以上としている理由については後述する。 In Embodiment 2, the reason why the ratio of the surface where the inclination angle is equal to or smaller than the specific angle θ2 is 70% or more will be described later.
 図5は、反射防止層の一例を示す図である。図6は、一例の反射防止層の膜厚比と反射率との関係を示すグラフである。 FIG. 5 is a diagram showing an example of the antireflection layer. FIG. 6 is a graph showing the relationship between the film thickness ratio and the reflectance of an example antireflection layer.
 反射防止層14、14Aは、3層以上の複数種類の膜を積層して構成される。反射防止層14、14Aは、各層の屈折率と膜厚とがコントロールされて形成され、各界面を反射した光が異なる位相で重なることで、互いの光をキャンセルさせて反射光を低減させる。反射防止層14、14Aの全体の厚みは、膜の種類および数によって変わるが、300~500nmなどであり、微細凹凸構造20の凹凸量に比べて非常に薄い。反射防止層14、14Aは、例えば、SiO、TiO、Alなどの透明な金属酸化物で構成される。 The antireflection layers 14 and 14A are configured by laminating a plurality of types of films of three or more layers. The antireflection layers 14 and 14A are formed by controlling the refractive index and the film thickness of each layer, and the light reflected from each interface overlaps with different phases, thereby canceling each other's light and reducing the reflected light. The total thickness of the antireflection layers 14 and 14A varies depending on the type and number of films, but is 300 to 500 nm or the like, which is very thin compared to the unevenness of the fine uneven structure 20. The antireflection layers 14 and 14A are made of a transparent metal oxide such as SiO 2 , TiO 2 , or Al 2 O 3 , for example.
 反射防止層14、14Aの各膜は、蒸着法、スパッタ法などのドライプロセスを用いて形成されてもよい。蒸着法、スパッタ法は、真空中で蒸発させた材料物質を面上に凝縮させる方法に含まれる。また、上記各膜は、化学液相成長などのウエットプロセスを用いて形成されてもよい。また、反射防止層14、14Aは、ドライプロセスの薄膜とウエットプロセスの薄膜とが積層されていてもよい。すなわち、反射防止層14、14Aの各膜のうち、少なくとも1つは、真空中で蒸発させて材料物質を面上に凝縮させる処理により形成されていてもよく、ウエットプロセスにより形成されていてもよい。 Each film of the antireflection layers 14 and 14A may be formed using a dry process such as a vapor deposition method or a sputtering method. The vapor deposition method and the sputtering method are included in a method of condensing a material substance evaporated in a vacuum on the surface. Each of the above films may be formed using a wet process such as chemical liquid phase growth. The antireflection layers 14 and 14A may be a laminate of a dry process thin film and a wet process thin film. That is, at least one of the films of the antireflection layers 14 and 14A may be formed by a process of evaporating in a vacuum to condense a material substance on the surface, or may be formed by a wet process. Good.
 図6に示すように、反射防止層14、14Aは、膜厚が変わることで、可視光の反射率が変化する。膜厚と反射率との関係グラフにおいて、各界面の反射した光が効率的にキャンセルされることにより反射率が1パーセント以下となる範囲など、他の領域より反射率が低くなる膜厚領域がある。この膜厚領域より膜厚が大きくなるか、或いは、小さくなると反射率が急激に増加する。 As shown in FIG. 6, the reflectance of the visible light changes as the antireflection layers 14 and 14A change in film thickness. In the graph of the relationship between the film thickness and the reflectance, there are film thickness regions where the reflectance is lower than other regions, such as a range in which the reflectance is 1% or less by efficiently canceling the light reflected by each interface. is there. When the film thickness becomes larger or smaller than this film thickness region, the reflectance increases rapidly.
 反射防止層14、14Aにおいて、反射率が低くなる膜厚領域の中央の膜厚を、膜厚比1とすると、図6に示すように、反射率が低くなる領域は、膜厚比0.8~1.2となる。 In the antireflection layers 14 and 14A, when the film thickness at the center of the film thickness region where the reflectivity is low is assumed to be a film thickness ratio 1, as shown in FIG. 8 to 1.2.
 実施の形態1の反射防止層14は、基板の傾斜角がゼロのときに、膜厚比1の膜厚が得られるように形成される。このとき、傾斜角θを有する部分には、例えば蒸着により飛散してくる一定量の薄膜粒子に対して、傾斜角θだけ薄膜粒子が付着する面積が大きくなる。このため、傾斜角θを有する部分の膜厚は、傾斜角ゼロの部分と比べて薄くなる。傾斜角ゼロの部分を膜厚Xとすれば、傾斜角θを有する部分の膜厚X1は、次式(1)のように表わされる。 The antireflection layer 14 of Embodiment 1 is formed so that a film thickness ratio of 1 can be obtained when the tilt angle of the substrate is zero. At this time, the area where the thin film particles adhere to the portion having the inclination angle θ is increased by the inclination angle θ with respect to a certain amount of thin film particles scattered by vapor deposition, for example. For this reason, the film thickness of the portion having the inclination angle θ is thinner than that of the portion having the inclination angle zero. If the portion having the tilt angle of zero is defined as the film thickness X, the thickness X1 of the portion having the tilt angle θ is represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 よって、実施の形態1の反射防止層14では、傾斜角が0°~特定角度θ1(=36.8°)の面に形成される薄膜の膜厚は、図6の範囲W1に示すように、膜厚比1~0.8の膜厚となる。この膜厚領域では、反射率が1%以下となり、反射防止の特性が良好となる。傾斜角が特定角度θ1を超える面では、傾斜角が大きくなるに従って反射防止層14の反射率が急激に上昇する。 Therefore, in the antireflection layer 14 of Embodiment 1, the film thickness of the thin film formed on the surface having the inclination angle of 0 ° to the specific angle θ1 (= 36.8 °) is as shown in the range W1 in FIG. The film thickness ratio is 1 to 0.8. In this film thickness region, the reflectance is 1% or less, and the antireflection characteristic is good. On the surface where the inclination angle exceeds the specific angle θ1, the reflectance of the antireflection layer 14 increases rapidly as the inclination angle increases.
