JPH0321267B2 - - Google Patents

Info

Publication number
JPH0321267B2
JPH0321267B2 JP57183236A JP18323682A JPH0321267B2 JP H0321267 B2 JPH0321267 B2 JP H0321267B2 JP 57183236 A JP57183236 A JP 57183236A JP 18323682 A JP18323682 A JP 18323682A JP H0321267 B2 JPH0321267 B2 JP H0321267B2
Authority
JP
Japan
Prior art keywords
current
characteristic
circuit
welding
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57183236A
Other languages
Japanese (ja)
Other versions
JPS5973178A (en
Inventor
Hideyuki Yamamoto
Kazuichi Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP18323682A priority Critical patent/JPS5973178A/en
Publication of JPS5973178A publication Critical patent/JPS5973178A/en
Publication of JPH0321267B2 publication Critical patent/JPH0321267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits

Description

【発明の詳細な説明】 本発明は、消耗性電極を設定した略一定速度で
送給し、ベース電流およびパルス電流のいずれか
一方を予め定めた電流値以下で、定電流特性から
定電圧特性に切換えて溶接するパルスアーク溶接
方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention supplies a consumable electrode at a set substantially constant speed, and when either the base current or the pulse current is below a predetermined current value, the constant current characteristic changes to the constant voltage characteristic. The present invention relates to a pulsed arc welding method and apparatus for welding by switching to the pulsed arc welding method.

従来のパルスアーク溶接方法においては、消耗
性電極(以下、ワイヤという。)を予め設定した
略一定速度で送給しているので、アーク長を一定
に制御する方式として、アーク長の変動に応じて
ベース電流値を変化させる第1の方式と、パルス
電流値を変化させる第2の方式とがある。第1の
方式においては、パルス電流供給用電源として
は、被溶接物の種類に応じて設定した略一定のパ
ルス電流値が得られるような略定電流特性の溶接
電源が使用され、他方、ベース電流供給用電源と
しては、アーク長の変動に応じて電流値が変化し
てワイヤの溶融速度が変化することにより、アー
ク長を復帰させるようにした略定電圧特性の溶接
電源が使用されている。
In the conventional pulsed arc welding method, a consumable electrode (hereinafter referred to as wire) is fed at a preset approximately constant speed, so the method of controlling the arc length to a constant value is to respond to fluctuations in the arc length. There is a first method in which the base current value is changed by changing the base current value, and a second method in which the pulse current value is changed. In the first method, a welding power source with a substantially constant current characteristic that can obtain a substantially constant pulse current value set according to the type of workpiece is used as a pulse current supply power source, and a As the current supply power source, a welding power source with approximately constant voltage characteristics is used that restores the arc length by changing the current value according to changes in the arc length and changing the melting speed of the wire. .

第2の方式は、第1の方式とは逆に、ベース電
流供給用電源としては、被溶接物の種類に応じて
設定した略一定のベース電流値が得られるような
略定電流特性の溶接電源が使用され、他方、パル
ス電流供給用電源としては、アーク長の変動に応
じて電流値が変化してワイヤの溶融速度が変化す
ることにより、アーク長を復帰させるようにした
略定電圧特性の溶接電源が使用されている。これ
ら第1および第2の方式では、アーク長の変動に
応じて、出力電流の瞬時値が、時々刻々と大幅に
変動するために、特に高電流域で溶け込み深さが
変動して溶融池が不安定になるという欠点があつ
た。
Contrary to the first method, the second method uses a base current supply power source that has approximately constant current characteristics that can obtain an approximately constant base current value that is set according to the type of workpiece. On the other hand, as a power source for supplying pulsed current, a nearly constant voltage characteristic is used to restore the arc length by changing the current value according to fluctuations in the arc length and changing the melting speed of the wire. Welding power source is used. In these first and second methods, the instantaneous value of the output current varies greatly from moment to moment in response to changes in the arc length, so the penetration depth changes particularly in the high current region, causing a molten pool. The drawback was that it became unstable.

そこで本発明者らは、小電流から大電流まで安
定したパルスアークの得られる方式として本発明
を完成するに至つた。
Therefore, the present inventors have completed the present invention as a method for obtaining a stable pulsed arc from small currents to large currents.

本発明は、ワイヤを設定した略一定速度で送給
し、 溶接電流の平均値が、ワイヤの材質および直
径、シールドガスの成分等の溶接条件によつて
予め定まる臨界電流値付近をこえた電流範囲で
は、アーク固有のアーク長自己制御作用によつ
てアーク長を安定に維持させ、かつ 溶接電流の平均値が、前記臨界電流値付近以
下となつて、前記アーク固有のアーク長自己制
御作用が存在しない範囲では、従来の第1又は
第2の方式の溶接電源の電流変化によるアーク
長制御作用によつてアーク長を安定に維持させ
て 溶接することによつて、従来のいずれの単独の方
式よりも溶接結果が良好であり、かつ広範囲の溶
接電流範囲にもかかわらず、1台の溶接機で経済
的に実施することができる。パルスアーク溶接方
法および溶接装置を提供したものである。
In the present invention, the wire is fed at a set substantially constant speed, and the average value of the welding current exceeds around a critical current value predetermined by welding conditions such as the material and diameter of the wire, the composition of the shielding gas, etc. In this range, the arc length is maintained stably by the arc length self-control function unique to the arc, and the average value of the welding current is below the vicinity of the critical current value, and the arc length self-control function unique to the arc is maintained stably. In the range where it does not exist, welding can be performed by maintaining the arc length stably by the arc length control action by the current change of the welding power source of the conventional first or second method. The welding result is better than that of the welding method, and despite the wide welding current range, it can be carried out economically with one welding machine. The present invention provides a pulse arc welding method and a welding device.

