JPH0321322B2 - - Google Patents

Info

Publication number
JPH0321322B2
JPH0321322B2 JP56176379A JP17637981A JPH0321322B2 JP H0321322 B2 JPH0321322 B2 JP H0321322B2 JP 56176379 A JP56176379 A JP 56176379A JP 17637981 A JP17637981 A JP 17637981A JP H0321322 B2 JPH0321322 B2 JP H0321322B2
Authority
JP
Japan
Prior art keywords
formwork
slurry
wire mesh
reinforcing wire
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56176379A
Other languages
Japanese (ja)
Other versions
JPS5878706A (en
Inventor
Hiroaki Yanagida
Hitoshi Hagimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17637981A priority Critical patent/JPS5878706A/en
Publication of JPS5878706A publication Critical patent/JPS5878706A/en
Publication of JPH0321322B2 publication Critical patent/JPH0321322B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金網で補強された厚さ37mm以下の軽
量気泡コンクリートパネルを製造する為に、軽量
気泡コンクリートパネル前駆体を製造する際の補
強金網の位置を制御する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to reinforcement during the production of a lightweight cellular concrete panel precursor in order to produce a lightweight cellular concrete panel with a thickness of 37 mm or less reinforced with wire mesh. Relating to a method for controlling the position of wire mesh.

(従来の技術) 一つの成型型枠内に、補強筋マツトの多数を互
いに独立させて所定の位置にセツトし、その型枠
内に軽量気泡コンクリートスラリーを注入し、養
生し、半硬化後に、ピアノ線等で所定の長さと厚
みの多数のパネルに分割切断してオートクレーブ
養成して、オートクレーブ養成した厚さが50mmや
100mm等の比較的厚さが厚い軽量気泡コンクリー
トパネルを製造することは、周知の事実である。
(Prior art) A large number of reinforcing reinforcing bars are set in predetermined positions independently of each other within one molding frame, and lightweight aerated concrete slurry is injected into the formwork, cured, and after semi-hardening, The panels are cut into multiple panels of a predetermined length and thickness using piano wire, etc., and then cured in an autoclave.
It is well known to manufacture lightweight cellular concrete panels of relatively thick thickness, such as 100 mm.

(発明が解決しようとする問題点) しかし、補強剤として格子状に溶接した一枚の
鉄筋金網やメタルラス等の金網を中心等に配した
厚さ37mm以下という厚さが薄い軽量気泡コンクリ
ートパネルを製造しようとすると、金網をセツト
棒等で固定していても、その製造中に金網の位置
が移動して、金網が軽量気泡コンクリートパネル
表面側にまで変位して不良な製品となつたり、金
網の移動量が大きく切断に際してピアノ線が金網
にあたつて切断不可能になつたりした。
(Problem to be solved by the invention) However, a lightweight aerated concrete panel with a thickness of 37 mm or less, in which a piece of reinforcing wire mesh or metal lath wire mesh welded in a lattice shape as a reinforcing agent is placed in the center. When manufacturing, even if the wire mesh is fixed with a set rod, the position of the wire mesh may shift during manufacturing, causing the wire mesh to move toward the surface of the lightweight aerated concrete panel, resulting in a defective product, or The amount of movement was large, and the piano wire hit the wire mesh during cutting, making it impossible to cut it.

本発明は、多数の独立した補強金網を垂直に同
一型枠内にセツトし、型枠内に軽量気泡コンクリ
ートスラリーを注入し、養生し、半硬化後に、多
数のパネルに分割切断してオートクレーブ養生し
て、軽量気泡コンクリートパネルを製造するとい
う従来の製造工程を応用して、補強金網が所定位
置に配された37mm以下の厚さの軽量気泡コンクリ
ートパネルを製造する為に、軽量気泡コンクリー
トパネル前駆体を製造する際における補強金網の
位置を制御する方法を提供するものである。
The present invention involves setting a large number of independent reinforcing wire meshes vertically in the same formwork, pouring lightweight aerated concrete slurry into the formwork, curing it, and after semi-curing, cutting it into many panels and curing them in an autoclave. In order to manufacture lightweight aerated concrete panels with a thickness of 37 mm or less with reinforcing wire mesh in place, we applied the conventional manufacturing process of manufacturing lightweight aerated concrete panels to a lightweight aerated concrete panel precursor. The present invention provides a method for controlling the position of reinforcing wire mesh when manufacturing a body.