 前述したが、実施の形態1では、傾斜角が0°~特定角度θ1(=36.8°)となる範囲が60%以上を占めることで、反射防止層14の良好な性能が得られる。 As described above, in the first embodiment, the range in which the inclination angle is 0 ° to the specific angle θ1 (= 36.8 °) occupies 60% or more, so that good performance of the antireflection layer 14 can be obtained.
 実施の形態2の反射防止層14Aは、基板の傾斜角がゼロのときに、膜厚比1.2の膜厚が得られるように形成されている。 The antireflection layer 14A of Embodiment 2 is formed so as to obtain a film thickness ratio of 1.2 when the substrate tilt angle is zero.
 上述のように、傾斜角ゼロの部分を膜厚Xとすれば、傾斜角θを有する部分の膜厚X1は、式(1)のように表わされる。よって、傾斜角が0°~特定角度θ2(=48.1°)の面に形成される反射防止層14Aの膜厚は、図6の範囲W2に示すように、膜厚比1.2~0.8の膜厚となる。この膜厚範囲の反射防止層14Aは、反射率が1%以下となり、反射防止の特性が良好となる。傾斜角が特定角度θ2を超える面では、傾斜角が大きくなるに従って反射防止層14Aの反射率が急激に上昇する。 As described above, assuming that the portion having the tilt angle of zero is the film thickness X, the film thickness X1 of the portion having the tilt angle θ is expressed by the equation (1). Therefore, the film thickness of the antireflection layer 14A formed on the surface having the inclination angle of 0 ° to the specific angle θ2 (= 48.1 °) is 1.2 to as shown in the range W2 in FIG. The film thickness is 0.8. The antireflection layer 14A in this film thickness range has a reflectance of 1% or less and good antireflection characteristics. On the surface where the inclination angle exceeds the specific angle θ2, the reflectance of the antireflection layer 14A increases rapidly as the inclination angle increases.
 前述したが、実施の形態2においても、傾斜角が0°~特定角度θ2(=48.1°)となる範囲が70%以上を占めることで、反射防止層14の良好な特性が得られる。 As described above, also in the second embodiment, when the range in which the inclination angle is 0 ° to the specific angle θ2 (= 48.1 °) occupies 70% or more, good characteristics of the antireflection layer 14 can be obtained. .
 <比較例>
 ここでは、実施の形態1において、傾斜角が特定角度θ1以下となる面積を60%以上とした理由、および、実施の形態2において、傾斜角が特定角度θ2以下となる面積を70%以上とした理由を、図7A、図7Bを参照しながら説明する。
<Comparative example>
Here, in Embodiment 1, the area where the inclination angle is equal to or less than the specific angle θ1 is 60% or more, and in Embodiment 2, the area where the inclination angle is equal to or less than the specific angle θ2 is 70% or more. The reason for this will be described with reference to FIGS. 7A and 7B.
 図7Aは、比較例の微細凹凸構造の傾斜角を示す模式図を示し、図7Bは比較例の微細凹凸構造の上面図を示す。 FIG. 7A is a schematic diagram showing the inclination angle of the fine uneven structure of the comparative example, and FIG. 7B is a top view of the fine uneven structure of the comparative example.
 図7A、図7Bに示される比較例の微細凹凸構造は、基材50の一つの面に同一径の半球を密に整列させたモデルである。図7Aの太線部分、および、図7Bの斜線部分は、反射防止層の膜厚比が0.8~1.2を外れる傾斜角の部位を、模式的に示している。 7A and 7B is a model in which hemispheres of the same diameter are closely aligned on one surface of the substrate 50. The thick line portion in FIG. 7A and the shaded portion in FIG. 7B schematically show portions having an inclination angle where the film thickness ratio of the antireflection layer deviates from 0.8 to 1.2.
 ここで、反射防止層を、平面に膜厚比1.0で作製するのであれば、前述の通り、図7Aの傾斜角θは36.8°となる。また、反射防止層を、平面に膜厚比1.2で作製するのであれば、図7Aの傾斜角θは48.1°となる。 Here, if the antireflection layer is formed on a plane with a film thickness ratio of 1.0, as described above, the inclination angle θ of FIG. 7A is 36.8 °. If the antireflection layer is formed on a plane with a film thickness ratio of 1.2, the inclination angle θ in FIG. 7A is 48.1 °.
 平面視で、微細凹凸構造が形成された領域に対する、図7Aの太線部分の割合は、図7Bの正三角形Tにおける斜線部分の割合と相似の関係にある。r2は、平面視したときに、太線部分の内周側の円の半径であり、r1は、平面視したときに、太線部分の外周側の円の半径である。これらの条件から、平面視したときの太線部分以外の面積の割合は、次のように求めることができる。 In plan view, the ratio of the thick line portion in FIG. 7A to the region where the fine concavo-convex structure is formed is similar to the ratio of the hatched portion in the equilateral triangle T in FIG. 7B. r2 is the radius of the circle on the inner peripheral side of the thick line portion when viewed in plan, and r1 is the radius of the circle on the outer peripheral side of the thick line portion when viewed in plan. From these conditions, the ratio of the area other than the thick line portion when viewed in plan can be obtained as follows.