本出願の第1の発明は、ワイヤを設定した略一
定速度で送給し、ワイヤの材質および直径、シー
ルドガスの成分等の溶接条件に応じて予め定まる
臨界電流値をこえた電流範囲では、ベース電流供
給用電源およびパルス電流供給用電源のいずれも
略定電流特性(第1の特性)の溶接電源として、
アーク固有のアーク長自己制御作用によつてアー
ク長を安定に維持させ、かつ前記予め定まる臨界
電流以下の電流範囲では、ベース電流供給用電源
又はパルス電流供給用電源のいずれか一方を略定
電流特性(第1の特性)の溶接電源とし、他方を
垂下特性から略定電圧特性までの間のいずれか一
つの特性(第2の特性)の溶接電源とし、溶接用
電源の電流変化によるアーク長制御作用によつて
アーク長を安定に維持させて溶接するパルスアー
ク溶接方法を提案したものである。
The first invention of the present application is to feed the wire at a set substantially constant speed, and in a current range exceeding a critical current value predetermined according to welding conditions such as the material and diameter of the wire and the composition of the shielding gas, Both the base current supply power supply and the pulse current supply power supply have substantially constant current characteristics (first characteristics) as welding power sources.
The arc length is maintained stably by the arc length self-control function unique to the arc, and in the current range below the predetermined critical current, either the base current supply power supply or the pulse current supply power supply is operated at a substantially constant current. The welding power source has a characteristic (first characteristic), and the other welding power source has a characteristic (second characteristic) between drooping characteristic and almost constant voltage characteristic, and the arc length due to the current change of the welding power source is This proposed a pulsed arc welding method that welds by stably maintaining the arc length through a control action.

また、第2の発明は、ワイヤを設定した略一定
速度で送給するワイヤ送給装置と、ワイヤに定電
流特性のベース電流を供給するベース電流供給用
電源と、ワイヤにパルス電流を供給するパルス電
流供給用電源と、このパルス電流供給用電源が定
電流特性(第1の特性)のパルス電流を出力する
ための制御信号を発生する定電流特性信号発生回
路と、このパルス電流供給用電源が上記第2の特
性のパルス電流を出力するための制御信号を発生
する定電圧特性信号発生回路と、これら2つの制
御信号を切換えてパルス電流供給用電源に供給す
る特性切換回路とを備えたパルスアーク溶接装置
を提供したものである。
Further, a second invention provides a wire feeding device that feeds a wire at a set substantially constant speed, a base current supply power source that supplies a base current with constant current characteristics to the wire, and a pulsed current that supplies the wire with a pulsed current. A pulse current supply power supply, a constant current characteristic signal generation circuit that generates a control signal for the pulse current supply power supply to output a pulse current having constant current characteristics (first characteristic), and this pulse current supply power supply. is equipped with a constant voltage characteristic signal generation circuit that generates a control signal for outputting a pulse current having the second characteristic, and a characteristic switching circuit that switches these two control signals and supplies the pulsed current supply power supply with the same. The present invention provides a pulse arc welding device.

さらに、第3の発明は、第2の発明のパルス電
流の特性を切換えるかわりに、ベース電流の特性
を切換えるようにしたパルスアーク溶接装置を提
供したものである。
Furthermore, a third invention provides a pulsed arc welding device in which the characteristics of the base current are switched instead of the characteristics of the pulse current of the second invention.

以下、第1図を参照して本発明の溶接方法につ
いて説明する。同図は、パルスアーク溶接の溶融
特性を示す図であつて、横軸はベース電流および
パルス電流より成る溶接電流の平均値Ia〔A〕を
示し、縦軸はベース電圧およびパルス電圧より成
る溶接電圧の平均値Va〔V〕を示す。同図に示す
3つの曲線は、アルミニウム合金5183を同材
質の直径1.6mmのワイヤを用いて、ワイヤ速給速
度(10.2、7.0および4.0〔m/min〕)をパラメー
タとして、溶接電流の平均値Ia〔A〕と溶接電圧
の平均値Va〔V〕との関係を示している。同図に
おいて、一点鎖線Icはパルス電流を重畳しないで
スプレー移行が可能である溶接電流の平均値であ
つて臨界電流値と呼ばれ、直径1.6mmのアルミニ
ウム合金のワイヤではIc=180〔A〕である。この
臨界電流値Icをこえると、スプレイ移行が可能で
あることはよく知られているが、この電流値Ic
下でもパルス電流を重畳すれば、最小平均電流80
〔A〕位までスプレイ移行が可能になる。また同
図における3つの曲線Vf1、Vf2およびVf3は、ワ
イヤをそれぞれ10.2、7.0および4.0〔m/min〕の
各一定速度で送給してそれぞれ溶接電圧を変化さ
せてアーク長を変化させた場合の溶接電流の平均
値Ia〔A〕と溶接電圧の平均値Va〔V〕との関係を
示している。曲線上の各数値はアーク長〔mm〕を
示している。曲線Vf1では、アーク長が5〔mm〕か
ら0〔mm〕までの間ではアーク長が短かくなるに
したがつて溶接電流の平均値も減少している。こ
のことは、ワイヤ送給速度が一定であるにもかか
わらず、アーク長が短くなるほど溶接電流値が減
少しているので、もし溶接電流値を一定に維持す
ると、アーク長が短くなるほどワイヤの溶融速度
が増加してアーク長が大になる方向に働く。した
がつて、曲線Vf1の水平成分には、アーク長を自
動的に制御するアーク固有の自己制御作用が存在
する。同様に、曲線Vf2では、アーク長が5〔mm〕
から3〔mm〕までの間においてアーク固有のアー
ク長自己制御作用が存在する。しかし、曲線Vf3
では、曲線上には水平成分がほとんどないのでア
ーク固有の自己制御作用は存在しない。
Hereinafter, the welding method of the present invention will be explained with reference to FIG. This figure shows the melting characteristics of pulsed arc welding, where the horizontal axis shows the average value I a [A] of the welding current consisting of the base current and pulsed current, and the vertical axis shows the average value I a [A] of the welding current consisting of the base current and pulsed voltage. The average value V a [V] of welding voltage is shown. The three curves shown in the same figure are the average values of welding current using aluminum alloy 5183 using a wire with a diameter of 1.6 mm made of the same material and using wire rapid feeding speeds (10.2, 7.0, and 4.0 [m/min]) as parameters. The relationship between I a [A] and the average value V a [V] of welding voltage is shown. In the same figure, the dash-dotted line I c is the average value of the welding current at which spray transfer is possible without superimposing a pulse current, and is called the critical current value, and for an aluminum alloy wire with a diameter of 1.6 mm, I c = 180 [ A]. It is well known that splay transition is possible when this critical current value Ic is exceeded, but even below this current value Ic , if a pulse current is superimposed, the minimum average current 80
Spray transfer to [A] position is possible. In addition, the three curves V f1 , V f2 and V f3 in the same figure change the arc length by feeding the wire at constant speeds of 10.2, 7.0 and 4.0 [m/min], respectively, and varying the welding voltage. The relationship between the average value I a [A] of the welding current and the average value V a [V] of the welding voltage is shown. Each number on the curve indicates the arc length [mm]. In the curve V f1 , the average value of the welding current decreases as the arc length becomes shorter between 5 [mm] and 0 [mm]. This means that even though the wire feeding speed is constant, the welding current value decreases as the arc length becomes shorter, so if the welding current value is kept constant, the wire will melt as the arc length becomes shorter. It acts in the direction of increasing the arc length as the speed increases. Therefore, in the horizontal component of the curve V f1 there is an arc-specific self-control effect that automatically controls the arc length. Similarly, for curve V f2 , the arc length is 5 [mm]
There is an arc-length self-control effect inherent to the arc between 3 mm and 3 mm. But the curve V f3
In this case, there is almost no horizontal component on the curve, so there is no arc-specific self-control effect.