(問題点を解決するための手段) 本発明は、補強金網間の間隔を37mm以内として
多数の独立した補強金網を垂直に同一型枠内にセ
ツトし、型枠内に軽量気泡コンクリートスラリー
を注入し、養生し、半硬化後に、多数のパネルに
分割切断してオートクレーブ養生して、37mm以下
厚さの軽量気泡コンクリートパネルを製造する際
に、型枠外縁部のスラリー温度が、軽量気泡コン
クリートスラリーの型枠への注入が終了した時の
中央部のスラリー温度よりも15℃〜20℃高い温度
範囲に、型枠外縁部を加熱して補強金網の位置を
制御することを特徴とする軽量気泡コンクリート
パネル前駆体製造時の補強金網位置の制御方法で
ある。
(Means for Solving the Problems) The present invention involves setting a large number of independent reinforcing wire meshes vertically within the same formwork with the spacing between the reinforcing wire meshes within 37 mm, and pouring lightweight aerated concrete slurry into the formwork. When manufacturing lightweight aerated concrete panels with a thickness of 37 mm or less by curing and semi-curing, cutting into many panels and curing in an autoclave, the slurry temperature at the outer edge of the formwork is lower than that of the lightweight aerated concrete slurry. The lightweight foam is characterized by controlling the position of the reinforcing wire mesh by heating the outer edge of the formwork to a temperature range 15°C to 20°C higher than the slurry temperature in the center when injection into the formwork is completed. This is a method for controlling the position of a reinforcing wire mesh during the production of a concrete panel precursor.

本発明に使用する補強金網は、格子状に溶接し
た鉄筋金網やメタルラス等の金網である。中で
も、変位が起こりやすいのは、メタルラスであ
る。
The reinforcing wire mesh used in the present invention is a reinforcing wire mesh welded in a lattice shape, a metal lath wire mesh, or the like. Among them, metal lath is the most prone to displacement.

型枠該縁部の加熱温度は、型枠外縁部のスラリ
ー温度が軽量気泡コンクリートスラリーの型枠へ
の注入が終了した時の中央部のスラリー温度より
も15℃〜20℃高い温度範囲に制御する必要があ
る。この温度範囲よりも低くて、高くても、補強
金網が変位してしまう。なお、軽量気泡コンクリ
ートスラリーの型枠への注入が終了した時の中央
部のスラリー温度は、スラリー原料の差等により
変化するが、多くの場合、約40℃〜50℃の間であ
る温度値を示す。
The heating temperature at the edge of the formwork is controlled so that the slurry temperature at the outer edge of the formwork is 15°C to 20°C higher than the slurry temperature at the center when the lightweight aerated concrete slurry has been poured into the formwork. There is a need to. If the temperature is lower or higher than this range, the reinforcing wire mesh will be displaced. The temperature of the slurry in the center when the lightweight aerated concrete slurry is poured into the formwork will vary depending on the slurry raw materials, but in most cases the temperature will be between approximately 40℃ and 50℃. shows.

ピアノ線による切断が可能となる硬さとするに
は、型枠へのスラリー注入が終了した時点から3
時間〜4時間後であるが、加熱時間が、少なくと
も、型枠へのスラリー注入が終了した時点から1
時間半程度であれば、本発明の補強金網の位置の
制御が達成できる。
In order to achieve a hardness that allows cutting with piano wire, it is necessary to
4 hours later, but the heating time is at least 1 hour after the slurry injection into the formwork is completed.
Control of the position of the reinforcing wire mesh of the present invention can be achieved in about half an hour.

