JPH03214019A - Angular-velocity sensor - Google Patents

Angular-velocity sensor

Info

Publication number
JPH03214019A
JPH03214019A JP2008625A JP862590A JPH03214019A JP H03214019 A JPH03214019 A JP H03214019A JP 2008625 A JP2008625 A JP 2008625A JP 862590 A JP862590 A JP 862590A JP H03214019 A JPH03214019 A JP H03214019A
Authority
JP
Japan
Prior art keywords
piezoelectric element
angular velocity
soldering
velocity sensor
preliminary solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008625A
Other languages
Japanese (ja)
Inventor
Hiroshi Takenaka
寛 竹中
Kazumitsu Ueda
上田 和光
Jiro Terada
二郎 寺田
Toshihiko Ichise
俊彦 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2008625A priority Critical patent/JPH03214019A/en
Publication of JPH03214019A publication Critical patent/JPH03214019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of characteristics by providing a preliminarily soldered part for silver electrodes on a driving piezoelectric element, performing wiring for soldering lead wires to the preliminary solder part, thereby quickly soldering the lead wires. CONSTITUTION:A silver electrode 2 for driving an element 1 and silver electrodes as lead patterns 3a and 3b to a detecting piezoelectric element are formed on a driving piezoelectric element 1. A preliminarily soldered preliminary solder part 4 is provided for parts of the silver electrodes. Lead wires 5a - 5c which are connected to lead pins 6a - 6c used as outer terminals are soldered to the preliminary solder part. Soldering of the lead wires 5a - 5c to the silver electrode 2 and the lead patterns 3a and 3b is performed at the preliminary solder part 4. Therefore, the soldering can be quickly performed readily and securely regardless of skill. Therefore temperature rise due to long application of a soldering iron on the silver electrodes is avoided, and the polarization of the element 1 is not broken.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はジャイロスコープ、とくに圧電素子振動を用い
た角速度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gyroscope, and particularly to an angular velocity sensor using vibration of a piezoelectric element.

従来の技術 従来、ジャイロスコープを用いた慣性航法装置として飛
行機、船舶のような移動する物体の方位を知る手段とし
て主として機械式の回転ジャイロかつかわれている。
2. Description of the Related Art Conventionally, a mechanical rotary gyro has been mainly used as an inertial navigation device using a gyroscope as a means of determining the direction of a moving object such as an airplane or a ship.

これは安定した方位が得られるが機械式であることから
装置が大がかりであり、コストも高く、小型化が望まれ
る機器への応用は困難である。
Although this method can provide stable orientation, since it is mechanical, the device is large-scale and costly, and it is difficult to apply it to equipment that is desired to be miniaturized.

一方、回転力を使わずに物体を振動させて振動された検
知素子から「コリオリの力」を検出する振動型角速度セ
ンサがある。多くは圧電式と電磁式のメカニズムを採用
している構造のものである。
On the other hand, there is a vibration-type angular velocity sensor that vibrates an object without using rotational force and detects the "Coriolis force" from the vibrated sensing element. Many of these structures employ piezoelectric and electromagnetic mechanisms.

これらはジャイロを構成する質量の運動が一定速度の運
動ではなく振動になっている。したがって角速度が加わ
った場合、コリオリの力は、質量の振動数と等しい振動
数の振動トルクとして生じるものである。このトルクに
よる振動を検出することによって角速度を測定するのが
振動型角速度センサの原理であり、とくに圧電体を用い
たセンサが多く考案されている。(日本航空宇宙学会誌
第23巻第267号339−350ページ)上記の原理
に基づき先願特許(特願昭62−126206 )の角
速度センサを発明しているが、その構造を第2図に示す
。第2図に示すように検知用圧電素子21を接合部材2
2で駆動用圧電素子23と振動方向が直交するよう積上
げて接続し駆動用圧電素子23には駆動用電極26を形
成し、この組立部材2組を弾性結合部材26で結合する
In these cases, the mass that makes up the gyro does not move at a constant speed, but instead vibrates. Therefore, when an angular velocity is applied, the Coriolis force occurs as a vibration torque with a frequency equal to the frequency of the mass. The principle of a vibration-type angular velocity sensor is to measure angular velocity by detecting vibrations caused by this torque, and in particular, many sensors using piezoelectric materials have been devised. (Journal of the Japan Society for Aeronautics and Astronautics, Vol. 23, No. 267, Pages 339-350) Based on the above principle, an angular velocity sensor was invented in a prior patent application (Japanese Patent Application No. 126206/1983), and its structure is shown in Figure 2. show. As shown in FIG.
2, the driving piezoelectric elements 23 and the driving piezoelectric elements 23 are stacked and connected so that their vibration directions are perpendicular to each other, a driving electrode 26 is formed on the driving piezoelectric elements 23, and the two sets of assembly members are connected by an elastic coupling member 26.