以上の検討結果から、ワイヤを設定した略一定
速度で送給して溶接する本発明のパルスアーク溶
接方法においては、溶接電流の平均値が、ワイヤ
の材質および直径、シールドガスの成分に応じて
予め定まる臨界電流値(例えば第1図に示す実施
例においては、アルミ合金、1.6mm、アルゴンで
180〔A〕)をこえた範囲では、ベース電流供給用
電源およびパルス電流供給用電源の両方が、略定
電流特性(第1の特性)の溶接用電源であつて
も、アーク固有のアーク長自己制御作用によつ
て、アーク長を安定に維持してパルスアーク溶接
を行うことができる。つぎに溶接電流の平均値が
上記臨界電流値付近以下の電流範囲では、ベース
電流供給用電源またはパルス電流供給用電源のい
ずれか一方を略定電流特性(第1の特性)の溶接
電源とし、他方を垂下特性から略定電圧特性まで
の間のいずれかの特性(第2の特性)の溶接電源
とすることによつて、溶接用電源の電流変化によ
るアーク長制御作用により、アーク長を安定に維
持してパルスアーク溶接を行うことができる。
From the above study results, in the pulsed arc welding method of the present invention in which the wire is fed at a set substantially constant speed for welding, the average value of the welding current varies depending on the material and diameter of the wire and the composition of the shielding gas. A predetermined critical current value (for example, in the example shown in Figure 1, aluminum alloy, 1.6 mm, argon
In the range exceeding 180 [A]), even if both the base current supply power supply and the pulse current supply power supply are welding power supplies with approximately constant current characteristics (first characteristic), the arc length peculiar to the arc The self-control action allows pulse arc welding to be performed while stably maintaining the arc length. Next, in a current range in which the average value of the welding current is around or below the critical current value, either the base current supply power source or the pulse current supply power source is used as a welding power source with substantially constant current characteristics (first characteristic); By using the other as a welding power source with any characteristic (second characteristic) between the drooping characteristic and the almost constant voltage characteristic, the arc length can be stabilized by the arc length control effect due to the current change of the welding power source. Pulse arc welding can be performed by maintaining the

つぎに、第2図および第3図を参照して本発明
のパルスアーク溶接装置について説明する。
Next, the pulse arc welding apparatus of the present invention will be explained with reference to FIGS. 2 and 3.