(作用) 型枠外縁部の加熱温度を、型枠外縁部のスラリ
ー温度が、軽量気泡コンクリートスラリーの型枠
への注入が終了した時の中央部のスラリー温度よ
りも、15℃〜20℃高い温度範囲に制御すると、補
強金網の変位が極めて少なくなる。この温度範囲
よりも低くても、高くても、スラリーは気泡を含
有させているが為に、中央部から外側へ大きな流
動を起こしたり、スラリーが外側から中央部へ大
きな流動を起こしたりして、補強金網が変位して
しまう。一般に、型枠外縁部には、補強金網が存
在しない余端部を設けて、この余端部はピアノ線
による切断で除去して、外側の製品も両面ともピ
アノ線で切断した面としているが、この余端部を
設けると、余端部に隣接した部分の補強金網が大
きく変位する度合いが大きくなるが、上述した作
用で、この余端部に隣接した部分の補強金網です
ら、本発明に従つて制御すると、補強金網の変位
が極めて少なくなる。
(Function) The heating temperature at the outer edge of the formwork is such that the slurry temperature at the outer edge of the formwork is 15°C to 20°C higher than the slurry temperature at the center when the lightweight aerated concrete slurry has been poured into the formwork. When the temperature is controlled within the range, the displacement of the reinforcing wire mesh becomes extremely small. Even if the temperature is lower or higher than this range, the slurry contains air bubbles, which may cause a large flow from the center to the outside, or a large flow from the outside to the center. , the reinforcing wire mesh will be displaced. Generally, the outer edge of the formwork is provided with an extra edge where there is no reinforcing wire mesh, and this extra edge is removed by cutting with piano wire, so that both sides of the outer product are cut with piano wire. If this extra end is provided, the reinforcing wire mesh in the portion adjacent to the extra end will be greatly displaced, but due to the above-mentioned effect, even the reinforcing wire mesh in the portion adjacent to the extra end can be easily removed by the present invention. When controlled according to the following, the displacement of the reinforcing wire mesh becomes extremely small.

(実施例) 以下に、実施例を示すが、スラリーや軽量気泡
コンクリート等の硬度の測定にはペネトロ型土壌
硬度計を貫入させて測定した。この測定法による
と、硬度1のときの貫入抵抗は0.15Kg/cm2、硬度
10のときの貫入抵抗力は1.5Kg/cm2、硬度30のと
きの貫入抵抗力は4.5Kg/cm2である。
(Example) Examples are shown below, and the hardness of slurry, lightweight cellular concrete, etc. was measured by penetrating the soil with a Penetro type soil hardness meter. According to this measurement method, the penetration resistance when the hardness is 1 is 0.15Kg/cm 2 ,
When the hardness is 10, the penetration resistance is 1.5Kg/cm 2 , and when the hardness is 30, the penetration resistance is 4.5Kg/cm 2 .

ポルトランドセメント27重量部、生石灰6重量
部、粉末硅石50重量部、軽量気泡コンクリート回
収屑粉末17重量部、金属アルミニウム粉末0.08重
量部からなり、その固形分100重量部に対して水
75重量部を加えて撹拌することにより原料スラリ
ーとした。
It consists of 27 parts by weight of Portland cement, 6 parts by weight of quicklime, 50 parts by weight of powdered silica, 17 parts by weight of recovered lightweight aerated concrete waste powder, and 0.08 parts by weight of metal aluminum powder.
A raw material slurry was prepared by adding 75 parts by weight and stirring.

この原料スラリーを第1図、第2図に示す支持
具となるセツト棒1の間〓に補強材となるメタル
ラス2を相互間隔lが37mmとなるように狭持させ
た。なお、型枠3側のメタルラス2との最初に設
定した距離Soは50mmである。このように多数の
メタルラス2を配置した型枠3内に前記の原料ス
ラリー4を第1図に示したA線の高さまで注入し
て静置する。
This raw material slurry was held between set rods 1, which served as supports, as shown in FIGS. 1 and 2, and a metal lath 2, which served as a reinforcing material, was held between them so that the mutual spacing l was 37 mm. Note that the initially set distance So from the metal lath 2 on the formwork 3 side is 50 mm. The raw material slurry 4 is injected into the mold 3 in which a large number of metal laths 2 are arranged up to the height of line A shown in FIG. 1 and left to stand still.

なお、最初側のメタルラスの変位量YをSo−
Sとして求めることができるように、型枠3の側
面には、型枠側面と最外側のメタルラス2Eとの
距離Sの変化、即ち、最外側のメタルラス2Eの
水平方向の変位を、型枠側面に取付けた渦電流を
利用して電気的に連続的に測定できる非接触式変
位計5で測定できるようにした。この変位計5の
感知部6は型枠側面内に10mm突出しており、該感
知部6が原料スラリー4に直接接触しないように
アクリル樹脂板の覆いをつけた。このように感知
部6が型枠側面から10mm突出しているので、この
変位計5で感知できる最外側メタルラス2Eとの
距離Xは前記した型枠側面と最外側のメタルラス
2Eとの距離Sよりも10mm少ない値となる。従つ
て、上述の距離S=X+10mmとなる。
In addition, the displacement Y of the metal lath on the first side is So−
As can be determined as Measurements can be made with a non-contact displacement meter 5 that can be electrically and continuously measured using eddy currents attached to the eddy current. The sensing part 6 of the displacement meter 5 protruded 10 mm into the side surface of the mold, and was covered with an acrylic resin plate so that the sensing part 6 did not come into direct contact with the raw material slurry 4. Since the sensing part 6 protrudes 10 mm from the side of the formwork in this way, the distance X between the outermost metal lath 2E and the outermost metal lath 2E that can be sensed by the displacement meter 5 is longer than the distance S between the side surface of the formwork and the outermost metal lath 2E. The value is 10mm less. Therefore, the above-mentioned distance S=X+10 mm.

また、型枠3の外側四周面には、第3図に見ら
れるように、ニクロム線をラバー状樹脂で被覆し
た面状発熱体7を貼りつけ、通電量を制御して通
電することにより、型枠側面の加熱温度を制御で
きるようにした。
In addition, as shown in FIG. 3, a planar heating element 7 made of a nichrome wire coated with a rubber-like resin is attached to the four outer circumferential surfaces of the formwork 3, and by controlling the amount of electricity and applying electricity, The heating temperature on the side of the formwork can now be controlled.

更に型枠3内の中央部のスラリー温度と外縁部
のスラリー温度とを測定するために、白金式抵抗
温度計を固定した。
Furthermore, a platinum resistance thermometer was fixed in order to measure the slurry temperature at the center and the outer edge of the formwork 3.

このような型枠内に原料スラリーをA線に示す
高さまで注入し、そのときの中央部のスラリー温
度(T10を測定すると共に、外縁部のスラリー
温度T2が常に(T10+αとなるように、制御し
て加熱した。
Inject the raw material slurry into such a formwork up to the height indicated by line A, and measure the slurry temperature (T 1 ) 0 at the center at that time, and ensure that the slurry temperature T 2 at the outer edge is always (T 1 ) Heating was controlled so that the temperature was 0 + α.

この側面からの加熱は、原料スラリーをA線に
示す高さまで注入した時を時間測定の開始点とし
て1時間半続け、その後は加熱体による加熱を中
止した。また、セツト棒1は、原料スラリーをA
線に示す高さまで注入した時から40分後に取り外
して実験した。また、最後には第1図に示すB線
の高さの軽量気泡コンクリートブロツクとなり、
加熱体の通電を中止して後、更に1時間乃至2時
間半経過して、ピアノ線による切断工程に供する
ことのできる硬度、即ち硬度が30に達した時に型
枠より脱型し、所定の37mmの厚さのパネルに切断
分割して、オートクレーブ養生した。このように
してパネルを製造する工程に於いて、型枠中での
メタルラスの変位量を上記の手段で測定した。
This heating from the side continued for one and a half hours, with time measurement starting from the time when the raw material slurry was injected to the height shown by line A, after which heating by the heating element was discontinued. In addition, the set rod 1 is used to transfer the raw material slurry to A.
After 40 minutes from the time of injection to the height shown by the line, it was removed and experimented. In addition, in the end, it becomes a lightweight aerated concrete block with the height of line B shown in Figure 1.
After 1 to 2 and a half hours have elapsed after the heating element was de-energized, when the hardness reached 30, which is suitable for the cutting process using piano wire, the mold was removed from the mold and cut into the specified shape. It was cut into panels of 37 mm thickness and cured in an autoclave. In the process of manufacturing panels in this manner, the amount of displacement of the metal lath in the formwork was measured by the above-mentioned means.

このようにして、型枠外縁部のスラリー温度
が、軽量気泡コンクリートスラリーの型枠への注
入が終了した時の中央部のスラリー温度よりもα
℃高い温度となるように、型枠外縁部を加熱した
ときの、金網の変位量の測定結果を示す。
In this way, the slurry temperature at the outer edge of the formwork is α higher than the slurry temperature at the center when the lightweight aerated concrete slurry has finished being poured into the formwork.
The results of measuring the amount of displacement of the wire gauze when the outer edge of the formwork was heated to a temperature higher than 10°C are shown.

αが15℃となるように制御して通電して加熱し
たとき(実施例1)の原料スラリー注入後の時間
t(hr)とメタルラスの変位量Y(mm)との関係
は、第4図に示すようであり、メタルラスの変位
は殆ど無かつた。
Figure 4 shows the relationship between the time t (hr) after injection of the raw material slurry and the amount of displacement Y (mm) of the metal lath when heating is carried out by controlling electricity so that α is 15°C (Example 1). As shown in , there was almost no displacement of the metal lath.

