JPH0321303A - Separation of pseudomobile-layer - Google Patents

Separation of pseudomobile-layer

Info

Publication number
JPH0321303A
JPH0321303A JP15525689A JP15525689A JPH0321303A JP H0321303 A JPH0321303 A JP H0321303A JP 15525689 A JP15525689 A JP 15525689A JP 15525689 A JP15525689 A JP 15525689A JP H0321303 A JPH0321303 A JP H0321303A
Authority
JP
Japan
Prior art keywords
liquid
components
flow rate
ports
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15525689A
Other languages
Japanese (ja)
Other versions
JP2648366B2 (en
Inventor
Kenji Hashimoto
健治 橋本
Yoshito Shirai
義人 白井
Shuji Adachi
修二 安達
Mitsugi Morishita
森下 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP15525689A priority Critical patent/JP2648366B2/en
Publication of JPH0321303A publication Critical patent/JPH0321303A/en
Application granted granted Critical
Publication of JP2648366B2 publication Critical patent/JP2648366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To separate and concentrate a specified component by disposing dilution liquid feeding ports, specified component feed-out ports, raw liquid feeding ports and feed-out ports for other components along in the liquid flow direction and moving them to the downstream side intermittently. CONSTITUTION:A plurality of feeding columns C1-C12 filled with an adsorbent adsorbing selectively specified components are connected in series in a liquid path, and a first filled column and a last filled column are connected together in the liquid path to form up an endless line. In the filled column group, elution raw material feeding ports (a), specified component feed-out ports (b), raw material feeding ports (c) and feed-out ports (d) for other components are disposed along the liquid flow direction in this order at the given interval, and ports (a)-(d) are moved intermittently to the downstream side successively. At least either one of specified component feed-out flow rate or the flow rate of other components is made smaller than the raw liquid feeding flow, and also adsorption properties in the elution liquid in the solvent composition is made smaller than the adsorption properties of raw liquid to the specified component or other components.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は擬似移動層による分離・濃縮方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a separation/concentration method using a simulated moving layer.

(従来の技術) ガスおよび液体クロマトグラフィーは有力な分離、分析
手段として広く利用されている。しかしながら、一般に
実験室等で用いられている固定式のものは、回分操作方
式であり、大量の物質の分離・精製に適用するには連続
化する必要がある。
(Prior Art) Gas and liquid chromatography are widely used as powerful separation and analysis tools. However, stationary systems generally used in laboratories and the like are operated in batches, and must be continuous in order to be applied to the separation and purification of large amounts of substances.

連続化する方式の理想的な方式は移動層を用いるもので
ある。
The ideal continuous method uses a moving layer.

移動層による吸着分離は第2図に模式的に示すように、
固体の吸着剤と溶離液とが向流で移動しているカラムの
中央からA成分とB成分とを含む原液を供給する。この
場合、A成分が吸着剤に対し吸着性が高く、B成分が低
いと仮定すると、A成分は吸着剤の流れと共に第2図の
右の方向へ移動し、B成分は溶離液の流れと共に左の方
向へ移動する。Alffl分は右測の取り出し口から取
り出し、BIiil2分は左側の取り出し口から取り出
すと分離ができる。
Adsorption separation using a moving bed is schematically shown in Figure 2.
A stock solution containing components A and B is supplied from the center of the column, where the solid adsorbent and eluent are moving in countercurrent. In this case, assuming that the A component has high adsorption to the adsorbent and the B component has low adsorption, the A component will move to the right in Figure 2 with the flow of the adsorbent, and the B component will move with the flow of the eluent. Move to the left. Separation can be achieved by taking out the Alffl portion from the right outlet and the BIiil2 portion from the left outlet.

しかしながら、移動層方式では固体の吸着剤を移動させ
なければならず、現実的には克服すべき問題点が多い。
However, in the moving bed method, the solid adsorbent must be moved, and in reality there are many problems that must be overcome.

そこで、吸着剤を動かさずに原液供給口、溶離液供給口
と取り出し口の方を所定の周期で移動させる方式をとっ
たのが擬似移動層(ジャーナル・オプ・ケミカル・エン
ジニアリング・オブ・ジャパン,16,p 400−4
06.1983)である。
Therefore, a pseudo-moving bed (Journal of Chemical Engineering of Japan, 16, p 400-4
06.1983).