 まず、正三角形Tの一辺の長さは2×r1なので、その面積S0は、次式(2)となる。 First, since the length of one side of the equilateral triangle T is 2 × r1, the area S0 is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、正三角形Tに含まれる斜線部の面積S1は、次式(3)となる。 Next, the area S1 of the hatched portion included in the equilateral triangle T is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 平面視で太線部分以外の面積の割合R1と、半径r1、r2の関係とは、次式(4)、(5)となる。 The ratio R1 of the area other than the thick line portion in the plan view and the relationship between the radii r1 and r2 are expressed by the following expressions (4) and (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 これらの結果から、上記比較例のモデルにおいて、平面視で膜厚比が0.8~1.2となる面積の割合R1は、膜厚比1.0の成膜をする場合(θ=36.8°)に42%となり、膜厚比1.2の成膜をする場合(θ=48.1°)に60%となる。 From these results, in the model of the above comparative example, the ratio R1 of the area where the film thickness ratio is 0.8 to 1.2 in plan view is the case where the film is formed with the film thickness ratio of 1.0 (θ = 36). .8 °) is 42%, and when a film thickness ratio of 1.2 is formed (θ = 48.1 °), it is 60%.
 実施の形態1では、平面視において、膜厚比が0.8~1.2となる面積の割合が60%以上であり、半球を密に整列させただけの特別な工夫を施していないモデルの割合42%と比較して十分に大きい。よって、実施の形態1の特有な構成により、反射防止層の作用を十分に得ることができる。 In the first embodiment, in a plan view, the ratio of the area where the film thickness ratio is 0.8 to 1.2 is 60% or more, and the model is not specially devised only by closely arranging the hemispheres. The ratio is sufficiently large compared with 42%. Therefore, the action of the antireflection layer can be sufficiently obtained by the unique configuration of the first embodiment.
 実施の形態2では、平面視において、膜厚比が0.8~1.2となる面積の割合が70%以上であり、半球を密に整列させただけの特別な工夫を施していないモデルの割合60%と比較して十分に大きい。よって、実施の形態2の特有な構成により、反射防止層の作用を十分に得ることができる。 In the second embodiment, in a plan view, the ratio of the area where the film thickness ratio is 0.8 to 1.2 is 70% or more, and the model is not specially devised only by densely arranging the hemispheres. The ratio is sufficiently large compared with 60%. Therefore, the action of the antireflection layer can be sufficiently obtained by the unique configuration of the second embodiment.
 以上のように、実施の形態1、2の反射防止部材10、10Aによれば、防眩層の微細凹凸構造20により、AG技術の特性が得られ、反射防止層14,14Aにより、良好な反射防止特性が得られる。よって、高い反射処理性能を有する反射防止部材10、10Aを実現できる。 As described above, according to the antireflection members 10 and 10A of Embodiments 1 and 2, the AG technology characteristics are obtained by the fine uneven structure 20 of the antiglare layer, and the antireflection layers 14 and 14A are favorable. Antireflection characteristics can be obtained. Therefore, the antireflection members 10 and 10A having high reflection processing performance can be realized.
 また、実施の形態1、2の反射防止部材10、10Aによれば、微細凹凸構造20の傾斜角の管理によって、急勾配な傾斜面で囲まれた溝部または凹部が少なくなるので、溝部または凹部への汚れの付着による視認性の低下も少なくできる。 In addition, according to the antireflection members 10 and 10A of the first and second embodiments, the groove or recess surrounded by the steeply inclined surface is reduced by the management of the tilt angle of the fine concavo-convex structure 20, and therefore the groove or recess. Visibility degradation due to adhesion of dirt to the surface can be reduced.
 なお、上記実施の形態1、2では、微細凹凸構造20として、複数の球面状の凸部21が形成された例を示したが、凹凸の形状は、これらに限られることはない。 In the first and second embodiments, an example in which a plurality of spherical convex portions 21 are formed as the fine concavo-convex structure 20 is shown, but the shape of the concavo-convex shape is not limited to these.
 また、上記実施の形態1、2では、微細凹凸構造20の傾斜角の管理と、傾斜角ゼロの面に膜厚比1または膜厚比1.2の反射防止層14,14Aを形成することで、反射防止層14,14Aの良好な膜厚を実現している。しかしながら、傾斜角ゼロの面に形成される膜厚は、膜厚比0.8~1.2の何れかにする必要はない。傾斜角ゼロの面に形成される膜厚が、膜厚比1.2以上であっても、微細凹凸構造20の傾斜角の設け方によって、反射防止層14,14Aの膜厚バラツキを、反射率の低くなる領域で膜厚比±20%以内に抑えることが可能である。また、このような傾斜角の面の割合を一定以上に制御することも可能である。 In the first and second embodiments, the inclination angle of the fine concavo-convex structure 20 is managed, and the antireflection layers 14 and 14A having a film thickness ratio of 1 or a film thickness ratio of 1.2 are formed on the surface having the zero inclination angle. Thus, good film thicknesses of the antireflection layers 14 and 14A are realized. However, the film thickness formed on the surface having the zero tilt angle need not be any film thickness ratio of 0.8 to 1.2. Even if the film thickness formed on the surface with the tilt angle of zero is 1.2 or more, the film thickness variation of the antireflection layers 14 and 14A is reflected depending on the method of providing the tilt angle of the fine concavo-convex structure 20. It is possible to keep the film thickness ratio within ± 20% in the region where the rate is low. It is also possible to control the ratio of the surface having such an inclination angle to a certain level or more.
 また、図8A~図8Dに示すように、反射防止部材の形状は、特に制限されるものでない。反射防止部材10B~10Eは、図8Aのように板状としても、図8Bのようにフィルム状としても、図8Cのように帯状としても、図8Cのようにブロック状としてもよい。反射防止部材10B~10Eの各形状において、少なくとも1つの面に、上述した防眩層と反射防止層とを有すればよい。 In addition, as shown in FIGS. 8A to 8D, the shape of the antireflection member is not particularly limited. The antireflection members 10B to 10E may be formed into a plate shape as shown in FIG. 8A, a film shape as shown in FIG. 8B, a belt shape as shown in FIG. 8C, or a block shape as shown in FIG. 8C. In each shape of the antireflection members 10B to 10E, it is only necessary to have the above-described antiglare layer and antireflection layer on at least one surface.