同様にαが20℃となるように制御して通電して
加熱したとき(実施例2)も、αが15℃のときと
同様な結果になり、メタルラスの変位は殆ど無か
つた。
Similarly, when heating was conducted by controlling α to be 20°C (Example 2), the same results as when α was 15°C were obtained, and there was almost no displacement of the metal lath.

これに対して、冬場に通電しないで実験(比較
例1)を行つたところ、αは−20℃となり、スラ
リー注入後の時間t(hr)とメタルラスの変位量
Y(mm)との関係は、第5図に示すようになり、
メタルラスの変位量は20mmと大きくなつた。
On the other hand, when we conducted an experiment (Comparative Example 1) without energizing in winter, α was -20°C, and the relationship between the time t (hr) after slurry injection and the displacement Y (mm) of the metal lath was , as shown in Figure 5,
The amount of displacement of the metal lath increased to 20mm.

また、夏場に通電しないで実験(比較例2)を
行つてαが−3℃となつた場合や、冬場に通電し
てαを−3℃とした場合も、スラリー注入後の時
間t(hr)とメタルラスの変位量Y(mm)との関係
は、第6図に示すようになり、メタルラスの変位
量は5mmと大きくなつた。
In addition, even if the experiment (Comparative Example 2) was conducted without electricity in the summer and α was -3℃, or in the winter when electricity was applied and α was -3℃, the time t (hr ) and the amount of displacement Y (mm) of the metal lath is shown in FIG. 6, and the amount of displacement of the metal lath is as large as 5 mm.

更に、通電加熱によりαが25℃となるように制
御して通電して加熱したとき(比較例3)のスラ
リー注入後の時間t(hr)とメタルラスの変位量
Y(mm)との関係は、第7図に示すようになり、
メタルラスの変位量はやはり5mmと大きくなつ
た。
Furthermore, the relationship between the time t (hr) after slurry injection and the amount of displacement Y (mm) of the metal lath when heated by controlling current to be 25°C (Comparative Example 3) is as follows: , as shown in Figure 7,
The amount of displacement of the metal lath was as large as 5mm.

また、最後までセツト棒を引抜かずにして実験
した場合でも上記実施例1、2及び比較例1、
2、3に類似した結果が得られた。
In addition, even when the experiment was conducted without pulling out the set rod until the end, the above-mentioned Examples 1 and 2 and Comparative Example 1,
Results similar to 2 and 3 were obtained.

(発明の効果) 本発明に従つて、型枠外縁部のスラリー温度
が、軽量気泡コンクリートスラリーの型枠への注
入が終了した時の中央部のスラリー温度よりも、
15℃〜20℃高い温度範囲にすると、補強金網の変
位が極めて少なくなるのである。従つて、本発明
の制御方法を使用すると、補強金網が所定の位置
に制御されるので、補強金網が所定の位置に配置
された厚さ37mm以下の軽量気泡コンクリートパネ
ルが製造可能になるのである。
(Effects of the Invention) According to the present invention, the temperature of the slurry at the outer edge of the formwork is lower than the temperature of the slurry at the center when pouring the lightweight aerated concrete slurry into the formwork is completed.
When the temperature range is 15°C to 20°C higher, the displacement of the reinforcing wire mesh becomes extremely small. Therefore, by using the control method of the present invention, the reinforcing wire mesh is controlled in a predetermined position, so it becomes possible to manufacture a lightweight aerated concrete panel with a thickness of 37 mm or less in which the reinforcing wire mesh is placed in a predetermined position. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は補強金網を用いた軽量気泡コンクリー
トの製造状態を示す型枠内部での断面図、第2図
はその平面図、第3図はその型枠の斜視図であ
る。第4図は本発明の制御法に従つたときの補強
金網の変位量の時間変化を示す図、第5図、第6
図、第7図は、本発明の制御法に従わなかつたと
きの補強金網の変位量の時間変化を示す図であ
る。 図中、1はセツト棒、2は補強金網、3は型
枠、4は軽量気泡コンクリートスラリーを示す。
FIG. 1 is a sectional view inside the formwork showing the manufacturing state of lightweight cellular concrete using reinforcing wire mesh, FIG. 2 is a plan view thereof, and FIG. 3 is a perspective view of the formwork. Fig. 4 is a diagram showing the time change in the amount of displacement of the reinforcing wire mesh when the control method of the present invention is followed, Fig. 5, Fig. 6
7 are diagrams showing changes over time in the amount of displacement of the reinforcing wire mesh when the control method of the present invention is not followed. In the figure, 1 is a set rod, 2 is a reinforcing wire mesh, 3 is a formwork, and 4 is a lightweight aerated concrete slurry.

Claims (1)

【特許請求の範囲】[Claims] 1 補強金網間の間隔を37mm以内として多数の独
立した補強金網を垂直に同一型枠内にセツトし、
型枠内に軽量気泡コンクリートスラリーを注入
し、養生し、半硬化後に、多数のパネルに分割切
断してオートクレーブ養生して、37mm以下厚さの
軽量気泡コンクリートパネルを製造する際に、型
枠外縁部のスラリー温度が、軽量気泡コンクリー
トスラリーの型枠への注入が終了した時の中央部
のスラリー温度よりも15℃〜20℃高い温度範囲
に、型枠外縁部を加熱して補強金網の位置を制御
することを特徴とする軽量気泡コンクリートパネ
ル前駆体製造時の補強金網位置の制御方法。
1. A large number of independent reinforcing wire meshes are set vertically within the same formwork with the interval between reinforcing wire meshes being within 37mm,
Lightweight foamed concrete slurry is injected into the formwork, cured, and after semi-curing, cut into many panels and cured in an autoclave to produce lightweight foamed concrete panels with a thickness of 37 mm or less. The outer edge of the formwork is heated to a temperature range of 15℃ to 20℃ higher than the slurry temperature in the center when the lightweight aerated concrete slurry is finished pouring into the formwork, and the reinforcing wire mesh is heated at the outer edge of the formwork. A method for controlling the position of a reinforcing wire mesh during the production of a lightweight aerated concrete panel precursor.
JP17637981A 1981-11-05 1981-11-05 Manufacture of light aerated concrete panel Granted JPS5878706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17637981A JPS5878706A (en) 1981-11-05 1981-11-05 Manufacture of light aerated concrete panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17637981A JPS5878706A (en) 1981-11-05 1981-11-05 Manufacture of light aerated concrete panel

Publications (2)

Publication Number Publication Date
JPS5878706A JPS5878706A (en) 1983-05-12
JPH0321322B2 true JPH0321322B2 (en) 1991-03-22

Family

ID=16012602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17637981A Granted JPS5878706A (en) 1981-11-05 1981-11-05 Manufacture of light aerated concrete panel

Country Status (1)

Country Link
JP (1) JPS5878706A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521774U (en) * 1978-07-31 1980-02-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521774U (en) * 1978-07-31 1980-02-12

Also Published As

Publication number Publication date
JPS5878706A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
CN112873518B (en) Factory prefabrication production method for airport assembly type pavement slab
US2839812A (en) Method of manufacturing a structural panel
US5168008A (en) Glazed cement product and method for manufacturing thereof
JPH0321322B2 (en)
CA1260233A (en) Glazed cement product and method for manufacturing thereof
JPH0580326B2 (en)
US1498182A (en) Building construction
FI64969C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SAMMANSATT KONSTRUKTION
JP2562850B2 (en) Large ALC panel manufacturing method
US2948947A (en) Method for manufacturing reinforced lightweight concrete
CN103104097B (en) Ultra-long concrete base arrangement cancels the recursion cross construction method of temperature post-cast strip
CN108867649A (en) A kind of Concrete temperature controlling placingJi Shu
JP2815747B2 (en) Glazed concrete panel
JP2601677Y2 (en) ALC panel
SU1051050A1 (en) Method for making concrete products
JPH01284665A (en) Concrete framework
JPS59328Y2 (en) Intermediate fulcrum raising device for prestressed concrete embedded formwork
JPH01234382A (en) Glazed concrete panel
JPH0596526A (en) Holding method for reinforcing rod in form in manufacturing process for concrete product
JPS5856514B2 (en) laminated insulation
JPS63239142A (en) Manufacture of elongated ceramic board
JPS61270439A (en) Glazed cement product and its production
SU846281A1 (en) Method of manufacturing laminated construction elements
KR790001818Y1 (en) Cover block for roof slab
US1734359A (en) Structural floor