このように構成されたものにベース3oに設置された支
持ビン29から、リードワイアー27を介して駆動用圧
電素子23上のリードパターン24&。
With this structure, a lead pattern 24& is connected to the drive piezoelectric element 23 via the lead wire 27 from the support bin 29 installed on the base 3o.

24bで形成された信号線で電気的に接続され、さらに
導電ベースト31 & 、31 bで検知用圧電素子2
1の電啄に接続されている。
The sensing piezoelectric element 2 is electrically connected to the conductive base 31 & 31b by the signal line formed by the conductive base 24b.
It is connected to No. 1 Dentaku.

以上のように構成された従来の角速度セ/すの各構成要
素の関連動作を説明する。まず弾性結合部材26で結合
された一対の駆動用圧電素子23を駆動するために対向
している面を共通電極としてそれぞれ外側の面の駆動用
電極25との間に交流信号をかける。信号を印加された
駆動用圧電素子23は弾性結合部材2eを中心にして対
称な振動を始める、いわゆる音叉振動である。
The related operations of each component of the conventional angular velocity unit configured as described above will be explained. First, in order to drive a pair of driving piezoelectric elements 23 connected by an elastic coupling member 26, an alternating current signal is applied between the opposing surfaces as a common electrode and the driving electrodes 25 on the outer surfaces. The driving piezoelectric element 23 to which the signal is applied starts to vibrate symmetrically about the elastic coupling member 2e, which is what is called a tuning fork vibration.

このように振動している駆動用圧電素子23に接合部材
22で機械的に接合されている検知用圧電素子21も振
動することになる。そこで速度マで振動している検知用
圧電素子21に角速度ωの回転が加わると、検知用圧電
素子21jCは「コリオリの力」が生ずる。この「コリ
オリの力」は速度fに垂直で大きさは2mmママある。
The detection piezoelectric element 21, which is mechanically joined to the driving piezoelectric element 23 vibrating in this manner by the joining member 22, also vibrates. Therefore, when a rotation with an angular velocity ω is applied to the detection piezoelectric element 21 which is vibrating at the velocity ma, a "Coriolis force" is generated in the detection piezoelectric element 21jC. This "Coriolis force" is perpendicular to the speed f and has a magnitude of 2 mm.

(ここでmは検知用圧電素子の先端の等価質量を表わす
)音叉振動をしているので、ある時点で一方の検知用圧
電素子21が速度マで振動しているとすれば、他方の検
知用圧電素子21は速度−マで振動しており「コリオリ
の力」は−2!Iマωである。一対の検知用圧電素子2
1には、互いに逆向きの「コリオリの力」が働き、互い
に逆向きの方向に変形し、素子表面には圧電効果によっ
て電荷が生じる〇一対のセンサ素子は「コリオリの力」
による発生電荷が、互いに加算されるように結線されて
いる。
(Here, m represents the equivalent mass of the tip of the detection piezoelectric element) Since the tuning fork is vibrating, if one of the detection piezoelectric elements 21 is vibrating at a speed of m at a certain point, the other detection piezoelectric element 21 is vibrating at a speed of m. The piezoelectric element 21 vibrates at a speed of -ma, and the "Coriolis force" is -2! I am ω. A pair of detection piezoelectric elements 2
1, "Coriolis force" in opposite directions acts, deforms in opposite directions, and charges are generated on the surface of the element due to piezoelectric effect 〇 A pair of sensor elements is affected by "Coriolis force"
The wires are connected so that the charges generated by the two are added together.