 また、反射防止層14、14Aの各薄膜の種類、積層数、膜厚は、図示した具体例に限られず、種々に変更可能である。薄膜の積層数は3層以上とするとよい。 Further, the type, the number of layers, and the film thickness of each thin film of the antireflection layers 14 and 14A are not limited to the illustrated specific examples, and can be variously changed. The number of thin films is preferably 3 or more.
 <反射防止部材の製造方法>
 次に、反射防止部材の製造方法の一例について説明する。
<Method for producing antireflection member>
Next, an example of a manufacturing method of the antireflection member will be described.
 反射防止部材の製造方法は、工程順に、防眩層形成工程と、反射防止層形成工程とを有する。 The manufacturing method of an antireflection member has an anti-glare layer formation process and an antireflection layer formation process in order of a process.
 防眩層形成工程では、微細凹凸構造を有する型30(図9C参照)と、透明な基材12(図1~図4参照)と、硬化型透明樹脂とが用いられる。型30は、例えば金型である。基材12は、例えば、ヘイズの少ない、透明樹脂または透明ガラスなどである。透明樹脂には、例えば、PET(ポリエチレンテレフタラート)、PC(ポリカーボネート)、または、アクリル樹脂が含まれる。硬化透明樹脂としては、例えば、紫外線硬化型の透明レジンを適用できる。 In the antiglare layer forming step, a mold 30 having a fine concavo-convex structure (see FIG. 9C), a transparent substrate 12 (see FIGS. 1 to 4), and a curable transparent resin are used. The mold 30 is, for example, a mold. The base material 12 is, for example, a transparent resin or transparent glass having a low haze. The transparent resin includes, for example, PET (polyethylene terephthalate), PC (polycarbonate), or acrylic resin. As the curable transparent resin, for example, an ultraviolet curable transparent resin can be applied.
 型30は、傾斜角が管理された凹凸面を有する。型30の凹凸面は、転写された凹凸面において、傾斜角のバラツキに起因して生じる反射防止層の膜厚バラツキが膜厚比±20%以内となる傾斜角を有する面が60%以上を占めるように形成される。具体的には、実施の形態1の反射防止部材10を製造する型30は、転写された凹凸面の中で、傾斜角36.8°以下の部分が60%以上を占めるように形成される。実施の形態2の反射防止部材10Aを製造する型30は、転写された凹凸面の中で、傾斜角48.1°以下の部分が60%以上を占めるように形成される。型30の製造方法は後述する。 The mold 30 has an uneven surface with a controlled inclination angle. The uneven surface of the mold 30 has a surface having an inclination angle at which the film thickness variation of the antireflection layer caused by the variation in the inclination angle is within ± 20% in the transferred uneven surface is 60% or more. It is formed to occupy. Specifically, the mold 30 for manufacturing the antireflection member 10 of Embodiment 1 is formed such that a portion with an inclination angle of 36.8 ° or less occupies 60% or more in the transferred uneven surface. . The mold 30 for manufacturing the antireflection member 10A of Embodiment 2 is formed such that a portion with an inclination angle of 48.1 ° or less occupies 60% or more in the transferred concavo-convex surface. A method for manufacturing the mold 30 will be described later.
 防眩層形成工程では、型30を用いた型成形により、型30の凹凸を転写した形状で、基材12の上面に硬化型透明樹脂を硬化させる。これにより、基材12の上面に透明な微細凹凸構造20が付加されて防眩層が形成される。 In the antiglare layer forming step, the curable transparent resin is cured on the upper surface of the base material 12 in a shape in which the unevenness of the mold 30 is transferred by mold forming using the mold 30. Thereby, the transparent fine uneven structure 20 is added to the upper surface of the base material 12, and an anti-glare layer is formed.
 反射防止層形成工程では、微細凹凸構造20を有する基材12に対して、ドライプロセス或いはウエットプロセスの成膜処理を複数回行う。各成膜処理は、薄膜の膜厚が管理されて行われる。実施の形態1の反射防止部材10を製造する場合には、傾斜角0°の面に膜厚比1の反射防止層が形成されるように、膜厚が管理される。実施の形態2の反射防止部材10Aを製造する場合には、傾斜角0°の面に膜厚比1.2の反射防止層が形成されるように、膜厚が管理される。これにより、防眩層の微細凹凸構造20より上層に、所定の反射防止層が形成される。 In the antireflection layer forming step, a dry process or a wet process film forming process is performed a plurality of times on the substrate 12 having the fine concavo-convex structure 20. Each film forming process is performed by managing the film thickness of the thin film. When manufacturing the antireflection member 10 of Embodiment 1, the film thickness is controlled so that an antireflection layer having a film thickness ratio of 1 is formed on a surface having an inclination angle of 0 °. When manufacturing the antireflection member 10A of the second embodiment, the film thickness is controlled so that an antireflection layer having a film thickness ratio of 1.2 is formed on a surface with an inclination angle of 0 °. Thereby, a predetermined antireflection layer is formed above the fine relief structure 20 of the antiglare layer.
 以上の工程により、実施の形態1、2の反射防止部材10、10Aを製造することができる。 Through the above steps, the antireflection members 10 and 10A of the first and second embodiments can be manufactured.
 なお、反射防止部材の製造方法において、防眩層形成工程と反射防止層形成工程との間に、別の成膜処理が含まれていてもよい。 In addition, in the manufacturing method of the antireflection member, another film forming process may be included between the antiglare layer forming step and the antireflection layer forming step.
 <型の製造方法>
 続いて、防眩層形成工程で使用される型30の製造方法の一例について説明する。
<Mold manufacturing method>
Then, an example of the manufacturing method of the type | mold 30 used at a glare-proof layer formation process is demonstrated.