第2図において、Wは被溶接物で、Eはワイヤ
であつて、この間でアークAが発生する。1は、
ワイヤ送給速度設定回路1aで設定された信号を
入力としてワイヤ送給電動機Mに出力を供給する
ワイヤ送給制御回路、Rは電動機Mによつて回転
されてワイヤEを送給する送給ロール、10は図
示しない商用周波の電源に接続されて、溶接用電
力を出力する溶接用電源、11は溶接用電源10
から出力された電力を制御してリアクトルLおよ
びチツプTを通じてワイヤEにパルス電流を供給
するパルス電流制御回路、11aはパルス電流
値、パルス周波数およびパルス継続時間を設定し
て信号をパルス電流制御回路11に出力するパル
ス電流設定回路、12は溶接用電源10から出力
された電力を制御してリアクトルLおよびチツプ
Tを通じてワイヤEにベース電流を供給するベー
ス電流制御回路、12aはベース電流値に相当す
る信号をベース電流制御回路12に出力するベー
ス電流設定回路である。溶接用電源10とパルス
電流制御回路11とパルス電流設定回路11aと
がパルス電流供給用電源を構成し、また溶接用電
源10とベース電流制御回路12とベース電流設
定回路12aとがベース電流供給用電源を構成し
ている。13は電源出力設定回路、VDは溶接電
圧の平均値またはパルス電圧もしくはベース電圧
の平均値を検出する溶接電圧検出回路、14は電
源出力設定回路13の出力信号Vrと溶接電圧検
出回路VDの出力信号Vpとを比較して差の信号Vr
−Vpを出力する比較回路、13aは電源出力設
定回路13の出力信号Vrを入力として比較回路
14の出力信号Vr−Vpと信号レベルをあわせる
ための減衰回路である。15は、例えば、比較回
路14の出力信号Vr−Vpが供給される第1の固
定接点CPと減衰回路13aの出力信号Vr′が供給
される第2の固定接点CCとを有する特性切換ス
イツチSWにより構成される特性切換回路であ
る。16は、この特性切換スイツチSWの可動接
点の出力信号を入力としてパルス電流値、パルス
周波数およびパルス継続時間の少なくとも一つを
制御する信号をパルス電流制御回路11に出力す
る信号変換回路である。
In FIG. 2, W is an object to be welded, E is a wire, and an arc A is generated between them. 1 is
A wire feeding control circuit receives the signal set by the wire feeding speed setting circuit 1a as input and supplies an output to the wire feeding motor M, R is a feeding roll rotated by the electric motor M to feed the wire E. , 10 is a welding power source that is connected to a commercial frequency power source (not shown) and outputs welding power, and 11 is a welding power source 10.
11a is a pulse current control circuit that controls the power output from the circuit and supplies a pulse current to wire E through reactor L and chip T; 11 is a pulse current setting circuit that outputs an output, 12 is a base current control circuit that controls the power output from the welding power source 10 and supplies a base current to the wire E through the reactor L and the chip T, and 12a corresponds to the base current value. This is a base current setting circuit that outputs a signal to the base current control circuit 12. Welding power source 10, pulse current control circuit 11, and pulse current setting circuit 11a constitute a pulse current supply power source, and welding power source 10, base current control circuit 12, and base current setting circuit 12a constitute base current supply. Configuring the power supply. 13 is a power output setting circuit, VD is a welding voltage detection circuit that detects the average value of the welding voltage, pulse voltage or base voltage, and 14 is the output signal V r of the power output setting circuit 13 and the welding voltage detection circuit VD. Compare the output signal V p and the difference signal V r
The comparison circuit 13a which outputs -Vp is an attenuation circuit which inputs the output signal Vr of the power output setting circuit 13 and adjusts the signal level to the output signal Vr -Vp of the comparison circuit 14. 15 is a characteristic having, for example, a first fixed contact CP to which the output signal V r -V p of the comparison circuit 14 is supplied and a second fixed contact CC to which the output signal V r ' of the attenuation circuit 13a is supplied. This is a characteristic switching circuit composed of a changeover switch SW. Reference numeral 16 denotes a signal conversion circuit that receives the output signal of the movable contact of the characteristic changeover switch SW and outputs a signal for controlling at least one of the pulse current value, pulse frequency, and pulse duration to the pulse current control circuit 11.

上記の電源出力設定回路13と減衰回路13a
とによつて定電流特性(第1の特性)信号発生回
路を構成し、また電源出力設定回路13と溶接電
圧検出回路VDと比較回路14とによつて垂下特
性から略定電圧特性までのいずれか一つの特性
(第2の特性)の制御信号発生回路(以下、定電
圧特性信号発生回路という。)を構成している。
The above power output setting circuit 13 and attenuation circuit 13a
This constitutes a constant current characteristic (first characteristic) signal generation circuit, and the power output setting circuit 13, the welding voltage detection circuit VD, and the comparison circuit 14 constitute a constant current characteristic (first characteristic) signal generation circuit. A control signal generating circuit (hereinafter referred to as a constant voltage characteristic signal generating circuit) having one characteristic (second characteristic) is configured.

前述した構成によつて、特性切換スイツチSW
の可動接点が固定接点CC側に接続されると、パ
ルス電流制御回路11には、電源出力設定回路1
3から入力された減衰回路13aの出力信号
Vr′が信号変換回路16を通じて供給される。し
たがつて定電流特性(第1の特性)のパルス電流
がワイヤEと被溶接物Wとに供給され、前述した
ように、アーク固有のアーク長自己制御作用によ
つてアーク長を安定に維持させてパルスアーク溶
接を行う。つぎに、特性切換スイツチSWの可動
接点が固定接点CP側に接続されると、パルス電
流制御回路11には、電源出力設定回路13の出
力信号Vrと溶接電圧検出回路VDの出力信号Vp
の差の信号Vr−Vpが信号変換回路16を通じて
フイードバツクされる。したがつて、垂下特性か
ら定電圧特性までの間のいずれかの一つ特性(第
2の特性)のパルス電流がワイヤEと被溶接物W
との間に供給され、前述したように、溶接用電源
の出力電流変化によるアーク長制御作用によつて
アーク長を安定に維持させてパルスアーク溶接を
行う。
With the configuration described above, the characteristic changeover switch SW
When the movable contact of is connected to the fixed contact CC side, the pulse current control circuit 11 has the power output setting circuit 1
Output signal of attenuation circuit 13a input from 3
V r ' is supplied through the signal conversion circuit 16. Therefore, a pulse current with a constant current characteristic (first characteristic) is supplied to the wire E and the workpiece W, and as described above, the arc length is stably maintained by the arc length self-control function inherent to the arc. Then perform pulse arc welding. Next, when the movable contact of the characteristic changeover switch SW is connected to the fixed contact CP side, the pulse current control circuit 11 receives the output signal V r of the power output setting circuit 13 and the output signal V p of the welding voltage detection circuit VD. The difference signal V r -V p is fed back through the signal conversion circuit 16. Therefore, the pulse current of any one characteristic (second characteristic) between the drooping characteristic and the constant voltage characteristic is applied to the wire E and the workpiece W.
As described above, pulse arc welding is performed by stably maintaining the arc length by controlling the arc length by changing the output current of the welding power source.

上記の特性切換スイツチSWを切りかえるに
は、溶接作業者が溶接中または溶接休止中に、直
接またはトーチスイツチもしくは足踏スイツチそ
の他のリモートスイツチによつて切りかえてもよ
いが、第3図に示すように、予め設定した溶接電
流値(臨界電流値Ic)付近に達したときに、自動
的に切換わるようにしてもよい。
To change the above-mentioned characteristic changeover switch SW, the welding operator may change it directly or by using a torch switch, foot switch, or other remote switch during welding or during a welding pause, but as shown in Fig. 3. Alternatively, the welding current value may be automatically switched when reaching a preset welding current value (critical current value I c ).