(発明が解決しようとする課題) 本発明者等はこの擬似移動層を用いる分離方法を検討し
、単なる分離に留まらず、濃縮も可能にする操作方法を
提供することを目的とする。
(Problems to be Solved by the Invention) The present inventors studied a separation method using this pseudo-moving layer, and aimed to provide an operation method that enables not only simple separation but also concentration.

(課題を解決するための手段) 即ち、本発明は特定成分とその他の成分を含む混合物よ
り特定威分を分離するにあたり、該特定成分を選択的に
吸着する吸着剤を充填した複数の充填塔を液体通路で直
列に連結すると共に、最前の充填塔と最後の充填塔も液
体通路で結合して無端状とし、液体が一方向に流れる充
填塔群において、 溶離液供給口(a )、特定戊分の取り出し口(b )
、原液供給口(c )およびその他の戊分取り出し口(
d )を液体の流れの方向に沿って、所定間隔でこの順
序で配置し、(a)、(b)、Cc )および(d )
を下流側に間欠的に逐次移動させ、かつ 原液供給流量
より特定成分取り出し流量およびその他の成分の取り出
し流量の少なくとも一方を小さくするとともに、原液の
溶媒組成中での特定成分またはその他の成分の吸着剤に
対する吸着性より溶離液中でのそれを小さくすることを
特徴とする擬似移動層による分離方法を提供する。
(Means for Solving the Problems) That is, in separating a specific component from a mixture containing the specific component and other components, the present invention uses a plurality of packed columns filled with an adsorbent that selectively adsorbs the specific component. are connected in series through a liquid passage, and the first packed tower and the last packed tower are also connected through a liquid passage to form an endless structure, and in the packed tower group where the liquid flows in one direction, the eluent supply port (a), Bokubun outlet (b)
, stock solution supply port (c) and other stock solution outlet (
d) are arranged in this order at predetermined intervals along the direction of liquid flow, (a), (b), Cc) and (d)
intermittently and sequentially to the downstream side, and at least one of the specific component extraction flow rate and the other component extraction flow rate is made smaller than the stock solution supply flow rate, and the adsorption of the specific component or other components in the solvent composition of the stock solution is performed. The present invention provides a separation method using a pseudo-moving layer, which is characterized in that its adsorption in an eluent is lower than its adsorption to an agent.

分離と濃縮の方法として第l溶離液、第2溶離液の2種
類の溶離液を用いる方法(特開昭6485106号公報
)が提案されている。この方法は溶離液を2種類必要と
すると同時に第1区画の最後列の塔の出口と第2区画の
最前列の塔の入り口との間の液体通路を遮断し、溶離液
供給口を第1区画及び第2区画各々の最前列の塔の入り
口の2ケ所設ける必要があること、またその他の成分の
取り出し口より得られるその他の成分の濃度は通常の擬
似移動層型吸着分離操作同様希釈されるという問題を有
している。
As a separation and concentration method, a method using two types of eluents, a first eluent and a second eluent (Japanese Patent Application Laid-Open No. 6485106) has been proposed. This method requires two types of eluents, and at the same time, the liquid passage between the outlet of the column in the last column of the first section and the inlet of the column in the front column of the second section is blocked, and the eluent supply port is connected to the first column. It is necessary to provide two entrances to the column in the front row of each compartment and second compartment, and the concentration of other components obtained from the outlet for other components is diluted as in normal pseudo-moving bed type adsorption separation operation. The problem is that

本発明を図面に基づいて詳細に説明する。The present invention will be explained in detail based on the drawings.

第1図は本発明の方法で使用される擬似移動層装置の1
例を示したものである。ある時間における溶離液供給口
、特定成分の取り出し口、原液供給口およびその他の成
分の取り出し口は各々(a).(b).(c)および(
d)である。この他に溶離液取り出し口(e)を必要に
応じて設けてもよい。溶離液取り出し口(e)を設ける
場合、(e)と(a)の間は、例えば電磁弁Sをもって
遮断する必要がある。これら(a)、(b)、(c)、
(d)および(e)は電磁弁(D+〜+2、F1〜,,
、E1〜,,、R1〜1,、Ef.〜1,およびS1〜
,2)および弁開閉制御装置等、あるいはロータリーバ
ルブ方式等の公知の手段により、液体の流れの方向に間
欠的に逐次移動する。
FIG. 1 shows one of the simulated moving bed devices used in the method of the present invention.
This is an example. The eluent supply port, specific component take-out port, stock solution supply port, and other component take-out ports at a certain time are each (a). (b). (c) and (
d). In addition to this, an eluent outlet (e) may be provided as necessary. When providing the eluent outlet (e), it is necessary to use, for example, a solenoid valve S to shut off the space between (e) and (a). These (a), (b), (c),
(d) and (e) are solenoid valves (D+~+2, F1~,,
, E1~,,, R1~1,, Ef. ~1, and S1~
, 2) and a valve opening/closing control device, or a known means such as a rotary valve system, intermittently and sequentially moves in the direction of the liquid flow.