 図9A~図9Cは、型の製造方法の第1例を説明する図である。図9Aは第1工程の説明図、図9Bは第2工程の説明図、図9Cは最終的な型の形状を示す模式図である。 9A to 9C are diagrams for explaining a first example of a mold manufacturing method. FIG. 9A is an explanatory diagram of the first step, FIG. 9B is an explanatory diagram of the second step, and FIG. 9C is a schematic diagram showing a final mold shape.
 型30の製造方法の第1例は、先ず、図9Aに示すように、型材31に、ブラスト加工、エッチング加工、又は、放電加工を及ぼして、型材31の一面に、防眩作用が得られる光学距離のピッチで凹凸を形成する。次に、図9Bに示すように、凹凸の下端部を、研磨又はエッチングにより、除去する。図9Bの研磨又はエッチングの処理量により、傾斜角が大きくなる範囲の割合を調整することができる。 In the first example of the method for manufacturing the mold 30, first, as shown in FIG. 9A, the mold material 31 is subjected to blasting, etching, or electric discharge machining, and an antiglare action is obtained on one surface of the mold 31. Concavities and convexities are formed at an optical distance pitch. Next, as shown in FIG. 9B, the lower end portion of the unevenness is removed by polishing or etching. The ratio of the range in which the inclination angle increases can be adjusted by the amount of polishing or etching in FIG. 9B.
 これにより、図9Cに示すように、実施形態1、2の微細凹凸構造20を転写したような凹凸を有する型30を製造することができる。 As a result, as shown in FIG. 9C, a mold 30 having projections and depressions as if the fine concavo-convex structure 20 of Embodiments 1 and 2 was transferred can be manufactured.
 図10A~図10Cは、型の製造方法の第2例を説明する図である。図10Aは第1工程の説明図、図10Bは第2工程の説明図、図10Cは最終的な型の形状を示す模式図である。 10A to 10C are diagrams for explaining a second example of the mold manufacturing method. FIG. 10A is an explanatory diagram of the first step, FIG. 10B is an explanatory diagram of the second step, and FIG. 10C is a schematic diagram showing a final mold shape.
 型30の製造方法の第2例は、先ず、図10Aに示すように、型材31の一面に、ブラスト加工、又は、エッチング加工により、防眩作用を及ぼす光学距離のピッチで凹凸を形成する。次に、図10Bに示すように、凹凸の個々の凹部より小さな径の粒子32を用いて追加のブラスト加工を行う。追加のブラスト加工では、凹凸の下端部など、薄い部分は、大きく削られ、凹部の中央など、厚みのある部分の削り量は小さくなる。これにより、図10Cに示すように、傾斜角の大きな範囲が削られた微細凹凸構造を有する型30を製造することができる。 In the second example of the manufacturing method of the mold 30, first, as shown in FIG. 10A, irregularities are formed on one surface of the mold material 31 at a pitch of an optical distance that exerts an antiglare action by blasting or etching. Next, as shown in FIG. 10B, additional blasting is performed using particles 32 having a smaller diameter than the individual concave and convex portions. In the additional blast processing, a thin portion such as the lower end portion of the unevenness is sharply cut, and a cutting amount of a thick portion such as the center of the concave portion is reduced. As a result, as shown in FIG. 10C, a mold 30 having a fine concavo-convex structure in which a large range of inclination angles is cut can be manufactured.
 図11は、図10Cに示す型を用いて作製した微細凹凸構造を示す模式図である。 FIG. 11 is a schematic view showing a fine concavo-convex structure produced using the mold shown in FIG. 10C.
 第2例の型30を用いて防眩層を形成することで、図11のような微細凹凸構造20Aを作製することができる。微細凹凸構造20Aは、特定の角度を超えた傾斜角の面(図中、太線で示す)を、所定割合以下に制御することができる。 By forming the antiglare layer using the mold 30 of the second example, a fine uneven structure 20A as shown in FIG. 11 can be produced. The fine concavo-convex structure 20 </ b> A can control a surface having an inclination angle exceeding a specific angle (indicated by a thick line in the drawing) to a predetermined ratio or less.
 図12A、図12Bは、防眩層を形成する型の製造方法の第3例を説明する図である。図12Aは第1工程の説明図、図12Bは最終的な型の形状を示す模式図である。 FIG. 12A and FIG. 12B are diagrams for explaining a third example of a mold manufacturing method for forming an antiglare layer. FIG. 12A is an explanatory diagram of the first step, and FIG. 12B is a schematic diagram showing a final mold shape.
 型30の製造方法の第3例は、図12Aに示すように、微細模様加工45を施した電極40を用いて、型材31に放電加工を行うものである。これにより、図12Bに示すように、微細模様加工45に応じた一律の微細凹凸形状を有する型30を形成することができる。 A third example of the manufacturing method of the mold 30 is to perform electric discharge machining on the mold material 31 using the electrode 40 on which the fine pattern machining 45 has been performed, as shown in FIG. 12A. Thereby, as shown to FIG. 12B, the type | mold 30 which has the uniform fine uneven | corrugated shape according to the fine pattern process 45 can be formed.
 図13は、図12Bに示す型を用いて作製した微細凹凸構造を示す模式図である。 FIG. 13 is a schematic view showing a fine concavo-convex structure produced using the mold shown in FIG. 12B.
 第3例の型30を用いて防眩層を形成することで、図13のような一律の凹凸形状を有する微細凹凸構造20Bを作製することができる。微細凹凸構造20Bは、例えば、断面台形形状の凹凸構造である。これにより、微細凹凸構造20Bの全エリアにおいて、反射防止層の膜厚バラツキが、膜厚比±20%以内となるように、傾斜角の制御が可能となる。 By forming the antiglare layer using the mold 30 of the third example, a fine concavo-convex structure 20B having a uniform concavo-convex shape as shown in FIG. 13 can be produced. The fine uneven structure 20B is, for example, an uneven structure having a trapezoidal cross section. As a result, the tilt angle can be controlled so that the film thickness variation of the antireflection layer is within ± 20% of the film thickness ratio in the entire area of the fine concavo-convex structure 20B.