第3図は、第2図の構成の他に、特性切換回路
として、特性切換電流設定回路(以下、切換設定
回路という。)17と、溶接電流検出回路IDと、
これら両者のそれぞれの出力信号IrおよびIpを比
較して特性切換スイツチSWを操作する信号Ir
Ipを出力する特性切換用電流比較回路(以下、電
流比較回路)18とを備えている。この切換設定
回路17には、第1図で説明した臨界電流値Ic
り多少大なる値に相当する信号Ipを出力するよう
に設定される。この臨界電流値に相当する信号Ip
の値は、使用するワイヤの材質、ワイヤの直径、
シールドガスの成分等によつて変化する臨界電流
値Icに対応させて設定する。
FIG. 3 shows, in addition to the configuration shown in FIG. 2, a characteristic switching current setting circuit (hereinafter referred to as a switching setting circuit) 17 and a welding current detection circuit ID as a characteristic switching circuit.
These two output signals I r and I p are compared and a signal I r − is used to operate the characteristic changeover switch SW.
A characteristic switching current comparison circuit (hereinafter referred to as a current comparison circuit) 18 that outputs I p is provided. This switching setting circuit 17 is set to output a signal I p corresponding to a value somewhat larger than the critical current value I c explained in FIG. A signal I p corresponding to this critical current value
The value depends on the wire material used, the wire diameter,
It is set in accordance with the critical current value I c which changes depending on the components of the shielding gas, etc.

つぎに第3図の動作について説明する。同図に
おいて、溶接電流の平均値Iaが臨界電流値Icより
も大なる場合には、溶接電流検出回路IDの出力
信号Ipが切換設定回路17の出力信号Irよりも大
になるので、電流比較回路18の出力信号Ir−Ip
は、特性切換スイツチSWを動作させて可動接点
を固定接点CC側に接続する。したがつて、第2
図において前述したように、パルス電流制御回路
11には、電源出力設定回路13から入力された
減衰回路13aの出力信号Vr′が信号変換回路1
6を通じて供給され、略定電流特性(第1の特
性)のパルス電流がワイヤEと被溶接物Wとの間
に供給され、アーク固有のアーク長自己制御作用
によつてアーク長を安定に維持させてパルスアー
ク溶接を行う。つぎに、溶接電流の平均値Iaが臨
界電流値Icよりも小になると、切換設定回路17
の出力信号Irが溶接電流検出回路IDの出力信号Ip
よりも大になるので、電流比較回路18の出力信
号Ir−Ipは、特性切換スイツチSWを復帰させて
可動接点CP側に接続する。したがつて、第2図
において前述したように、パルス電流制御回路1
1には、電源出力設定回路13の出力信号Vr
溶接電圧検出回路VDの出力信号Vpとの差の信号
Vr−Vpが信号変換回路16を通じてフイードバ
ツクされて、垂下特性から略定電圧特性までの間
のいずれかの特性(第2の特性)のパルス電流が
ワイヤEと被溶接物Wとに供給され、溶接用電源
の溶接電流の変動によるアーク長制御作用によつ
てアーク長を安定に維持させて、パルスアーク溶
接を行う。
Next, the operation shown in FIG. 3 will be explained. In the figure, when the average value I a of the welding current is larger than the critical current value I c , the output signal I p of the welding current detection circuit ID becomes larger than the output signal I r of the switching setting circuit 17. Therefore, the output signal of the current comparison circuit 18 I r −I p
operates the characteristic changeover switch SW to connect the movable contact to the fixed contact CC side. Therefore, the second
As described above in the figure, the pulse current control circuit 11 receives the output signal V r ' of the attenuation circuit 13a inputted from the power output setting circuit 13 and outputs it to the signal conversion circuit 1.
6, a pulsed current with a substantially constant current characteristic (first characteristic) is supplied between the wire E and the workpiece W, and the arc length is maintained stably by the arc length self-control action inherent to the arc. Then perform pulse arc welding. Next, when the average value I a of the welding current becomes smaller than the critical current value I c , the switching setting circuit 17
The output signal I r of the welding current detection circuit ID is the output signal I p of the welding current detection circuit ID.
Therefore, the output signal I r -I p of the current comparison circuit 18 returns the characteristic changeover switch SW and connects it to the movable contact CP side. Therefore, as described above in FIG.
1 is a signal representing the difference between the output signal V r of the power output setting circuit 13 and the output signal V p of the welding voltage detection circuit VD.
V r −V p is fed back through the signal conversion circuit 16, and a pulse current having any characteristic (second characteristic) between the drooping characteristic and the substantially constant voltage characteristic is supplied to the wire E and the workpiece W. Pulse arc welding is performed by stably maintaining the arc length by controlling the arc length by varying the welding current of the welding power source.

前述した第2図および第3図の実施例において
は、信号変換回路16の出力信号を実線で示すよ
うに、パルス電流制御回路11に供給して、パル
ス電流を定電流特性から定電圧特性までのいずれ
かの一つの特性に変化させるようにしたが、その
かわりに、信号変換回路16の出力信号を一点鎖
線で示すように、ベース電流制御回路12に供給
して、ベース電流を定電流特性から定電圧特性ま
でのいずれかの特性に変化させるようにしてもよ
い。なお、第2図および第3図のSWは、可動接
点を用いた場合を示したが、半導体による無接点
切換も当然可能である。
In the embodiments shown in FIGS. 2 and 3 described above, the output signal of the signal conversion circuit 16 is supplied to the pulse current control circuit 11 as shown by the solid line, and the pulse current is changed from constant current characteristics to constant voltage characteristics. Instead, the output signal of the signal conversion circuit 16 is supplied to the base current control circuit 12 as shown by the dashed line, and the base current is changed to one of the constant current characteristics. The characteristics may be changed to any one of the characteristics from 1 to 2 to constant voltage characteristics. Note that although the SW in FIGS. 2 and 3 uses a movable contact, it is naturally possible to perform non-contact switching using a semiconductor.

また、第2図および第3図の実施例において、
ワイヤ送給速度設定回路1aの出力信号を2点鎖
線で示すように、電源出力設定回路13、パルス
電流設定回路11aまたはベース電流設定回路1
2aに供給して、ワイヤ送給速度とパルス電流ま
たはベース電流とを一元的に調整するようにして
もよい。
Furthermore, in the embodiments of FIGS. 2 and 3,
As shown by the two-dot chain line, the output signal of the wire feeding speed setting circuit 1a is output from the power supply output setting circuit 13, the pulse current setting circuit 11a, or the base current setting circuit 1.
2a to centrally adjust the wire feeding speed and the pulse current or base current.

以上のように、本発明の溶接方法および溶接装
置によれば、溶接電流値が予め定めた値をこえる
と、ベース電流供給用電源およびパルス電流供給
用電源ともに定電流特性とすることによつてアー
ク長が変動しても溶接電流が一定で溶け込み深さ
を一定にするとともに、アーク固有の自己制御作
用によつてアーク長を一定に維持させることがで
き、さらに溶接電流値が予め定めた値以下になる
と、ベース電流供給用電源またはパルス電流供給
用電源のいずれか一方を定電圧特性に近ずけて、
電源の平均電流変化によつてアーク長制御を行わ
せることによつて、特別なアーク長制御回路を付
加することなく、従来のいずれかの単独の方式よ
りも溶接結果が良好なスプレイ移行のパルスアー
ク溶接を行うことができ、また臨界電流値以下の
小電流値から大電流値の広範囲にわたつて1台の
溶接機でスプレイ移行アーク溶接を行うことがで
き経済的である。
As described above, according to the welding method and welding device of the present invention, when the welding current value exceeds a predetermined value, both the base current supply power supply and the pulse current supply power supply have constant current characteristics. Even if the arc length fluctuates, the welding current remains constant and the penetration depth remains constant.The arc length can also be maintained constant due to the arc's own self-control action, and the welding current value remains at a predetermined value. If the voltage is below, either the base current supply power supply or the pulse current supply power supply should be brought close to constant voltage characteristics.
By having arc length control performed by the average current variation of the power supply, pulsed spray transfer provides better welding results than either conventional single method without the addition of a special arc length control circuit. Arc welding can be performed, and spray transfer arc welding can be performed over a wide range of current values from small current values below the critical current value to large current values with one welding machine, which is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ワイヤ送給速度Vfをパラメータと
し、溶接電流の平均値Ia(横軸)と溶接電圧Va(縦
軸)との関係を示す線図、第2図および第3図
は、本発明の溶接装置の実施例を示す構成図であ
る。 E……消耗性電極(ワイヤ)、10および12
……ベース電流供給用電源(10……溶接用電
源、12……ベース電流制御回路)、10および
11……パルス電流供給用電源(10……溶接用
電源、11……パルス電流制御回路)、1,Mお
よび1a……ワイヤ送給装置(1……ワイヤ送給
制御回路、M……ワイヤ送給電動機、1a……ワ
イヤ送給速度設定回路)、13……定電流特性信
号発生回路(13……電源出力設定回路、13a
……減衰回路)、13,VD,14および19…
…定電圧特性信号発生回路(13……電源出力設
定回路、VD……溶接電圧検出回路、14……比
較回路)、15……特性切換回路(17……特性
切換用電流値設定回路、ID……溶接電流検出回
路、18……特性切換電流比較回路、SW……特
性切換スイツチ)。
Figure 1 is a diagram showing the relationship between the average value of welding current I a (horizontal axis) and welding voltage V a (vertical axis) using wire feed speed V f as a parameter, Figures 2 and 3 1 is a configuration diagram showing an embodiment of a welding apparatus of the present invention. E...Consumable electrode (wire), 10 and 12
... Base current supply power source (10... Welding power source, 12... Base current control circuit), 10 and 11... Pulse current supply power source (10... Welding power source, 11... Pulse current control circuit) , 1, M and 1a... wire feeding device (1... wire feeding control circuit, M... wire feeding motor, 1a... wire feeding speed setting circuit), 13... constant current characteristic signal generation circuit (13...Power output setting circuit, 13a
...attenuation circuit), 13, VD, 14 and 19...
... Constant voltage characteristic signal generation circuit (13 ... Power output setting circuit, VD ... Welding voltage detection circuit, 14 ... Comparison circuit), 15 ... Characteristic switching circuit (17 ... Current value setting circuit for characteristic switching, ID ...Welding current detection circuit, 18...Characteristic switching current comparison circuit, SW...Characteristic switching switch).

Claims (1)