充填塔Cl〜1,には特定成分を選択的に吸着する吸着
剤が充填されている。
The packed column Cl~1 is filled with an adsorbent that selectively adsorbs specific components.

本発明の方法では原液中の溶媒組成における特定成分及
びその他の成分の吸着剤に対する吸着性より、溶離液中
の特定成分およびその他の成分の吸着剤に対する吸着性
が小さくなるようにする。
In the method of the present invention, the adsorption of the specific component and other components in the eluent to the adsorbent is made smaller than the adsorption of the specific component and other components to the adsorbent in the solvent composition of the stock solution.

原液中の特定成分およびその他の戊分の吸着剤に対する
吸着性をQpとし、溶離液中のそれをq,とした場合、
qp/ QD> 1、好ましくは1<qp/qO<to
,ooo、より好ましくは1 <qp/qo< 1 o
 oを満足するように原液の溶媒および溶離液を選択す
る。この条件を満足する液を原液供給口及び溶離液供給
口より供給することで装置内に溶媒組成の分布を形成す
る。
If the adsorption of specific components and other ingredients in the stock solution to the adsorbent is Qp, and that in the eluent is q, then
qp/QD>1, preferably 1<qp/qO<to
, ooo, more preferably 1 < qp/qo < 1 o
Select the solvent and eluent for the stock solution so as to satisfy o. By supplying a solution that satisfies this condition from the stock solution supply port and the eluent supply port, a distribution of solvent composition is formed within the apparatus.

本発明を達成するには、更にもう一つ重要な条件が必要
である。つまり原液供給流量より各取り出し口の流量を
小さくしなければならない。この条件を特定成分とその
他の成分の分離の条件下で達成できれば各々の成分の高
濃度での回収が可能となる。
In order to achieve the present invention, one more important condition is necessary. In other words, the flow rate at each outlet must be smaller than the stock solution supply flow rate. If this condition can be achieved under the conditions for separating a specific component from other components, it becomes possible to recover each component at a high concentration.

本発明は擬似移動層型吸着分離操作において、原液濃度
より高濃度で戚分を分離回収できるという従来の技術よ
り画期的な操作方法を示すものであり、本発明に使用で
きる吸着剤と溶媒組戊の組合せについては特に限定する
ものではないが、通常の固定層回分式のクロマトグラフ
ィーにより分離されるもので、なおかつ溶離液の溶媒組
成を替えることにより成分の溶出時間が変化する組合せ
であればよい。例えばイオン交換樹脂を吸着剤として用
い、水素イオン濃度等溶媒中の各種イオン濃度を替える
イオン交換クロマトグラフィー、或はODS及びスチレ
ンジビニルベンゼン共重合物で代表される疎水性吸着剤
と親水性の溶離夜の組合せによる逆相クロマ,トグラフ
ィーで、この場合溶離液の疎水性を増加すれば成分の吸
着性は減少する。従って本発明の方法においては、原液
中の溶媒より溶INの溶媒の疎水性を増加させればよい
。その他順相クロマトグラフィー、アフィニティーク口
マトグラフィー、疎水性クロマトグラフィー、吸着クロ
マトグラフィー等に本発明は用いることができる。また
本発明の方法を用いて分離される成分についても、特に
限定するものではなく、特定或分或はその他の成分とは
少なくとも1成分以上の成分を含有する。
The present invention presents an epoch-making method of operation in a simulated moving bed type adsorption/separation operation, which is capable of separating and recovering a component at a concentration higher than that of the original solution, and which is more innovative than conventional technology. The combination of components is not particularly limited, but it may be a combination that is separated by ordinary fixed bed batch chromatography and in which the elution time of the components changes by changing the solvent composition of the eluent. Bye. For example, ion exchange chromatography uses an ion exchange resin as an adsorbent and changes the concentration of various ions in the solvent such as hydrogen ion concentration, or hydrophilic elution with a hydrophobic adsorbent represented by ODS and styrene divinylbenzene copolymer In reverse-phase chromatography by night combination, in this case increasing the hydrophobicity of the eluent reduces the adsorption of the components. Therefore, in the method of the present invention, it is sufficient to increase the hydrophobicity of the solvent in the solution IN compared to the solvent in the stock solution. In addition, the present invention can be used in normal phase chromatography, affinity chromatography, hydrophobic chromatography, adsorption chromatography, and the like. Furthermore, the components separated using the method of the present invention are not particularly limited, and the specific components or other components include at least one component.

(作用) 本発明の擬似移動層の作用について、第2図に基づいて
説明する。第2図は移動層を示すものであるが、擬似移
動層は理論的には移動層と同じと考えられるのでこれを
用いる。第2図において、溶離演の流量をV 原液供給
流量をV,、A成分Dゝ 取り出し口流量をV6、B成分取り出し口流量をvRと
すると、第1区画の流量はVo、第2区画の流量はv,
−v,、第3区画の流量はVD  VE+ V p1第
4区画の流量はVD  VE+VF  VR T:ある
。流量と移動速度は次の式が成り立つ。
(Function) The function of the pseudo-moving layer of the present invention will be explained based on FIG. 2. Although FIG. 2 shows a moving layer, a pseudo moving layer is used because it is theoretically considered to be the same as a moving layer. In Fig. 2, if the elution flow rate is V, the stock solution supply flow rate is V, the A component D outlet flow rate is V6, and the B component outlet flow rate is vR, then the flow rate of the first section is Vo, and the flow rate of the second section is V6. The flow rate is v,
-v,, The flow rate of the third section is VD VE+V p1 The flow rate of the fourth section is VD VE+VF VR T: Yes. The following formula holds true for flow rate and moving speed.

移動速度(V)・流fl(V)/q(但し、qは吸着性
を示す。)また、吸着剤の移動速度は充填塔の長さ(し
)/切換時間(T)となる。今、q,、q,の吸着性を
示す液を原液供給口、容離液供給口より供給すると装置
内において、第1区画、第2区画ではqDの吸着性を示
す溶媒組成となり第3区画、第4区画ではq,とqFを
示す液が混合し、qFDの吸着性を示す溶媒組成となる
。そこで、A成分をA成分取り出し口から流出させる条
件は 第1区画におけるA成分の移動速度 =VD/qD>L/T      ・・・・・・(1)
第2区画におけるA成分の移動速度 = (v D− v E)/q,< L /T    
・・・・・・(2)第3区画におけるA成分の移動速度 一(VD−VE十vF)/qFDくL/T ・・・(3
)第4区画におけるA成分の移動速度 一( v o  V E + V p  V R) /
 qFD < r− / T・・・(4)(但し、q,
は第1および2区画での溶媒に特定の係数であり、qF
Dは第.3および第4区画での溶媒に特定の係数である
。) ここマ、qP一qD−qFD〉0とすると、(1)と(
3)の式から (  VE+VP)/QD<L/T   VD/QD<
0故に V F< V Eとなる。
Movement speed (V)・flow fl (V)/q (however, q indicates adsorptivity) In addition, the movement speed of the adsorbent is the length of the packed column (shi)/switching time (T). Now, when a liquid exhibiting the adsorption property of q,, q, is supplied from the stock solution supply port and the syneresis solution supply port, the solvent composition in the first and second compartments becomes a solvent composition exhibiting the adsorption property of qD, and the solvent composition exhibits the adsorption property of qD in the third compartment. , in the fourth section, the liquids exhibiting q and qF are mixed, resulting in a solvent composition exhibiting adsorption of qFD. Therefore, the condition for flowing out component A from the A component outlet is the moving speed of component A in the first section=VD/qD>L/T (1)
Movement speed of component A in the second section = (vD-vE)/q, <L/T
......(2) Movement speed of component A in the third section - (VD - VE + vF) / qFD x L / T ... (3
) Movement speed of component A in the fourth section - (vo V E + V p VR) /
qFD < r- / T... (4) (However, q,
is the solvent specific coefficient in the first and second compartments, and qF
D is No. Solvent specific coefficients in the third and fourth compartments. ) Here, if qP - qD - qFD〉0, then (1) and (
From the formula 3), (VE+VP)/QD<L/T VD/QD<
0, so V F < VE.

またB成分をB成分取り出し口から流出させる条件は. 第1区画におけるB成分の移動速度 = v o/ qO > L/ T       ・・
・(5)第2区画におけるB成分の移動速度 一(V,−V2)/(1,>L/T    ・(6)第
3区画におけるB成分の移動速度 =(VD−VE+VF)/qFD>L/T  ・・・(
7)第4区画におけるB威分の移動速度 =(VD−VE十VF−VR)/qFDくL/T・・・
(8)ここで、qF−qD−qFD〉0では、(6)と
(8)の式より (VF−V,)/q,<L/T−(V,−V,)/q,
< 0故に V p < V Rとなる。
Also, the conditions for flowing out component B from the component B outlet are as follows. Movement speed of component B in the first section = vo/qO > L/T...
・(5) Movement speed of B component in second section - (V, -V2)/(1,>L/T ・(6) Movement speed of B component in third section = (VD-VE+VF)/qFD> L/T...(
7) Movement speed of B weight in the 4th section = (VD - VE + VF - VR) / qFD × L / T...
(8) Here, when qF-qD-qFD〉0, from equations (6) and (8), (VF-V,)/q, <L/T-(V, -V,)/q,
< 0, so V p < VR.

これは各区画の溶媒組成が同じであれば、A成分、B成
分は原液よりも流量が多いので、希釈された状態で出て
くることを意味する。即ち、通常分離とともに濃縮する
ことは不可能であることか解る。
This means that if the solvent composition of each compartment is the same, the A component and the B component will come out in a diluted state because their flow rates are higher than that of the undiluted solution. In other words, it can be seen that it is normally impossible to perform separation and concentration.

ところが、v p > V E(原液供給流量〉A成分
取り出し口流量)、v F> V R (原液供給流f
fi>B成分取り出し口流量)でQp > QFD >
 QD(原夜中の吸着性より溶離液中の吸着性が低い)
の条件を選定して、擬似移動層による分離ができれば、
濃縮が可能となることが解った。
However, v p > V E (undiluted solution supply flow rate > A component outlet flow rate), v F > V R (undiluted solution supply flow f
fi>B component outlet flow rate), Qp>QFD>
QD (adsorption in the eluent is lower than adsorption in the original medium)
If the conditions are selected and separation by a pseudo-moving layer is possible,
It turns out that it is possible to concentrate.

通常の擬似移動層型吸着分離操作では各区画の吸着性は
同一の吸着平衡関係で表現されるが、本発明においては
、原液中の溶媒組成と溶離液の溶媒組成が異なるため、
擬似移動層装置内に溶媒組戊の分布が形成され、その結
果第1区画、第2区画と第3区画、第4区画の吸着性は
異なる吸着平衡関係で表現される。従って特定成分とそ
の他の成分の分離を達戊せしめる条件はそのまま各区画
の液流量の条件とはならない。つまり本発明においては
、第1区画、第2区画に形成せしめた溶媒組成は吸着剤
に対する各成分の吸着性を低くするため各成分の移動速
度がより大きく、第1区画及び第2区画においては肢流
量を大きくせずとも特定成分およびその他の成分の移動
速度を大きくすることが可能であり、従って特定成分と
その他の成分の分離条件下で第l区画の液流量を第3区
画より小さく、また第2区画の液流量を第4区画より小
さくすることができる。このことから原液供給流量より
各取り出し流量を小さくでき、本発明の方法を用いれば
特定成分及びその他の成分を連続的に分離しかつ原液中
の濃度より高濃度で回収することが可能となる。当然の
ことながら、特定成分或はその他の成分どちらか一方の
濃縮分離も可能である。
In normal pseudo-moving bed adsorption separation operations, the adsorption properties of each compartment are expressed by the same adsorption equilibrium relationship, but in the present invention, since the solvent composition in the stock solution and the solvent composition in the eluent are different,
A distribution of solvent composition is formed in the pseudo moving bed device, and as a result, the adsorption properties of the first and second compartments, and the third and fourth compartments are expressed by different adsorption equilibrium relationships. Therefore, the conditions for achieving separation of specific components from other components do not directly depend on the liquid flow rate in each compartment. In other words, in the present invention, the solvent composition formed in the first and second compartments lowers the adsorption of each component to the adsorbent, so that the movement speed of each component is higher; It is possible to increase the movement speed of the specific component and other components without increasing the limb flow rate. Therefore, under the conditions of separation of the specific component and other components, the liquid flow rate in the first compartment can be lower than that in the third compartment. Further, the liquid flow rate in the second section can be made smaller than that in the fourth section. For this reason, each extraction flow rate can be made smaller than the stock solution supply flow rate, and by using the method of the present invention, it becomes possible to continuously separate the specific component and other components and recover them at a higher concentration than in the stock solution. Naturally, it is also possible to concentrate and separate either the specific component or other components.

(発明の効果) 本発明によれば、擬似移動層型吸着分離操作の後の濃縮
工程でのエネルギーが低減可能であり、分離精製工程全
体の変動費及び設備費を従来に比べ低減することができ
る。
(Effects of the Invention) According to the present invention, it is possible to reduce energy in the concentration step after the simulated moving bed type adsorption separation operation, and the variable cost and equipment cost of the entire separation and purification process can be reduced compared to the conventional method. can.

(実施例) 以下に本発明の効果をより明確にするために実施例によ
り本発明を具体的に説明する。しかし本発明はこれに限
定されるものではない。
(Example) In order to make the effects of the present invention clearer, the present invention will be specifically described below using Examples. However, the present invention is not limited thereto.

実施例 本実施例ではオレイン酸とγ−リノレン酸の分離につい
て示す。内径1.25cx,長さ12ciの充填塔12
本のそれぞれの末端を次の充填塔の頂部と電磁弁S1〜
Sltを介して配管で無端状に連結し、各電磁弁の上流
に電磁弁を有する液流出管(E,R.Ef)を3本分岐
して連結し、下流には電磁弁を有する液流入管(D,F
)を2本分岐して連結した実験装置を用い、吸着剤とし
てはODS−H(オルガノ製)を用い各充填塔に14x
(l充填した。
Example This example shows the separation of oleic acid and γ-linolenic acid. Packed column 12 with an inner diameter of 1.25 cx and a length of 12 ci
Connect each end of the book to the top of the packed column and the solenoid valve S1~
Three liquid outflow pipes (E, R.Ef) each having a solenoid valve are connected in an endless manner via Slt, and three liquid outflow pipes (E, R.Ef) having a solenoid valve are connected upstream of each solenoid valve, and a liquid inflow pipe having a solenoid valve is connected downstream. Tube (D, F
) was used, and ODS-H (manufactured by Organo) was used as the adsorbent.
(I filled it with l.

溶離液は液流入管Dより、原液は肢流入管Fより供給し
、吸着性の強いオレイン酸は液流出管Eより、吸着性の
弱いγ−リノレン酸は液流出管Rより取り出す。従って
本実施例の場合、特定成分はオレイン酸であり、その他
の成分はγ−リノレン酸である。各肢人出口の一定時間
毎の切り替えは、D.P,E,R,Erの71!磁弁の
開閉の位置を肢流れ下流に1塔づつ移動させることで行
った。本実施例では(e)と(a)の間は遮断し、溶離
液取り出し口を設けた。従ってこの位置も一定時間毎に
液流れ下流に移動した。
The eluent is supplied from the liquid inflow pipe D, the stock solution is supplied from the limb inflow pipe F, the highly adsorbable oleic acid is taken out from the liquid outflow pipe E, and the weakly adsorbable γ-linolenic acid is taken out from the liquid outflow pipe R. Therefore, in the case of this example, the specific component is oleic acid and the other component is γ-linolenic acid. D. Switching the exit of each limb at regular intervals. P, E, R, Er's 71! This was done by moving the opening and closing positions of the magnetic valves one tower at a time downstream of the limb flow. In this example, the space between (e) and (a) was blocked and an eluent outlet was provided. Therefore, this position also moved downstream of the liquid flow at regular intervals.

本実施例においては、溶離液としてメタノール水溶液を
用いた。原液と溶離岐の溶媒組成は水分含量を変えた。
In this example, a methanol aqueous solution was used as the eluent. The solvent composition of the stock solution and eluate varied the water content.

本吸着剤では溶離液の親水性が増加する程、つまり水分
含量が増加するほど吸着性が大きくなる。本実施例で用
いた原液は才レイン酸109/Q、γ−リノレン酸19
/Qを含む水分含量12,3重量%のメタノール溶液で
あり、溶離液としては水分含量6.2重量%のメタノー
ル溶液を用いた。以下本実施例の操作条件を記す。
In this adsorbent, the adsorption property increases as the hydrophilicity of the eluent increases, that is, as the water content increases. The stock solutions used in this example were oleic acid 109/Q and γ-linolenic acid 19/Q.
/Q and a methanol solution with a water content of 12.3% by weight, and a methanol solution with a water content of 6.2% by weight was used as an eluent. The operating conditions of this example will be described below.

原液供給流量        0.2181Q/ mi
n溶離液供給流量       1.279112/ 
minオレイン酸取り出し口流量  0.232ml2
/ minγ−リノレン酸取り出し口流量0.2141
Il2/win溶離液取り出し口流量    1.11
1x+2/ min液人出口切り替え時間    20
min本実施例の操作条件は、原液供給流量よりオレイ
ン酸及びγ−リノレン酸の取り出し口流量を小さく設定
した。つまり両成分を連続分離しかつ原液より高濃度で
得る条件に設定した。
Stock solution supply flow rate 0.2181Q/mi
n Eluent supply flow rate 1.279112/
min Oleic acid outlet flow rate 0.232ml2
/minγ-linolenic acid outlet flow rate 0.2141
Il2/win eluent outlet flow rate 1.11
1x+2/ min liquid person exit switching time 20
minThe operating conditions of this example were such that the outlet flow rates of oleic acid and γ-linolenic acid were set smaller than the flow rates of supplying the stock solutions. In other words, conditions were set to continuously separate both components and obtain them at a higher concentration than the original solution.

本実施例の結果を第3図、第4図に示す。第3図はオレ
イン酸取り出し口の演濃度の経時変化を示したものであ
り、99.9%以上の純度のオレイン酸が得られ、また
定常状態での濃度は原液の1.2倍であった。第4図は
γ−リノレン酸取り出し口の液濃度の経時変化を示した
ものである。
The results of this example are shown in FIGS. 3 and 4. Figure 3 shows the change over time in the effective concentration at the oleic acid outlet, showing that oleic acid with a purity of 99.9% or more was obtained, and the concentration in the steady state was 1.2 times that of the stock solution. Ta. FIG. 4 shows the change over time in the liquid concentration at the gamma-linolenic acid outlet.

取り出し液中にオレイン酸は検出されなかった。No oleic acid was detected in the sampled liquid.

定常状態でのγ−リノレン酸流出濃度は原液の125倍
であった。また第5図には定常状態における水分含量の
分布を示す。これより第11第2区画と第3、第4区画
の水分含量は異なり第1、第2区画の方が低い。
The effluent concentration of γ-linolenic acid at steady state was 125 times that of the stock solution. Moreover, FIG. 5 shows the distribution of water content in a steady state. From this, the moisture content of the 11th second compartment and the third and fourth compartments is different, and the moisture content of the first and second compartments is lower.

以上より、本発明の方法に基づいて実施した結果、オレ
イン酸とγ−リノレン酸を連続的に分離しかつ両成分を
原液濃度より高濃度で得ることができた。
As described above, as a result of implementing the method of the present invention, it was possible to continuously separate oleic acid and γ-linolenic acid and obtain both components at a higher concentration than the original solution concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で使用する擬似移動層の1例の模
式図を示す。 第2図は本移動層の原理を示す図である。 第3図及び第4図はそれぞれオレイン酸、γ一リノレン
酸取り出し口の液濃度の経時変化を示したグラフである
。 第5図は定常状態における装置内の水分含量の分布を示
したグラフである。
FIG. 1 shows a schematic diagram of an example of a pseudo-moving layer used in the method of the present invention. FIG. 2 is a diagram showing the principle of the present moving layer. FIGS. 3 and 4 are graphs showing changes over time in the liquid concentrations at the outlet for oleic acid and γ-linolenic acid, respectively. FIG. 5 is a graph showing the distribution of moisture content within the device in a steady state.

Claims (1)

【特許請求の範囲】 1、特定成分とその他の成分を含む混合物より特定成分
を分離するにあたり、該特定成分を選択的に吸着する吸
着剤を充填した複数の充填塔を液体通路で直列に連結す
ると共に、最前の充填塔と最後の充填塔も液体通路で結
合して無端状とし、液体が一方向に流れる充填塔群にお
いて、 溶離液供給口(a)、特定成分の取り出し口(b)、原
液供給口(c)およびその他の成分取り出し口(d)を
液体の流れの方向に沿って、所定間隔でこの順序で配置
し、(a)、(b)、(c)および(d)を下流側に間
欠的に逐次移動させ、かつ 原液供給流量より特定成分取り出し流量およびその他の
成分の取り出し流量の少なくとも一方を小さくするとと
もに、原液の溶媒組成中での特定成分またはその他の成
分の吸着剤に対する吸着性より溶離液中でのそれを小さ
くすることを特徴とする擬似移動層による分離方法。
[Claims] 1. In separating a specific component from a mixture containing the specific component and other components, a plurality of packed columns filled with an adsorbent that selectively adsorbs the specific component are connected in series through a liquid passage. At the same time, the first packed tower and the last packed tower are also connected by a liquid passage to make them endless, and in the group of packed towers where liquid flows in one direction, there is an eluent supply port (a), a specific component extraction port (b) , the stock solution supply port (c) and the other component extraction port (d) are arranged in this order at predetermined intervals along the direction of the flow of the liquid, and (a), (b), (c) and (d) to the downstream side intermittently, and at least one of the specific component extraction flow rate and the other component extraction flow rate is made smaller than the stock solution supply flow rate, and the adsorption of the specific component or other components in the solvent composition of the stock solution is performed. A separation method using a pseudo-moving layer, which is characterized in that adsorption in an eluent is lower than adsorption in an agent.
JP15525689A 1989-06-16 1989-06-16 Separation method using simulated moving bed Expired - Lifetime JP2648366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15525689A JP2648366B2 (en) 1989-06-16 1989-06-16 Separation method using simulated moving bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15525689A JP2648366B2 (en) 1989-06-16 1989-06-16 Separation method using simulated moving bed

Publications (2)

Publication Number Publication Date
JPH0321303A true JPH0321303A (en) 1991-01-30
JP2648366B2 JP2648366B2 (en) 1997-08-27

Family

ID=15601943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15525689A Expired - Lifetime JP2648366B2 (en) 1989-06-16 1989-06-16 Separation method using simulated moving bed

Country Status (1)

Country Link
JP (1) JP2648366B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064944A (en) * 2005-09-02 2007-03-15 Japan Organo Co Ltd Chromatography
WO2015015716A1 (en) * 2013-07-31 2015-02-05 備前化成株式会社 Method for separating fat-soluble material by simulated moving bed chromatography, and device for same
JP2015030685A (en) * 2013-07-31 2015-02-16 備前化成株式会社 Method for separating liposoluble substance by pseudo moving-bed chromatography using reverse phase column, and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064944A (en) * 2005-09-02 2007-03-15 Japan Organo Co Ltd Chromatography
WO2015015716A1 (en) * 2013-07-31 2015-02-05 備前化成株式会社 Method for separating fat-soluble material by simulated moving bed chromatography, and device for same
JP2015030685A (en) * 2013-07-31 2015-02-16 備前化成株式会社 Method for separating liposoluble substance by pseudo moving-bed chromatography using reverse phase column, and device therefor
US20160193546A1 (en) * 2013-07-31 2016-07-07 Bizen Chemical Co., Ltd. Method for separating fat-soluble substance by simulated moving bed chromatography - and device for same

Also Published As

Publication number Publication date
JP2648366B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
EP0495640B1 (en) Process and apparatus for separating and purifying a multicomponent mixture
US3323292A (en) Apparatus for fractionating gaseous mixtures
EP0086073B1 (en) Rotary valve
US4923616A (en) Method of separating chemical components in simulated moving bed
KR960010366B1 (en) Method of choromatographic separation
EP1078673B1 (en) Method for separating, removing, and recovering gas components
JPH0321303A (en) Separation of pseudomobile-layer
JPH05118453A (en) Countercurrent valve
US5415773A (en) Process vessel head flush apparatus
JP3277575B2 (en) Chromatographic separation method
JP2740780B2 (en) Simulated moving bed equipment
EP0968038B1 (en) Method and installation for adsorptive substance separation
JPH06106003A (en) Method and device for separating and purifying multicomponent mixture
JPS60500203A (en) How to prevent adsorption bed compaction
JP4606092B2 (en) Pseudo moving bed type chromatographic separation method and apparatus
JP2834225B2 (en) Simulated moving bed chromatographic separator
JPH0639205A (en) Liquid chromatographic separator for three components
JPH0639206A (en) Pseudo moving-bed liquid chromatographic separator
JP3256349B2 (en) Separation method and apparatus using simulated moving bed
JP2965747B2 (en) Multicomponent separation method and apparatus
RU2069083C1 (en) Method of hydrogen isotopes in gas mediums separation
Agrawal et al. Recuperative parametric pumping in adsorptive membranes
Hiester et al. Ion exchange of trace components in a countercurrent equilibrium stage contactor
JPH04131761A (en) Liquid chromato-separation device of pseudo-moving floor type
JP2962593B2 (en) How to separate multiple components