 以上、本発明の各実施の形態について説明した。 The embodiments of the present invention have been described above.
 なお、上記実施の形態では、反射防止部材の微細凹凸構造の製造方法として型成形を示し、型の製造方法を幾つか具体的に示した。しかし、反射防止部材の微細凹凸構造の製造方法は、特に制限されるものではなく、発明により特定される傾斜角を有する微細凹凸構造が製造できれば、どのような製造方法を用いてもよい。 In the above embodiment, mold forming is shown as a method for manufacturing the fine concavo-convex structure of the antireflection member, and some specific methods for manufacturing the mold are shown. However, the manufacturing method of the fine uneven structure of the antireflection member is not particularly limited, and any manufacturing method may be used as long as the fine uneven structure having the inclination angle specified by the invention can be manufactured.
 本発明は、ディスプレイの反射を防止する反射防止部材に利用することができる。 The present invention can be used for an antireflection member for preventing reflection of a display.
10,10A,10B,10C,10D,10E  反射防止部材
12,50  基材
14,14A  反射防止層
20,20A,20B  微細凹凸構造
21  凸部
30  型
31  型材
32  粒子
40  電極
45  微細模様加工
10, 10A, 10B, 10C, 10D, 10E Antireflection member 12, 50 Base material 14, 14A Antireflection layer 20, 20A, 20B Fine concavo-convex structure 21 Convex 30 Mold 31 Mold material 32 Particle 40 Electrode 45 Fine pattern processing

Claims (12)

  1. 基材と、
    微細凹凸構造を有し、前記基材の表面に設けられた防眩層と、
    積層された複数の膜を有し、前記防眩層より上層に形成された反射防止層と、を備え、
    前記防眩層において、前記微細凹凸構造の表面の、前記基材の前記表面に対する傾斜角のバラツキに起因して生じる前記反射防止層の膜厚バラツキが膜厚比±20%以内となる傾斜角を有する面が、前記微細凹凸構造が形成された領域のうち60%以上を占める、
    反射防止部材。
    A substrate;
    An anti-glare layer provided on the surface of the substrate, having a fine relief structure;
    An antireflection layer having a plurality of laminated films and formed above the antiglare layer; and
    In the antiglare layer, the inclination angle at which the film thickness variation of the antireflection layer caused by the variation in the inclination angle of the surface of the fine concavo-convex structure with respect to the surface of the substrate is within ± 20% of the film thickness ratio Occupying 60% or more of the region where the fine concavo-convex structure is formed,
    Antireflection member.
  2. 前記傾斜角が0°である面に、膜厚Xの前記反射防止層を形成したときに、前記傾斜角がθである面に形成される膜厚がX・cosθになるものとして、前記傾斜角と前記反射防止層の膜厚バラツキとの関係が定義される、
    請求項1記載の反射防止部材。
    Assuming that when the antireflection layer having a film thickness X is formed on the surface having the inclination angle of 0 °, the film thickness formed on the surface having the inclination angle θ is X · cos θ. The relationship between the corner and the film thickness variation of the antireflection layer is defined,
    The antireflection member according to claim 1.
  3. 前記反射防止層の膜厚と反射率との関係グラフにおいて反射率が他の領域と比較して低くなる膜厚領域の中央値を膜厚比1として、
    前記反射防止層は、前記傾斜角が0°である面に膜厚比1の膜厚で形成され、
    前記防眩層は、前記微細凹凸構造が形成された領域のうち、前記傾斜角が36.8°以下である面が60%以上を占める、
    請求項1記載の反射防止部材。
    In the graph of the relationship between the film thickness and the reflectance of the antireflection layer, the median value of the film thickness region where the reflectance is lower than that of other regions is defined as a film thickness ratio of
    The antireflection layer is formed with a film thickness ratio of 1 on the surface having the inclination angle of 0 °,
    In the antiglare layer, in the region where the fine concavo-convex structure is formed, the surface having the inclination angle of 36.8 ° or less occupies 60% or more.
    The antireflection member according to claim 1.
  4. 前記反射防止層の膜厚と反射率との関係グラフにおいて、前記反射率が他の領域と比較して低くなる膜厚領域の中央値を膜厚比1として、
    前記反射防止層は、前記傾斜角が0°である面に膜厚比1.2の膜厚で形成され、
    前記防眩層は、前記微細凹凸構造が形成された領域のうち、前記傾斜角が48.1°以下である面が70%以上を占める、
    請求項1記載の反射防止部材。
    In the relationship graph between the film thickness and the reflectance of the antireflection layer, the median value of the film thickness region where the reflectance is lower than other regions is defined as a film thickness ratio of 1,
    The antireflection layer is formed with a film thickness ratio of 1.2 on the surface where the tilt angle is 0 °,
    In the antiglare layer, in the region where the fine concavo-convex structure is formed, the surface having the inclination angle of 48.1 ° or less occupies 70% or more,
    The antireflection member according to claim 1.
  5. 前記反射防止層の前記複数の膜のうち、少なくとも1つは、真空中で蒸発させた材料物質を面上に凝縮させる処理により形成されている、
    請求項1記載の反射防止部材。
    At least one of the plurality of films of the antireflection layer is formed by a process of condensing on the surface a material substance evaporated in a vacuum,
    The antireflection member according to claim 1.
  6. 前記反射防止層の前記複数の膜のうち、少なくとも1つは、ウエットプロセスにより形成されている、
    請求項1記載の反射防止部材。
    At least one of the plurality of films of the antireflection layer is formed by a wet process.
    The antireflection member according to claim 1.