【特許請求の範囲】 1 消耗性電極を設定した略一定速度で送給し、
ベース電流およびパルス電流を前記消耗性電極に
供給して溶接するパルスアーク溶接方法におい
て、溶接電流の平均値が、前記消耗性電極の材質
および直径、シールドガスの成分等の溶接条件に
応じて予め定まる臨界電流値付近をこえた電流範
囲では、ベース電流供給用電源およびパルス電流
供給用電源のいずれも略定電流特性(第1の特
性)の溶接用電源として、アーク固有のアーク長
自己制御作用によつてアーク長を安定に維持さ
せ、かつ、溶接電流の平均値が、前記臨界電流値
付近以下の電流範囲では、ベース電流供給用電源
またはパルス電流供給用電源のいずれか一方を略
定電流特性(第1の特性)の溶接電源とし、他方
を垂下特性から略定電圧特性までの間のいずれか
一つの特性(第2の特性)の溶接用電源とするこ
とによつて、溶接用電源の電流変化によるアーク
長制御作用によつてアーク長を安定に維持させて
溶接するパルスアーク溶接方法。 2 消耗性電極を設定した略一定速度で送給する
ワイヤ送給装置と、消耗性電極に略定電流特性の
ベース電流を供給するベース電流供給用電源と、
前記消耗性電極にパルス電流を供給するパルス電
流供給用電源と、前記パルス電流供給用電源が定
電流特性(第1の特性)のパルス電流を出力する
ための制御信号を発生する定電流特性信号発生回
路と、前記パルス電流供給用電源が垂下特性から
略定電圧特性までの間のいずれか一つの特性(第
2の特性)のパルス電流を出力するための制御信
号を発生する定電圧特性信号発生回路と、溶接電
流の平均値が臨界電流値付近をこえた電流範囲で
は前記定電流特性信号を、臨界電流値付近以下の
電流範囲では前記定電圧特性信号を切換えて前記
パルス電流供給用電源に供給する特性切換回路と
を備えたパルスアーク溶接装置。 3 前記ベース電流供給用電源およびパルス電流
供給用電源が、溶接用電源と、ベース電流制御回
路と、パルス電流制御回路とから成り、前記特性
切換回路の出力信号がパルス電流制御回路に供給
される特許請求の範囲第2項に記載のパルスアー
ク溶接装置。 4 前記定電流特性信号発生回路が、電源出力設
定回路と、減衰回路とから成り、前記定電圧特性
信号発生回路が、前記電源出力設定回路と、溶接
電圧検出回路と、前記2つの回路の出力信号の差
の信号を出力する比較回路とから成る特許請求の
範囲第2項に記載のパルスアーク溶接装置。 5 前記特性切換回路が、特性切換スイツチと、
溶接電流検出回路と、特性切換用電流値設定回路
と、前記2つの回路の出力信号の差を出力する特
性切換用電流比較回路とから成る特許請求の範囲
第2項に記載のパルスアーク溶接装置。 6 前記ワイヤ送給装置が、ワイヤ送給速度設定
回路と、ワイヤ送給制御回路と、ワイヤ送給電動
機とから成り、かつ、前記電源出力設定回路が、
ワイヤ送給設定回路の出力信号を入力とする特許
請求の範囲第2項に記載のパルスアーク溶接装
置。 7 消耗性電極を設定した略一定速度で送給する
ワイヤ送給装置と、消耗性電極に定電流のパルス
電流を供給するパルス電流供給用電源と、前記消
耗性電極にベース電流を供給するベース電流供給
用電源と、前記ベース電流供給用電源が定電流特
性(第1の特性)のベース電流を出力するための
制御信号を発生する定電流信号発生回路と、前記
ベース電流供給用電源が垂下特性から定電圧特性
までのいずれか一つの特性(第2の特性)のベー
ス電流を出力するための制御信号を発生する定電
圧特性信号発生回路と、溶接電流の平均値が臨界
電流値付近をこえた電流範囲では前記定電流特性
信号を、臨界電流値付近以下の電流範囲では前記
定電圧特性信号を切換えて前記パルス電流供給用
電源に供給する特性切換回路とを備えたパルスア
ーク溶接装置。 8 前記ベース電流供給用電源およびパルス電流
供給用電源が、溶接用電源と、ベース電流制御回
路と、パルス電流制御回路とから成り、前記特性
切換回路の出力信号がベース電流制御回路に供給
される特許請求の範囲第7項に記載のパルスアー
ク溶接装置。 9 前記定電流特性信号発生回路が、電源出力設
定回路と、減衰回路とから成り、前記定電圧特性
信号発生回路が、前記電源出力設定回路と、溶接
電圧検出回路と、前記2つの回路の出力信号の差
の信号を出力する比較回路とから成る特許請求の
範囲第7項に記載のパルスアーク溶接装置。 10 前記特性切換回路が、特性切換スイツチ
と、溶接電流検出回路と、特性切換用電流値設定
回路と、前記2つの回路の出力信号の差を出力す
る特性切換用電流比較回路とから成る特許請求の
範囲第7項に記載のパルスアーク溶接装置。 11 前記ワイヤ送給装置が、ワイヤ送給速度設
定回路と、ワイヤ送給制御回路と、ワイヤ送給電
動機とから成り、かつ前記電源出力設定回路が、
ワイヤ送給速度設定回路の出力信号を入力とする
特許請求の範囲第7項に記載のパルスアーク溶接
装置。
[Claims] 1. Feeding the consumable electrode at a set substantially constant speed;
In a pulsed arc welding method in which a base current and a pulsed current are supplied to the consumable electrode for welding, the average value of the welding current is determined in advance according to welding conditions such as the material and diameter of the consumable electrode and the composition of the shielding gas. In the current range exceeding the vicinity of the determined critical current value, both the base current supply power supply and the pulse current supply power supply function as welding power supplies with approximately constant current characteristics (first characteristic), and the arc length self-control function inherent to the arc is applied. In a current range where the arc length is maintained stably and the average value of the welding current is around or below the critical current value, either the base current supply power supply or the pulse current supply power supply is operated at a substantially constant current. By using the welding power source as a welding power source with a characteristic (first characteristic) and the other as a welding power source with one characteristic (second characteristic) between drooping characteristic and substantially constant voltage characteristic, A pulse arc welding method that maintains a stable arc length by controlling the arc length by changing the current. 2. a wire feeding device that feeds the consumable electrode at a set substantially constant speed; a base current supply power source that supplies the consumable electrode with a base current having substantially constant current characteristics;
a pulse current supply power supply that supplies a pulse current to the consumable electrode; and a constant current characteristic signal that generates a control signal for the pulse current supply power supply to output a pulse current having constant current characteristics (first characteristic). a constant voltage characteristic signal that generates a control signal for the pulse current supply power supply to output a pulse current having any one characteristic (second characteristic) between a drooping characteristic and a substantially constant voltage characteristic; The generator circuit switches the constant current characteristic signal in a current range in which the average value of the welding current exceeds around the critical current value, and switches the constant voltage characteristic signal in the current range below around the critical current value to generate the pulsed current supply power source. A pulse arc welding device equipped with a characteristic switching circuit that supplies power to the pulse arc welding device. 3. The base current supply power supply and the pulsed current supply power supply include a welding power supply, a base current control circuit, and a pulsed current control circuit, and the output signal of the characteristic switching circuit is supplied to the pulsed current control circuit. A pulse arc welding device according to claim 2. 4. The constant current characteristic signal generation circuit includes a power output setting circuit and an attenuation circuit, and the constant voltage characteristic signal generation circuit includes the power output setting circuit, the welding voltage detection circuit, and the outputs of the two circuits. The pulse arc welding apparatus according to claim 2, further comprising a comparison circuit that outputs a signal representing a difference between the signals. 5. The characteristic switching circuit comprises a characteristic switching switch;
The pulse arc welding device according to claim 2, comprising a welding current detection circuit, a characteristic switching current value setting circuit, and a characteristic switching current comparison circuit that outputs a difference between the output signals of the two circuits. . 6. The wire feeding device includes a wire feeding speed setting circuit, a wire feeding control circuit, and a wire feeding motor, and the power output setting circuit includes:
The pulse arc welding apparatus according to claim 2, wherein the output signal of the wire feed setting circuit is input. 7. A wire feeding device that feeds a consumable electrode at a set substantially constant speed, a pulse current supply power source that supplies a constant pulse current to the consumable electrode, and a base that supplies a base current to the consumable electrode. a current supply power supply; a constant current signal generation circuit that generates a control signal for the base current supply power supply to output a base current having a constant current characteristic (first characteristic); A constant voltage characteristic signal generation circuit that generates a control signal for outputting a base current of any one characteristic (second characteristic) from characteristics to constant voltage characteristics, and a characteristic switching circuit that switches the constant current characteristic signal in a current range exceeding a critical current value and the constant voltage characteristic signal in a current range below a critical current value and supplies the same to the pulse current supply power source. 8. The base current supply power source and the pulse current supply power source include a welding power source, a base current control circuit, and a pulse current control circuit, and the output signal of the characteristic switching circuit is supplied to the base current control circuit. A pulse arc welding device according to claim 7. 9. The constant current characteristic signal generation circuit includes a power output setting circuit and an attenuation circuit, and the constant voltage characteristic signal generation circuit includes the power output setting circuit, the welding voltage detection circuit, and the outputs of the two circuits. The pulse arc welding apparatus according to claim 7, further comprising a comparison circuit that outputs a signal representing a difference between the signals. 10 A patent claim in which the characteristic switching circuit comprises a characteristic switching switch, a welding current detection circuit, a characteristic switching current value setting circuit, and a characteristic switching current comparison circuit that outputs a difference between the output signals of the two circuits. The pulse arc welding device according to item 7. 11 The wire feeding device includes a wire feeding speed setting circuit, a wire feeding control circuit, and a wire feeding motor, and the power output setting circuit includes:
The pulse arc welding apparatus according to claim 7, wherein the output signal of the wire feed speed setting circuit is input.
JP18323682A 1982-10-19 1982-10-19 Method and device for pulsed arc welding Granted JPS5973178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18323682A JPS5973178A (en) 1982-10-19 1982-10-19 Method and device for pulsed arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18323682A JPS5973178A (en) 1982-10-19 1982-10-19 Method and device for pulsed arc welding