それゆえ、このセンサに角速度以外の並進運動を与えて
も一対の検知用圧電素子21の表面には同極性の電荷が
生ずるため、互に打ち消しあって出力は出ないようにな
っている。
Therefore, even if a translational motion other than angular velocity is applied to this sensor, charges of the same polarity are generated on the surfaces of the pair of detection piezoelectric elements 21, so that they cancel each other out and no output is produced.

ここでマは音叉振動によって生じる速度であり、音叉振
動速度が V=マロ・sinωot   vo:音叉振動速度振幅
ω0:音叉振動の角周期 であるとすれば「コリオリの力」は Fc=2m* 1’O# 0m ginωoiとなり角
速度ωおよび音叉撮動速度マ0に比例しており、検知用
圧電素子21をそれぞれ面方向に変形させる力となる。
Here, Ma is the speed caused by vibration of the tuning fork, and if the tuning fork vibration speed is V = Malo・sinωot vo: Tuning fork vibration velocity amplitude ω0: Angular period of tuning fork vibration, the "Coriolis force" is Fc = 2m* 1 'O# 0m ginωoi, which is proportional to the angular velocity ω and the tuning fork imaging speed ma0, and becomes a force that deforms the detection piezoelectric element 21 in the plane direction.

したがって検知用圧電素子210表面電荷量Qcは QOocマOIIω−5inωot となり、音叉振動速度振幅マ0が一定にコントロールさ
れているとすれば、 QOocω−sinωat となり、検知用圧電素子21に発生する表面電荷量Qは
角速度ωに比例した出力として得られ、この信号を町t
で同期検波すれば角速度ωに比例した直流信号が得られ
る。
Therefore, the surface charge Qc of the detection piezoelectric element 210 becomes QOocmaOIIω-5inωot, and if the tuning fork vibration velocity amplitude Ma0 is controlled to be constant, it becomes QOocω-sinωat, and the surface charge generated on the detection piezoelectric element 21 becomes QOocω-sinωat. The quantity Q is obtained as an output proportional to the angular velocity ω, and this signal is
If synchronous detection is performed with , a DC signal proportional to the angular velocity ω can be obtained.

また、駆動用圧電素子23上の相対する1組の駆動用電
極26(片方の電極は表示していない)には、駆動用圧
電素子23の変形に応じて電荷が発生するが、相対する
駆動用電極25はその形状を対称にし、面積を等しくし
ているので、発生電荷は等しいから、差動入力により信
号処理することで、発生電荷をキャンセルしている。
Further, charges are generated in a pair of opposing driving electrodes 26 (one electrode is not shown) on the driving piezoelectric element 23 in accordance with the deformation of the driving piezoelectric element 23, but Since the electrodes 25 are symmetrical in shape and have the same area, the generated charges are equal, so the generated charges are canceled by signal processing using differential input.

発明が解決しようとする課題 ところが、従来の角速度センナは駆動用圧電素子23と
リードビン28とを結ぶリード線27をこの駆動用圧電
素子23の銀電極24&、24b。
Problem to be Solved by the Invention However, in the conventional angular velocity sensor, the lead wire 27 connecting the driving piezoelectric element 23 and the lead bin 28 is connected to the silver electrodes 24&, 24b of the driving piezoelectric element 23.

26面上に半田付けするには、半田とての加熱による温
度上昇で圧電素子23の分極がとれないように、適切に
加熱し素早く結線しなければならないのに反して、半田
付性が悪く、長く半田ごてをあてなければならない課題
があった。また、リード線27はφ01 mmと細いた
めリード配線工程で素早く処理することが困難を極め、
さらに半田付けに時間がかかる傾向にある課題を有して
いた。
In order to solder on the 26th surface, it is necessary to properly heat the piezoelectric element 23 and connect it quickly so that the polarization of the piezoelectric element 23 is not removed due to the temperature rise caused by heating the solder. , there was a problem that required applying a soldering iron for a long time. In addition, since the lead wire 27 is as thin as φ01 mm, it is extremely difficult to process it quickly in the lead wiring process.
Another problem was that soldering tends to take a long time.

本発明はかかる課題に留意し、リード線の半田付処理が
素早くでき、特性劣化のない角速度センナを提供するこ
とを目的としている。
The present invention has been made in consideration of such problems, and an object of the present invention is to provide an angular velocity sensor in which lead wires can be soldered quickly and whose characteristics do not deteriorate.

課題を解決するための手段 上記目的を達成するために、本発明の角速度センサは、
駆動用圧電素子と検知用圧電素子とを、接合部材を介し
て互いに直交接続したセンサ直交素子2個を音叉状に組
み立てた角速度センサにおいて、駆動用圧電素子上の銀
電極にあらかじめ予備半田しておき、予備半田部分を設
け、リード線による結線をその予備半田部に半田付を行
ったものであるっ 作用 この構成の本発明の角速度センサは、電極に予備半田部
があるため、その部分の半田付けが容易になるっそのた
め駆動用圧電素子とリードピンとを結ぶリード線を、こ
の駆動用圧電素子の銀電極面上の予備半田部に半田付け
するのに素早い作業で半田付けできるので、半田とての
加熱で圧電素子の分極がとれることもなくなる。また適
切に加熱し素早く結線することができ細いリード線でも
作業性の良い非常に高性能な角速度センサを提供するこ
とができる。
Means for Solving the Problems In order to achieve the above object, the angular velocity sensor of the present invention has the following features:
In an angular velocity sensor in which two sensor orthogonal elements are assembled in a tuning fork shape, in which a drive piezoelectric element and a detection piezoelectric element are orthogonally connected to each other via a joining member, the silver electrodes on the drive piezoelectric element are preliminarily soldered. The angular velocity sensor of the present invention having this structure has a preliminary solder section on the electrode, and the connection using the lead wire is soldered to the preliminary solder section. Since soldering is easy, it is possible to quickly solder the lead wire connecting the drive piezoelectric element and the lead pin to the preliminary solder part on the silver electrode surface of the drive piezoelectric element. There is no possibility that the polarization of the piezoelectric element will be removed by heating. In addition, it is possible to provide an extremely high-performance angular velocity sensor that can be properly heated and quickly connected, and has good workability even with thin lead wires.

実施例 以下、本発明の角速度センサの実施例について、図面を
参照しながら説明する。
EXAMPLES Hereinafter, examples of the angular velocity sensor of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における角速度センサの半田
付は部分の斜視図である。
FIG. 1 is a perspective view of a soldering portion of an angular velocity sensor in an embodiment of the present invention.

なお、角速度センサ全体の構成は第2図に示しである従
来例と同様である。
Note that the overall configuration of the angular velocity sensor is the same as that of the conventional example shown in FIG.

第1図に示すように駆動用圧電素子1上には、駆動用圧
電素子1の駆動用銀電極2と、検知用圧電素子(図示し
ていない)へのリードパターン3a、sbが形成されて
いる。その中で、斜線で示した部分があらかじめ半田コ
ートされた予備半田部4である。リード線csa、sb
、escは予備半田部4とリードピン61L 、eb 
、5cに半田付されている。なお7は弾性接合部材であ
る。
As shown in FIG. 1, on the drive piezoelectric element 1, lead patterns 3a and sb to the drive silver electrode 2 of the drive piezoelectric element 1 and the detection piezoelectric element (not shown) are formed. There is. Among them, the shaded portion is a preliminary solder portion 4 coated with solder in advance. Lead wire csa, sb
, esc is the preliminary solder part 4 and lead pin 61L, eb
, 5c. Note that 7 is an elastic joining member.

以上のように構成された本実施例の角速度センサについ
て、以下その関連動作を説明する。
The related operations of the angular velocity sensor of this embodiment configured as described above will be explained below.

角速度検出の原理は、従来例と同じなので省略する。The principle of angular velocity detection is the same as the conventional example, so a description thereof will be omitted.

駆動用圧電素子1の面上には、駆動用圧電素子1を駆動
するだめの銀電極2と検知用圧電素子(図示していない
)へのリードパターン31L 、 3bとしての銀電極
が形成されており、いずれも角速度センサの外部端子と
の電気的接続が必要である。
On the surface of the drive piezoelectric element 1, silver electrodes 2 for driving the drive piezoelectric element 1 and lead patterns 31L and 3b for the detection piezoelectric element (not shown) are formed. Both require electrical connection to the external terminal of the angular velocity sensor.

この銀電極の一部に予備半田された予備半田部4があり
、ここに外部端子として使用されるリードビysa、e
b、ecK接続されたリード線S&。
There is a preliminary solder part 4 on a part of this silver electrode, which is used as an external terminal.
b, ecK connected lead wire S&.

sb、scを半田付けする。Solder sb and sc.

このリード線sa、6b、scの銀電極2とリードパタ
ーン3a、3bへの半田付けを、その予備半田部4にて
行っておシ、そのため半田付けが容易に、かつ作業者の
熟練度に関係なく確実に素早くできるので、作業性が悪
く半田ごてを長く銀電極につけているために起る温度上
昇もなくなり、駆動用圧電素子1の分極が壊れるような
こともなくなる。
Soldering of the lead wires sa, 6b, and sc to the silver electrodes 2 and lead patterns 3a, 3b is performed in the preliminary solder portion 4. Therefore, soldering is easy and depends on the skill level of the operator. Since it can be done reliably and quickly regardless of the problem, there is no need to worry about the temperature rise that occurs when the soldering iron is attached to the silver electrode for a long time due to poor workability, and there is no possibility that the polarization of the driving piezoelectric element 1 will be broken.

このように作業性が向上するとともに、性能の安定した
角速度センサが実現できる。
In this way, workability is improved and an angular velocity sensor with stable performance can be realized.

なお予備半田部4を半田メッキで行うことにより、よシ
高温にさらさ2れることなく高性能で作業性の良い角速
度センサが得られる。
By performing solder plating on the preliminary solder portion 4, an angular velocity sensor with high performance and good workability can be obtained without being exposed to high temperatures.

発明の効果 以上の説明より明らかなように本発明は、駆動用圧電素
子と、検知用圧電素子とを、接合部材を介して互いに直
交接続したセンサ直交素子2個を音叉状に組み立てた角
速度センサにおいて、前記駆動用圧電素子上の銀電極に
あらかじめ予備半田した予備半田部を設はリード線をこ
の予備半田部に半田付けする結線を実施することにより
、半田付けが容易になる。そのため駆動用圧電素子とリ
ードピンとを結ぶリード線を、この駆動用圧電素子の銀
電極面上に半田付けするのに作業者の熟練度にあまり関
係なく素早く半田付ができるので、半田とての加熱で圧
電素子の分極がとれることもなくなる3、すなわち適切
に加熱し素早く結線することができ、非常に高性能で、
作業性の良い角速度センサを提供することができる。
Effects of the Invention As is clear from the above description, the present invention provides an angular velocity sensor in which two sensor orthogonal elements are assembled in a tuning fork shape, in which a drive piezoelectric element and a detection piezoelectric element are orthogonally connected to each other via a joining member. In this case, soldering is facilitated by providing a preliminary solder portion which is preliminarily soldered to the silver electrode on the drive piezoelectric element, and by soldering the lead wire to this preliminary solder portion. Therefore, the lead wire connecting the drive piezoelectric element and the lead pin can be soldered quickly onto the silver electrode surface of the drive piezoelectric element, regardless of the skill level of the operator. The polarization of the piezoelectric element will not be removed by heating.3 In other words, it can be heated appropriately and connected quickly, and has extremely high performance.
An angular velocity sensor with good workability can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における角速度センサの半田
付は部分の斜視図、第2図は従来の角速度センサの斜視
図である。 1・・・・・・駆動用圧電素子、2・・・・・・駆動用
圧電素子の駆動銀電極、31L 、sb・・・・・・リ
ードパターン、4・・・・・・予備半田部、5a 、s
b 、5c・・・・・・リード線、6IL、eib 、
60・・・・・・リードビン、7・・・・・・弾性接合
部材。
FIG. 1 is a perspective view of a soldering portion of an angular velocity sensor according to an embodiment of the present invention, and FIG. 2 is a perspective view of a conventional angular velocity sensor. 1... Drive piezoelectric element, 2... Drive silver electrode of drive piezoelectric element, 31L, sb... Lead pattern, 4... Preliminary solder part ,5a,s
b, 5c...Lead wire, 6IL, eib,
60... Lead bin, 7... Elastic bonding member.

Claims (2)

【特許請求の範囲】[Claims] (1)駆動用圧電素子と、検知用圧電素子と、前記駆動
用圧電素子と前記検知用圧電素子を接合する接合部材と
、前記接合した素子の一対を接合して音叉構造を構成す
る弾性接合部材と、前記音叉構造体をベースに固定支持
する支持棒と、前記駆動用圧電素子上に構成された電気
配線用電極とを具備し、前記駆動用圧電素子と前記検知
用圧電素子とを振動方向が直交するように前記接合部材
で積み重ねて接合し、前記接合した素子の一対を前記弾
性接合部材で接合して音叉構造とし、前記音叉構造体を
支持棒によりベースに固定保持するとともに、前記電気
配線用電極に予備半田部を設け、電気配線用リード線が
前記予備半田部に半田付けされた角速度センサ。
(1) A driving piezoelectric element, a sensing piezoelectric element, a joining member that joins the driving piezoelectric element and the sensing piezoelectric element, and an elastic joint that joins a pair of the joined elements to form a tuning fork structure. a support rod that fixedly supports the tuning fork structure on a base, and an electrical wiring electrode configured on the drive piezoelectric element, and vibrates the drive piezoelectric element and the detection piezoelectric element. They are stacked and joined using the joining member so that their directions are perpendicular to each other, a pair of joined elements are joined using the elastic joining member to form a tuning fork structure, and the tuning fork structure is fixedly held on the base by a support rod, and An angular velocity sensor in which an electrical wiring electrode is provided with a preliminary solder part, and an electrical wiring lead wire is soldered to the preliminary solder part.
(2)予備半田が半田メッキである請求項1記載の角速
度センサ。
(2) The angular velocity sensor according to claim 1, wherein the preliminary solder is solder plating.
JP2008625A 1990-01-18 1990-01-18 Angular-velocity sensor Pending JPH03214019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008625A JPH03214019A (en) 1990-01-18 1990-01-18 Angular-velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008625A JPH03214019A (en) 1990-01-18 1990-01-18 Angular-velocity sensor

Publications (1)

Publication Number Publication Date
JPH03214019A true JPH03214019A (en) 1991-09-19

Family

ID=11698134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008625A Pending JPH03214019A (en) 1990-01-18 1990-01-18 Angular-velocity sensor

Country Status (1)

Country Link
JP (1) JPH03214019A (en)

Similar Documents

Publication Publication Date Title
JP2009014584A (en) Vibration gyroscope
JPH09126783A (en) Piezoelectric vibration gyroscope
JP2734155B2 (en) Angular velocity sensor
JPH03214019A (en) Angular-velocity sensor
JP2785429B2 (en) Angular velocity sensor
JPH08327362A (en) Vibration type gyro scope
JP3293487B2 (en) Vibrating gyro
JPH04276558A (en) Angular-velocity sensor
JP3958741B2 (en) Piezoelectric vibrator gyro vibrator
JPS62228111A (en) Piezoelectric body angular velocity sensor
JPH03214015A (en) Angular-velocity sensor
JPH03214018A (en) Angular-velocity sensor
JPH03276012A (en) Angular velocity sensor
JPH04372814A (en) Angular velocity sensor
JPH04208807A (en) Angular velocity sensor
JP2005321374A (en) Tuning fork piezoelectric oscillating gyroscope
JPH03214016A (en) Angular-velocity sensor
JP2699603B2 (en) Angular velocity sensor
JPH05264282A (en) Angular velosity sensor
JPS61180107A (en) Manufacture of angular velocity sensor element
JP2003139538A (en) Angular velocity sensor
JPH03113374A (en) Angular speed sensor
JPH03122518A (en) Oscillating gyro
JPH04203926A (en) Angular velocity sensor
JPH04348219A (en) Angular velocity sensor