  7. 凹凸面を有する型を用いた成形処理を行って基材に微細凹凸構造を形成する防眩層形成工程と、
    前記微細凹凸構造よりも上層に、積層された複数の膜を有する反射防止層を形成する反射防止層形成工程と、を備え、
    前記型の前記凹凸面において、転写された凹凸面の、前記基材の表面に対する傾斜角のバラツキに起因して生じる前記反射防止層の膜厚バラツキが膜厚比±20%以内となる前記傾斜角を有する面が60%以上を占めるように形成されている、
    反射防止部材の製造方法。
    An anti-glare layer forming step of forming a fine concavo-convex structure on a substrate by performing a molding process using a mold having an uneven surface;
    An antireflection layer forming step of forming an antireflection layer having a plurality of laminated films on the upper layer than the fine concavo-convex structure,
    In the concavo-convex surface of the mold, the inclination in which the film thickness variation of the antireflection layer caused by the variation in the inclination angle of the transferred concavo-convex surface with respect to the surface of the substrate is within ± 20% of the film thickness ratio It is formed so that the surface with corners occupies 60% or more.
    Manufacturing method of antireflection member.
  8. 前記型の前記凹凸面は、型材の一面にブラスト加工、エッチング加工、或いは放電加工によって形成した凹凸に、前記凹凸より小さい径の粒子を用いて追加のブラスト加工を行って形成される、
    請求項7記載の反射防止部材の製造方法。
    The concavo-convex surface of the mold is formed by performing an additional blast process using particles having a diameter smaller than the concavo-convex on the concavo-convex formed by blasting, etching, or electric discharge machining on one surface of the mold material,
    The manufacturing method of the reflection preventing member of Claim 7.
  9. 前記型の前記凹凸面は、型材の一面にブラスト加工、エッチング加工、或いは放電加工によって形成した凹凸面を、研磨或いはエッチングして形成される、
    請求項7記載の反射防止部材の製造方法。
    The uneven surface of the mold is formed by polishing or etching an uneven surface formed on one surface of a mold material by blasting, etching, or electric discharge processing.
    The manufacturing method of the reflection preventing member of Claim 7.
  10. 前記型の前記凹凸面は、型材の一面に、凹凸模様が形成された電極を用いた放電加工を行って形成される、
    請求項7記載の反射防止部材の製造方法。
    The uneven surface of the mold is formed by performing electric discharge machining using an electrode having an uneven pattern formed on one surface of a mold material.
    The manufacturing method of the reflection preventing member of Claim 7.
  11. 前記反射防止層の膜厚と反射率との関係グラフにおいて、前記反射率が他の領域と比較して低くなる膜厚領域の中央値を膜厚比1として、
    前記反射防止層形成工程では、前記傾斜角が0°である面に膜厚比1の膜厚で前記反射防止層を形成し、
    前記型の前記凹凸面は、前記転写された凹凸面の中で、前記傾斜角が36.8°以下の部分が60%以上を占めるように形成されている、
    請求項7記載の反射防止部材の製造方法。
    In the relationship graph between the film thickness and the reflectance of the antireflection layer, the median value of the film thickness region where the reflectance is lower than other regions is defined as a film thickness ratio of 1,
    In the antireflection layer forming step, the antireflection layer is formed with a film thickness ratio of 1 on the surface having the tilt angle of 0 °,
    The concavo-convex surface of the mold is formed such that a portion having the inclination angle of 36.8 ° or less occupies 60% or more in the transferred concavo-convex surface.
    The manufacturing method of the reflection preventing member of Claim 7.
  12. 前記反射防止層の膜厚と反射率との関係グラフにおいて、前記反射率が他の領域と比較して低くなる膜厚領域の中央値を膜厚比1として、
    前記反射防止層形成工程では、前記傾斜角が0°である面に膜厚比1.2の膜厚で前記反射防止層を形成し、
    前記型の前記凹凸面は、前記転写された凹凸面の中で、前記傾斜角が48.1°以下の部分が70%以上を占めるように形成されている、
    請求項7記載の反射防止部材の製造方法。
    In the relationship graph between the film thickness and the reflectance of the antireflection layer, the median value of the film thickness region where the reflectance is lower than other regions is defined as a film thickness ratio of 1,
    In the antireflection layer forming step, the antireflection layer is formed with a film thickness ratio of 1.2 on the surface where the tilt angle is 0 °,
    The concavo-convex surface of the mold is formed such that, in the transferred concavo-convex surface, the portion having the inclination angle of 48.1 ° or less occupies 70% or more.
    The manufacturing method of the reflection preventing member of Claim 7.