Publications (2)

Publication Number Publication Date
JPS5973178A JPS5973178A (en) 1984-04-25
JPH0321267B2 true JPH0321267B2 (en) 1991-03-22

Family

ID=16132153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18323682A Granted JPS5973178A (en) 1982-10-19 1982-10-19 Method and device for pulsed arc welding

Country Status (1)

Country Link
JP (1) JPS5973178A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676081B2 (en) * 2001-03-28 2011-04-27 株式会社ダイヘン Output control method for pulse arc welding power supply
JP5187439B2 (en) 2009-03-23 2013-04-24 パナソニック株式会社 Welding control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662674A (en) * 1979-10-26 1981-05-28 Daihen Corp Pulse arc welding method
JPS57118867A (en) * 1981-01-14 1982-07-23 Sansha Electric Mfg Co Ltd Pulse arc welding machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313903Y2 (en) * 1979-10-22 1988-04-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662674A (en) * 1979-10-26 1981-05-28 Daihen Corp Pulse arc welding method
JPS57118867A (en) * 1981-01-14 1982-07-23 Sansha Electric Mfg Co Ltd Pulse arc welding machine

Also Published As

Publication number Publication date
JPS5973178A (en) 1984-04-25

Similar Documents

Publication Publication Date Title
US6259059B1 (en) Arc welder and torch for same
EP0043589B1 (en) Pulse arc welding machine
US8124913B2 (en) Method for controlling and/or adjusting a welding process and welding device for carrying out a welding process
JP6945290B2 (en) Welding system for AC welding with reduced spatter
JP2005066615A (en) Arc-length control method at starting of gas-shielding arc welding with consumable electrode
JPH0321267B2 (en)
JP3990182B2 (en) Arc start control method
JP2873716B2 (en) Starting AC arc
JP4252636B2 (en) Consumable electrode gas shield arc welding method
JPH09271942A (en) Pulsed mag arc welding method and welding equipment
JP2705208B2 (en) Pulse arc welding machine
JP2004042056A (en) Arc and control method
JPH0321268B2 (en)
JPH0358829B2 (en)
JPH0160351B2 (en)
JP2534373B2 (en) Arc welding machine
JPH0321269B2 (en)
JP2023180287A (en) Feed control arc welding method
KR880000949B1 (en) Arc welder for short circuiting
JP2022110699A (en) Composite welding device
JP2002254172A (en) Outside characteristic control method for welding source device
JPS5825871A (en) Arc welding machine
JPH0331552B2 (en)
JPS613672A (en) Power source device for consumable electrode type pulse welding
JPS5940547B2 (en) 2-electrode arc welding method