PCT/JP2015/004457 2014-09-08 2015-09-02 Anti-reflection member, and production method therefor WO2016038853A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15839276.1A EP3193194A4 (en) 2014-09-08 2015-09-02 Anti-reflection member, and production method therefor
CN201580040253.4A CN106574984A (en) 2014-09-08 2015-09-02 Anti-reflection member, and production method therefor
US15/326,318 US20170205539A1 (en) 2014-09-08 2015-09-02 Anti-reflection member, and production method therefor
JP2016547688A JPWO2016038853A1 (en) 2014-09-08 2015-09-02 Antireflection member and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182642 2014-09-08
JP2014182642 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016038853A1 true WO2016038853A1 (en) 2016-03-17

Family

ID=55458625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004457 WO2016038853A1 (en) 2014-09-08 2015-09-02 Anti-reflection member, and production method therefor

Country Status (5)

Country Link
US (1) US20170205539A1 (en)
EP (1) EP3193194A4 (en)
JP (1) JPWO2016038853A1 (en)
CN (1) CN106574984A (en)
WO (1) WO2016038853A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196620A1 (en) * 2019-03-27 2020-10-01 株式会社クラレ Fine uneven pattern film and head-up display device
JP2021182136A (en) * 2020-05-15 2021-11-25 大日本印刷株式会社 Anti-glare film and image display device
US11960162B2 (en) 2020-05-15 2024-04-16 Dai Nippon Printing Co., Ltd. Anti-glare film and image display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333936A (en) * 2003-05-08 2004-11-25 Fuji Photo Film Co Ltd Antidazzle film and its manufacturing method, antireflection film, polarizing plate and image display device
JP2005195819A (en) * 2004-01-06 2005-07-21 Daicel Chem Ind Ltd Glareproof film
WO2008069324A1 (en) * 2006-12-08 2008-06-12 Mitsubishi Rayon Co., Ltd., Light diffusing optical film, method for manufacturing the light diffusing optical film, prism sheet and surface light source device
JP2009086410A (en) * 2007-10-01 2009-04-23 Konica Minolta Opto Inc Antiglare film, apparatus for manufacturing the same, antiglare antireflection film, polarizing plate, and display device
JP2009204687A (en) * 2008-02-26 2009-09-10 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2010078886A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Anti-glare film, anti-reflection film, polarizing plate, and image display device
JP2010079101A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Optical film, polarizer plate, and image display device
JP2010079099A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Antiglare film, anti-reflection film, polarizing plate, and image display
JP2011095310A (en) * 2009-10-27 2011-05-12 Nippon Electric Glass Co Ltd Optical element
JP2012128321A (en) * 2010-12-17 2012-07-05 Canon Inc Antireflection film forming method and antireflection film forming device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035941A (en) * 2002-07-03 2004-02-05 Konica Minolta Holdings Inc Surface treatment method and optical component
JP2006178071A (en) * 2004-12-21 2006-07-06 Canon Inc Focal plane plate and imaging apparatus
JP5035236B2 (en) * 2006-08-18 2012-09-26 大日本印刷株式会社 Front filter for plasma display and plasma display
JP5511258B2 (en) * 2008-08-29 2014-06-04 キヤノン株式会社 Optical element and optical system
EP2857872B1 (en) * 2012-06-01 2021-05-19 Toppan Printing Co., Ltd. Method of manufacturing an anisotropic reflection display unit
US9841536B2 (en) * 2012-08-31 2017-12-12 Nippon Electric Glass Co., Ltd. Anti-glare/antireflection member and method for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333936A (en) * 2003-05-08 2004-11-25 Fuji Photo Film Co Ltd Antidazzle film and its manufacturing method, antireflection film, polarizing plate and image display device
JP2005195819A (en) * 2004-01-06 2005-07-21 Daicel Chem Ind Ltd Glareproof film
WO2008069324A1 (en) * 2006-12-08 2008-06-12 Mitsubishi Rayon Co., Ltd., Light diffusing optical film, method for manufacturing the light diffusing optical film, prism sheet and surface light source device
JP2009086410A (en) * 2007-10-01 2009-04-23 Konica Minolta Opto Inc Antiglare film, apparatus for manufacturing the same, antiglare antireflection film, polarizing plate, and display device
JP2009204687A (en) * 2008-02-26 2009-09-10 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2010078886A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Anti-glare film, anti-reflection film, polarizing plate, and image display device
JP2010079101A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Optical film, polarizer plate, and image display device
JP2010079099A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Antiglare film, anti-reflection film, polarizing plate, and image display
JP2011095310A (en) * 2009-10-27 2011-05-12 Nippon Electric Glass Co Ltd Optical element
JP2012128321A (en) * 2010-12-17 2012-07-05 Canon Inc Antireflection film forming method and antireflection film forming device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193194A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196620A1 (en) * 2019-03-27 2020-10-01 株式会社クラレ Fine uneven pattern film and head-up display device
JP2021182136A (en) * 2020-05-15 2021-11-25 大日本印刷株式会社 Anti-glare film and image display device
US11960162B2 (en) 2020-05-15 2024-04-16 Dai Nippon Printing Co., Ltd. Anti-glare film and image display device

Also Published As

Publication number Publication date
EP3193194A1 (en) 2017-07-19
EP3193194A4 (en) 2017-10-18
JPWO2016038853A1 (en) 2017-06-15
CN106574984A (en) 2017-04-19
US20170205539A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
EP2787377B1 (en) Optical element, window material, fitting, solar shading device, and building
JP4632589B2 (en) Transparent touch panel with antireflection function and display device using the same
KR101141232B1 (en) Conductive film with high transmittance having a number of anti reflection coating, touch panel using the same and manufacturing method thereof
KR20120059444A (en) Conductive optical device, production method therefor, touch panel device, display device, and liquid crystal display apparatus
US8907224B2 (en) Transparent conductive element, input device, and display device
EP1329762B1 (en) Light guide plate having anti-reflection layer, method of manufacturing the same, illumination device, and liquid crystal display
TWI480572B (en) A transparent conductive element, an input device, and a display device
WO2016047059A1 (en) Antireflection member
US20170307783A1 (en) Optical element, optical composite element, and optical composite element having protective film
WO2016038853A1 (en) Anti-reflection member, and production method therefor
WO2019230758A1 (en) Fine pattern film and head-up display device
CN106461962B (en) Wire grid polarizer and method of manufacture
CN114600007A (en) Optical system including light control film and Fresnel lens
TWI544500B (en) Transparent conductive film and electrostatic capacity type touch panel having the same, and a method for manufacturing a translucent conductive film
KR20190049277A (en) Optical antireflection film and manufacturing method of the same
CN114631041B (en) Optical film and method for producing same
JPS62143846A (en) Antireflection treatment of transparent substrate
TW201331613A (en) Anti-reflection structure and method for manufacturing anti-reflection structure
KR101751260B1 (en) Method of producting anti-reflective layer for display device
KR20170028190A (en) Glass or Film Coating Layers of Vehicle Display and the Coating Method for It
KR101767137B1 (en) Composition optical sheet including function of diffusion plate integrated light diffusion means
CN216957478U (en) Anti-blocking transparent conductive film
KR20190119432A (en) Window for display device and method of manufacturing the same and display device
JP7377311B2 (en) Optical laminate, polarizing plate, image display device, and method for producing optical laminate
KR102160762B1 (en) Plastic cover window and methode for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547688

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15326318

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015839276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE